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A B S T R A C T

An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model
consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of
decorating sites is performed within the framework of rigorous analytical calculations. The investigated
model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile
electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-
neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase
diagrams are examined for a wide range of model parameters for both ferromagnetic as well as
antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field.
It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as
a consequence of competition between all considered interaction terms. Moreover, the new quantum states
are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions
are observed.

1. Introduction

During several last decades a considerable amount of effort has
been devoted to the investigation of coupled spin-electron systems due
to the fact, that such materials exhibit a wide range of unconventional
properties [1,2] with a direct application in the real life. Their
application potential makes such materials very attractive for physicists
as well as engineers, but in spite of their enormous effort, the
exhaustive understanding of driven mechanisms in such complex
systems has not been achieved so far. In general, it is assumed that
the origin of mentioned collective phenomena arises from a competi-
tion between electron motion and magnetic behavior [3,4], however,
the importance of selected contributions is still highly debated. From
the theoretical point of view, the special interest has been devoted to
the relevance of additional interaction terms, which are often neglected
in the first approach analysis but could be responsible for the new
interesting behavior as exemplified in Refs. [5–7].

In the present paper we investigate the role of direct local spin-spin
interaction on the formation of magnetic order, where we suppose that
its presence fundamentally contributes to a magnetic diversity of real

materials [8]. As known, the diversity of magnetic states is highly
desired in various field sensing devices and/or should be the base for
presence of huge magnetocaloric effect significant for the refrigeration
purposes. Consequently, their detailed examination is, therefore, very
valuable. For the theoretical analysis we propose a relatively simple
extended spin-electron model on an arbitrary doubly decorated lattices
with the localized Ising spins and delocalized mobile electrons, the
simplified versions of which have been previously studied in 1D [9,10]
as well as 2D cases [11–13]. In spite of the model simplicity, which
takes into account only a short-range type of interactions, the previous
results point to the model convenience and present a good agreement
with experimental observations. Our further analysis is primarily
focused on the examination of the magnetic ground-state phase
diagrams under the influence of external magnetic field, where an
exhaustive description of stable magnetic states is precisely done.
Besides, we accurately examine the stability area of each phase and
define the exact boundary conditions among them. Finally, we detect
the presence of field-driven discontinuous phase transition and specify
the conditions of their existence.

The paper is organized as follows. In Section 2 we briefly describe
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the investigated model and derive the eigenvalues of bond Hamiltonian
as a necessary step in determination of a ground-state energy. The
most interesting results with the corresponding discussion are pre-
sented in Section 3 and last, a few conclusions together with future
outlooks are collected in Section 4.

2. Model and method

The proposed coupled spin-electron model on doubly decorated
planar lattice is formed by immobile Ising spins localized at each nodal
lattice site and by mobile electrons delocalized over the pairs of sites
decorating each bond. The energy terms occurring in the model
Hamiltonian correspond to the kinetic energy of mobile electrons,
the Ising interaction between the mobile electrons and their nearest-
neighbor Ising spins, as well as, the Ising interaction between the
nearest-neighbor Ising spins. Of course, the Zeeman energy term must
be included to study the effect of external magnetic field. Assuming the
fact, that all involving interactions have a local character, the total
Hamiltonian can be rewritten to a more convenient form:

= ∑k
Nq

k=1
/2 , where the N is a total number of all nodal sites, q is

the coordination number and the k-th bond Hamiltonian k is defined
as:

t c c c c c c c c
Jσ n n Jσ n n
h n n h n n
h
q

σ σ J σ σ μ n n

= − ( + + + )
− ( − ) − ( − )
− ( − ) − ( − )

− ( + ) − ′ − ( + ).

k k k k k k k k k

k
z

k k k
z

k k

k k k k

k
z

k
z

k
z

k
z

k k

,↑
†

,↑ ,↓
†

,↓ ,↑
†

,↑ ,↓
†

,↓

,↑ ,↓ ,↑ ,↓

,↑ ,↓ ,↑ ,↓

1 2 1 2 2 1 2 1

1 1 1 2 2 2

1 1 2 2

1 2 1 2 1 2 (1)

