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Finding paths with quantum walks or quantum walking through a maze
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We show that it is possible to use a quantum walk to find a path from one marked vertex to another. In the
specific case of M stars connected in a chain, one can find the path from the first star to the last one in O(M

√
N )

steps, where N is the number of spokes of each star. First we provide an analytical result showing that by starting
in a phase-modulated highly superposed initial state we can find the path in O(M

√
N log M) steps. Next, we

improve this efficiency by showing that the recovery of the path can also be performed by a series of successive
searches when we start at the last known position and search for the next connection in O(

√
N ) steps leading to

the overall efficiency of O(M
√

N ). For this result we use the analytical solution that can be obtained for a ring
of stars of double the length of the chain.

DOI: 10.1103/PhysRevA.96.032323

I. INTRODUCTION

Quantum walks are quantum versions of random walks
[1,2] (for reviews see [3,4]). There are both discrete- and
continuous-time versions of quantum walks [5], but here we
will only make use of the discrete-time version. There are also
two (equivalent [3,6]) versions of the discrete-time walk, the
coined walk and the scattering walk, and here we shall employ
the scattering walk [7], which is simple to use when working
with nonregular graphs.

Quantum walks have proven useful in the development of
quantum algorithms, particularly search algorithms [8–19].
Originally, the searches were for marked vertices [8], but it
was later realized that searches for more general objects are
possible. One can search for marked edges or cliques [13],
extra edges that break the symmetry of a graph [16], or more
general structures [18,19]. In addition to their use as theoretical
tools, it has been possible to realize quantum walks in the
laboratory [20–25].

A more recent use of quantum walks is in state transfer
[26–28]. One has two distinguished vertices in a graph. The
particle making the walk starts on one, and the objective is
for it to finish, after a certain number of steps, on the other
with high probability. This has been studied for grids [26], star
graphs and complete graphs with loops [27], and complete
bipartite graphs [28].

Our aim in this paper is to examine a related task. We
consider a graph with two distinguished vertices, and we want
to find the path between them. In our particular case the graph
G is a bipartite graph composed of connected stars (see Fig. 1).
A star graph consists of a central vertex, which is connected
to external vertices by a single edge to each external vertex,
so that it looks like the hub and spokes of a wheel. We have
a string of M star graphs, each having N spokes, connected
to each other via one of their spokes, and we do not know
which vertex of star j is connected to which vertex of star
j + 1, though we know the order of the stars. The first star
has a vertex labeled “START” and the last one has a vertex
labeled “END”. Because we do not know where the stars are
connected, we do not know the path from start to end.

This task of identifying the path is reminiscent of finding
one’s way through a maze or movie-style safe cracking. In the
latter case one must search for a single combination out of NM ,
where M is the length of the combination and N is the number
of settings on the dial. Clever thieves reduce this problem
by looking successively for digits of the combination. This
reduced task requires classically MN/2 choices on average.
The classical situation is similar if one views the problem
as finding a path through a maze. Finding the path from
one distinguished vertex, “START”, of the first star to a
distinguished vertex, “END”, of the last star then corresponds
to finding the path through the maze. Here we suppose we
know what the start vertex is to simplify the discussion.

In this paper we shall show that there is a quantum walk
on the graph G, for which after a number of steps proportional
to the square root of the number of spokes of each star the
particle becomes localized on the path. Then by measuring the
location of the particle, we can find an element of the path.
Repeated walks and measurements can then reveal the whole
path. We will start by providing an algorithm for the search
with a delocalized initial state, resembling standard setups,
which needs O(M

√
N log M) steps. Afterwards we will give

also an algorithm that can search for the path starting from a
localized initial state in O(M

√
N ) steps.

The paper is organized as follows. In Sec. II we define the
problem of a search for a path in a chain of stars we are aiming
to solve. Then in Sec. III we present a solution based on the
usual approach having a large superposition as an initial state.
To obtain a solution for a more favorable localized initial state,
in Sec. IV we solve a problem in a simplified setting on a ring
of stars. This result is then in Sec. V modified to work on the
chain of stars. The results are summarized in Sec. VI. Some
technical details are included in the Appendices.

II. SETTING OF THE PROBLEM

Without loss of generality we can adopt the following
notation for the graph, G. The j th star graph has central vertex
Aj , and N external vertices labeled Bj1 through Bj (N−1) and
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FIG. 1. In the chain of stars G the task is to find the whole path
from a known start vertex to an unknown end vertex.

B(j−1)1. Stars j − 1 and j share vertex B(j−1)1, while vertex
B01 is START and vertex BM1 is END.

For the evolution we will be using a discrete-time quantum
walk formulation known as the scattering quantum walk [7].
In this walk, the particle resides on the edges of an undirected
graph, and it can be thought of as scattering when it goes
through a vertex. In particular, suppose an edge connects
vertices v1 and v2. There are two states corresponding to
this edge, and these states are orthogonal—there is the state
|v1,v2〉, which corresponds to the particle being on the edge
and going from vertex v1 to v2, and the state |v2,v1〉, which
corresponds to the particle being on the same edge and going
from v2 to v1. The set of these states for all of the edges forms
an orthonormal basis for the Hilbert space H of the walking
particle.