The symbols ck γ,
†
α
/ck γ,α

(α = 1,2; γ = ↑ , ↓) denote the creation/annihila-

tion fermionic operators of the mobile electron and n c c=k γ k γ k γ, ,
†

,α α α
as

well as n n= ∑k γ k γ{ } ,α α
are the corresponding number operators. σk

z
α

denotes the z-component of the Pauli operator with the eigenvalues
σ = ± 1. The first term in Eq. (1) corresponds to the kinetic energy of
mobile electrons delocalized over a couple of decorating sites k1 and k2
from the k-th dimer with the hopping amplitude t. The second and the
third terms represent the Ising interaction between the mobile
electrons and their nearest-neighbors Ising spins described by the
parameter J. The next three terms in the Eq. (1) correspond to the
energy contribution induced by the external magnetic field acting on
the localized as well as delocalized particles and the term J′ denotes the
Ising interaction between the nearest-neighbor Ising spins. Finally, μ is
a chemical potential of the mobile electrons.

The mutual commutativity between the different bond
Hamiltonians implies that it is sufficient to diagonalize the bond
Hamiltonian k in the corresponding reduced Hilbert subspace,
because the overall Hilbert space corresponding to the total
Hamiltonian is composed of orthogonal subspaces corresponding
to individual bond Hamiltonians k. This means that correlation
effects between electrons stem exclusively from the local bond
Hamiltonian k given by Eq. (1). On assumption that the coupled
spin-electron model is defined on a bipartite (non-frustrated) lattice
the lowest-energy eigenstate of the bond Hamiltonian k can be then
straightforwardly extended to the whole system in order to get global
ground states [14], whereas the relevant eigenenergy and eigenvector
follow from the lowest-energy eigenstate of the bond Hamiltonian
according to E E E→ = ∑k k

Nq
k=1

/2 and ψ ψ ψ| 〉 → | 〉 = ∏ | 〉k k
Nq

k=1
/2 . To perform

an exhaustive analysis of the ground state it is thus necessary to obtain
a full set of eigenstates of the bond Hamiltonian. The bond
Hamiltonian k can be divided into several disjoint blocks n( )k k

due to the commutativity of k with the number operator of mobile
electrons per bond nk and the calculation procedure is significantly
simplified. Subsequently, the sixteen different eigenvalues Ek , corre-
sponding to the different electron fillings have been obtained:
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where P σ σ= ( + )/2k k1 2
, Q J σ σ t= ( − ) + 4k k

2 2 2
1 2

and R Jσ σ= − −k k1 2
hL q/ .

3. Results and discussion

In this section we present the most interesting results obtained
from the ground-state analysis of the model (1) in the presence of
external magnetic field focusing on the diversity of stable magnetic
structures. First of all, it should be mentioned that the absolute value of
the coupling constant J between the localized spins and mobile
electrons is set to unity and all others parameters will be normalized
with respect to this coupling. In addition, the applied magnetic field is
always chosen positive, i.e. h > 0 and the coordination number q = 4 is
assumed as to match the magnetic structure of the doubly decorated
square lattice. Finally, it is worthwhile to recall that subsequent
analysis is performed strictly at zero temperature, and thus, all field-
driven phase transitions are discontinuous (first-order) phase transi-
tions accompanied with a respective jump in the total magnetization.

To investigate the ground-state energy of the model (1) all 64
possible magnetic states derived from Eq. (2) by considering four
available combinations of two Ising spins must be taken into account.
Fortunately, out of the whole investigated ensemble, only 15 different
phases may become the ground state. These phases together with their
energies are collected in Table 1.

As one can see, the model can stabilize both the ferromagnetic (F)
as well as antiferromagnetic (AF) type of long-range ordering in both
subsystems for an arbitrary integer electron concentration. In compar-
ison with the previous studies of identical model [13,15], the mutual
influence of all present interactions results into existence of novel
magnetic phases, which are absent in the model without the magnetic
field or the further-neighbor interaction J′. In this context, there arises
a question whether all 15 ground states could be achieved by a simple
modulation of just one external parameter, for instance, the magnetic
field h. If there existed a conformable answer, then there would exist
relatively simple way how to alter various magnetic states with a direct
utilization in the real life.

Let us analyze the obtained results in detail, dividing them
according to the type of the spin-electron interaction J (the F type if
J = 1 and the AF type if J = − 1) for both, the F as well as AF type of the
further-neighbor interaction J′.

3.1. The ferromagnetic case J = 1
As observed previously for the special case J′ = 0 [15], the F

interaction J in combination with the electron hopping t and external
magnetic field h results in three different types of magnetic phase
diagrams depending on a relative strength of the hopping term. An
arbitrary non-zero field favors the F spin-electron state in an uncom-
pensated and empty/fully electron occupancy, while in the half-filled
band case the magnetic field enforces discontinuous phase transitions.
Of course, only the spin subsystem is F in the case n = 0k since the
electron subsystem is empty, similarly as in the fully occupied case
n = 4k when the electron subsystem resides in a non-magnetic ionic
state. The F interaction J′ > 0 has only an insignificant influence on the
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phase stability, however, it markedly influences presence/existence of
the field-driven phase transitions detected in the half filling. This fact is
clearly visible in Fig. 1, where the respective phase boundaries are
given by the following expressions:

μ J h t
μ J h t
μ J h t

μ J h t J h q J t

0 − I / III − IV: = ( − 1) ( − − − ),
I − II / II − III : = ( − 1) ( − − + ),
I − II / II − III : = ( − 1) ( + − ),

I − II / II − III : = ( − 1) ( + + + 2( ′ + / − + )).
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Table 1
The list of eigenvalues and eigenvectors forming individual ground states. The probability amplitudes α and β used in the notation of the eigenvectors |I 〉/|III 〉3 3 have the explicit forms:
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Fig. 1. Ground-state phase diagrams in the μ-h plane for J = 1 and selected values of J′ ≥ 0 and t.
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It should be mentioned that u = 1 if the nk of both adjacent phases are
less or equal to two (n ≤ 2k ) or u = 2 otherwise. As one can see, almost
all borders are J′-invariant and hence only the phase boundaries
I /III1 1-II5 depend on the spin-spin interaction J′. It can be found from
Fig. 1 that the F coupling J′ > 0 dramatically reduces the value of
applied magnetic field at which a field-induced phase transition
occurres. The exception from this rule represents the phase boundary
II1-II2, which is completely independent of J′:

h J t

h q J J J t q

h q t J J t

II − II : = − + ,

II − II : / = (− − ′ + + )/( + 1),

II − II : / = − − ′ + + .

1 2

1 5
2 2

2 5
2 2

(4)

The reduction of transition fields for the phase boundaries II1-II5 and
II2-II5 relates with the fact that the F coupling J′ > 0 favors parallel
orientation of localized spins with respect to the antiparallel one.
Depending on a relative strength of the hopping term, which prefers an
opposite (antiparallel) orientation of electrons, either the state II1 or
state II2 becomes dominant. To conclude, the F interaction J′ > 0 is not
able to generate new magnetic phases, it only stabilizes/reduces the
ones existing in the former phase diagrams. Contrary to this, the AF
interaction J′ < 0 may significantly influence the former phase dia-
grams and generate novel magnetic phases, especially, at low magnetic
fields. Since the driving force of their existence originates from the AF
interaction J′ < 0, naturally, the stability of novel phases arises as a
response to strengthening of the AF interaction J| ′| (see Fig. 2). All new
phases are indeed characterized by the AF arrangement of magnetic
moments in the spin subsystem (see Table 1), in accordance with the

AF character of the interaction J′ < 0. In the parameter space, where
the effect of coupling constant J is negligible (n = 0k or n = 4k ), the spin
order is strictly determined by the competition between the field term h

Fig. 2. Ground-state phase diagrams in the μ-h plane for J = 1 and selected values of J′ ≤ 0 and t.

Fig. 3. The occurrence probabilities of microstates within the ground states I3 and III3
(see Table 1), where Pα

± determines the probability of the microstate | ↑ , 0 k with the

corresponding probability amplitude α and Pβ
± stands for the probability of the

microstate |0, ↑ k with the corresponding probability amplitude β . The upper index

determines sign of the coupling constant J, i.e., ‘+’ for J > 0 and ‘−’ for J < 0. Inset: the
microstates entering a quantum superposition within the phase I3 and III3 with

probability amplitudes α and β , respectively.
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and the coupling constant J′ < 0, while the value of hopping term t
becomes unimportant. The same conclusion can be reached for the
phase boundaries 01-02 or IV1-IV2 emerging at h q J/ = − ′. By contrast,
the increasing hopping term t has a significant effect on the electron
subsystem within the novel phase I3/III3 and, thus, it dramatically
changes the stability of these phases. However, it can be understood
from Fig. 3 that the hopping process of the mobile electrons effectively
decouples the localized spins within the novel phases I3 or III3 in the
limit of sufficiently strong hopping term t what is in sharp contrast to
the phases I1/III1 with the F alignment of the localized spins.

Similarly to the case J′ > 0, the AF further-neighbor interaction J′ < 0
strongly affects presence/existence of field-driven phase transitions.
Contrary to the former case, the increasing J| ′| shifts the phase boundary
to the higher magnetic fields with exception of the phase boundary
between II1-II2 phases. It is noteworthy that sufficiently strong value of J′
can fully suppress presence of the phase II2 for a strong electron
correlation (t = 4) and thus, it can reduce the number of field-driven
phase transitions. For completeness, let us quote analytical expressions
for remaining phase boundaries occurring in the phase diagrams for J = 1

and J′ < 0, as derived from a comparison of the energies given in Table 1.

μ J h t J h q
μ J t h J h q

μ J J h q h J t

μ J t h q h J t

μ h J t

h q J J t J t

0 − I / III − IV : = ( − 1) ( − − − − 2 ′ − 2 / ),
0 − I / III − IV : = ( − 1) ( − − − 2 ′ + 2 / ),

I − II / II − III : = ( − 1) (−2( + ′ + / ) − + + ),

I − II / II − III : = ( − 1) (−2( ′ + + / ) + + + ),

I − II / II − III : = ( − 1) ( − + ),

I − I / III − III : 2 / = − − 2 ′ − + + .

u

u

u

u

u

2 1 1 2

2 2 2 2

3 1 1 3
2 2

3 2 2 3
2 2

3 5 5 3
2 2

1 3 3 1
2 2

(5)

3.2. The antiferromagnetic case J = − 1
The situation for the AF coupling J = − 1 is more complicated.

Under this condition, the spin subsystem in the case of the fully
occupied or empty electron counterpart is always oriented ferromag-
netically, since the effect of magnetic field dominates over all other
forces. In an uncompensated electron limit (n = 1k or n = 3k ), the AF
coupling J generates at low magnetic fields new phases I2 and III2 with

Fig. 4. Ground-state phase diagrams in the μ-h plane for J = − 1 and selected values of J′ ≥ 0 and t.
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a different magnetism in both subsystems. Since the effect of applied
field is smaller in comparison with the AF coupling J, the localized
spins are aligned in opposite to the magnetic field in order to preserve
the AF character of the spin-electron coupling J. Naturally, the
increment of external field leads to a suppression of the AF coupling
J and the F character becomes dominant. This transition is conse-
quently realized through the intermediate phases I3 and III3 to the
final F phases I1 and III1, as evidenced by two field-driven phase
transitions. The first transition between the phases I2-I3 (III2-III3)

depends on all model parameters, h q J J t J t2 / = − + 2 ′ + − +2 2 ,
and it is shifted to the higher fields as the hopping term t increases.
The second transition also depends on all model parameters, but the
increasing hopping term t shifts its occurrence inversely.
Consequently, both transitions can merge together into the t-invar-
iant phase boundary, h q J/ = − /2, between the phases I1-I2 or III1-III2
for a sufficiently large hopping term t. It should be mentioned that the
occurrence probabilities of two electron microstates in the phase I3 or
III3 evolve inversely with respect to the J = 1 case (Fig. 3).
Furthermore, the AF coupling J = − 1 produces another novel mag-

netic phase II3 located at a half filling. This phase is also characterized
by a different magnetism of both subsystems due to the AF character
of the spin-electron coupling J. Surprisingly, the phase II3 occurs at
relatively high magnetic fields in contrast to the phases with the AF
ordering in one (II2) or both (II 5) subsystems emergent in a low-field
region. It can be seen from Fig. 4 that the system exhibits field-driven
phase transitions also at half filling in the limit with absence of spin-
spin interaction J′ = 0, where their number can be tuned by the
hopping term t. The rigorous expressions for three of them are given
by Eq. (4), while the remaining two field-driven phase transitions
occur at:

h q J

h q J J J t q

II − II : / = − ,

II − II : / = ( − ′ + + )/( − 1).
1 3

3 5
2 2

(6)

Let us turn our attention to the effect of the further-neighbor
interaction J′ on the ground-state properties. As could be expected,
the F interaction J′ > 0 stabilizes the spontaneous F ordering and
reduces the AF ones, whereas the phases emerging for the AF

Fig. 5. Ground-state phase diagrams in the μ-h plane for J = − 1 and selected values of J′ ≤ 0 and t.
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coupling J = − 1 dominate in weak magnetic fields. In the strong-field
limit the phases emerging for the F coupling J = 1 become dominant.
Obviously, the non-zero F spin-spin interaction J′ > 0 in combination
with the AF spin-electron one J = − 1 is not able to generate a novel
magnetic phase, but it only favors some of existing phases at the
expense of others. The most interesting finding in this parameter
space is the fact that all field-induced phase transitions occurring in
the phase diagrams depend only on values of h and J for sufficiently
large J′ as well as t. By contrast, the AF interaction J′ < 0 may
generate novel phases 02 and IV2 at low magnetic fields and it also
generates the novel phase II4 at relatively high magnetic fields at the
half-filled band case on assumption that the hopping term is
sufficiently strong. In this phase the AF coupling J′ < 0 between the
localized spins is sufficient to preserve their antiparallel orientation,
but the magnetic field is strong enough to align the electron
subsystem into the direction of external magnetic field. The most
interesting result of our investigations is the fact that the competing
effect of the AF spin-spin coupling J′ < 0, the AF spin-electron
coupling J = − 1, the hopping term t and the magnetic field h can
produce various magnetic structures, which can be altered only by the
changes of external magnetic field. It has been found that the AF spin-
electron coupling J (J = − 1) leads to much higher diversity of
magnetic structures in comparison with the F one (J = 1) and thus,
it generates numerous field-driven phase transitions. Furthermore,
the additional spin-spin interaction J′ may stabilize/produce selected
magnetic structures, depending on the character of the applied
interaction, but the number of field-driven phase transitions is in
general reduced. To complete our analysis, the remaining phase
boundaries between the relevant phases have the following form:

μ J h h q t

μ J h q h J t
μ J h h q

μ h J t
μ J h h q t
μ J J h h q t
μ J h h q t
μ J h t

μ J h t J h q J t

μ J t h q h J t

μ J J h q h J t

μ h J t

μ h J t

0 − I / III − IV: = ( − 1) ( − + 4 / − ),

0 − I / III − IV: = ( − 1) (2( ′ + / ) − − + ),
0 − II / II − IV: = ( − 1) ( − + 2 / ),

0 − I / III − IV : = ( − 1) ( − − + ),
I − II / II − III : = ( − 1) (3 − + 4 / + ),
I − II / II − III : = ( − 1) ( + 2 ′ − + 2 / + ),
I − II / II − III : = ( − 1) ( − + − 4 / − ),
I − II / II − III : = ( − 1) ( − + ),

I − II / II − III : = ( − 1) (− + + + 2( ′ − / − + )),

I − II / II − III : = ( − 1) (−2( ′ + + / ) + + + ),

I − II / II − III : = ( − 1) (2( − ′ + / ) − + + ),

I − II / II − III : = ( − 1) ( − + + ),

I − II / II − III : = ( − 1) ( − + ).

u

u

u

u

u

u

u

u

u

u

u

u

u

1 2 2 1

1 3 3 1
2 2

1 3 3 1

2 3 3 2
2 2

1 3 3 1

1 4 4 1

2 2 2 2

2 3 3 2

2 5 5 2
2 2

3 2 2 3
2 2

3 3 3 3
2 2

3 4 4 3
2 2

3 5 5 3
2 2

(7)

Finally, the conditions for the last phase transitions complete our
study:

h q J J
h q J t q
h q J J

h J t

II − II : / = − − ′,
II − II : / = ( ′ + )/( − 1),
II − II : / = − + ′,

II − II : = + .

1 4

2 4

3 4

4 5
2 2

(8)

4. Conclusion

In conclusion, we have examined the influence of further-neighbor
interaction on a diversity of magnetic structures in ground-state phase
diagrams as well as the number of field-driven phase transitions. It was
found that the mutual interplay between the kinetic term, the Ising
interaction between the localized spins and mobile electrons, the
further-neighbor spin-spin interaction between the localized spins
and the non-zero magnetic field leads to very rich magnetic phase
diagrams including the F, AF as well as combined F-AF magnetic
structures. Interestingly, it was found that the further-neighbor spin-
spin interaction fundamentally influences the magnetic ground state
and should be taken into account for a correct description of the
magnetization processes of coupled spin-electron systems. In addition,
it was observed that its inclusion strongly affects presence/existence of
the field-induced phase transitions of metamagnetic nature at finite
temperatures. However, it is necessary to perform an extended
theoretical analysis to answer this question satisfactorily. The work
on this task is currently in progress [15].
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