The evolution will be described by a unitary operator,
U , that advances the walk one time step. We obtain this
operator by combining the action of local (scattering) unitaries
that describe what happens at the individual vertices. In our
string of stars, we have four kinds of vertices. The simplest
are {Bjk | 1 � j � M, 2 � k � N − 1}. These simply reflect
the particle, U |Aj,Bjk〉 = |Bjk,Aj 〉. The vertices B01 and
BM1 also reflect the particle, but with a factor of −1, that
is, U |A1,B01〉 = −|B01,A1〉 and U |AM,BM1〉 = −|BM1,AM〉.
The vertices Bj1 for 1 � j � M − 1 transmit the particle,
i.e., U |Aj,Bj1〉 = |Bj1,Aj+1〉 and U |Aj+1,Bj1〉 = |Bj1,Aj 〉.
Finally, the action of the central vertices is given for 1 � k �
N − 1 by

U |Bjk,Aj 〉 = −r|Aj,Bjk〉 + t

N−1∑
l=1
l �=k

|Aj,Bjl〉 + t |Aj,B(j−1)1〉,

(1)

where t = 2/N and r = 1 − t = (N − 2)/N , and

U |B(j−1)1,Aj 〉 = −r|Aj,B(j−1)1〉 + t

N−1∑
l=1

|Aj,Bjl〉. (2)

Having defined Hilbert space H and the evolution U on
this space, by choosing a proper initial state, we show how to
perform an efficient quantum search for the path. We shall do it
in two ways. First we will start in a large superposition of edge

states and show that the problem reduces to a two-dimensional
problem that is equivalent to the Grover search [29]. As the
preparation of a complete superposition might be difficult in
experimental situations, we will also investigate a case where
we will choose a succession of localized initial states, which
will lead to the recovery of the whole path with the same
speedup.

While we use the physical interferometric analogy of the
scattering approach in our paper, it is also worthwhile to
comment on the possibility of an oracular setting. In computer
science, search problems on graphs are formalized using a so-
called oracle that, upon querying, answers a specific question.
In the Grover search, the oracle answers a question, whether
a queried element is the target or not. In a quantum walk
setting, the oracle is more complex and presents information
about the graph on which the walk takes place. In our case,
the oracle that implements the scattering walk can be thought
of as an operation that upon presenting a “name” of a vertex
outputs the names of its neighbors as well as the information
as to whether it is the start or the end vertex of the searched
path [13].

Such an oracle encodes the path in two different ways. If the
queried vertex is either the start or end, it acts as the usual oracle
in the Grover search, giving direct information on whether the
queried vertex is marked or not. However, the oracle encodes
the connections between the stars in a different way—when
presented with the possible neighbors, the connections are
recognizable by having exactly two neighbors.

III. INITIAL STATE OF A LARGE SUPERPOSITION

A calculation for two stars (M = 2) reveals that an initial
state consisting of a superposition of all of the outgoing states
in the first star minus the outgoing states in the second star
does lead to a state in which the particle becomes localized on
the path from start to end. The minus sign is important. An
initial state that is a superposition of all of the outgoing states
in the first star plus the outgoing states in the second star leads
to the particle becoming localized on the edges connected to
the start and end, but provides no information about where the
stars are connected. Extrapolating from the two-star result, we
start by defining the following states:

|ψ1〉 = 1√
M(N − 2)

M∑
j=1

N−1∑
k=2

(−1)j |Aj ,Bjk〉,

|ψ2〉 = 1√
M(N − 2)

M∑
j=1

N−1∑
k=2

(−1)j |Bjk,Aj 〉,

|ψ3〉 = 1√
2M

M∑
j=1

(−1)j (|Aj,Bj1〉 + |Aj ,B(j−1)1〉),

|ψ4〉 = 1√
2M

M∑
j=1

(−1)j (|Bj1,Aj 〉 + |B(j−1)1,Aj 〉). (3)

The first two states correspond to the particle being located
in undesirable positions, while the next two states represent a
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particle being located on the path. We find that

U |ψ1〉 = |ψ2〉,
U |ψ2〉 = (r − t)|ψ1〉 + 2

√
rt |ψ3〉,

(4)
U |ψ3〉 = −|ψ4〉,
U |ψ4〉 = (t − r)|ψ3〉 + 2

√
rt |ψ1〉,

so that the subspace spanned by these states is invariant under
the action of U . It is often the case in quantum walk search
problems that the relevant states lie in an invariant subspace
of small dimension [30]. In this case the dimension of the
subspace can be reduced further by noting that

U 2|ψ1〉 = (r − t)|ψ1〉 + 2
√

rt |ψ3〉,
U 2|ψ3〉 = (r − t)|ψ3〉 − 2

√
rt |ψ1〉. (5)

This is already a unitary corresponding to one step of the
Grover search for two elements within a database of N

elements. To obtain the proper initial state we continue further.
The eigenvalues of U 2 restricted to the subspace spanned
by |ψ1〉 and |ψ3〉 are λ± = (r − t) ± 2i

√
rt = exp(±iθ ), for

cos θ = r − t . The corresponding eigenstates are

|η±〉 = 1√
2

(|ψ1〉 ∓ i|ψ3〉), (6)

where |η+〉 corresponds to λ+ and |η−〉 corresponds to λ−. We
now note that

U 2n|ψ1〉 = 1√
2
U 2n(|η+〉 + |η−〉)

= 1√
2

(einθ |η+〉 + e−inθ |η−〉). (7)

To localize the particle in this case in state |ψ3〉, which is the
desired effect, we look at the success probability of ending
there. This turns out to be psuc(2n) = sin2(nθ ) (we emphasize
the double use of the unitary explicitly in the whole paper;
odd steps will be disregarded). Choosing the number, 2n0,
such that n0θ = π/2 will result in psuc(2n0) = 1; the closest
even number to 2n0, the number of steps we shall make,
will introduce errors to the success probability of O(1/N)
only (see Appendix A1) and will have no effect on the
efficiency.

In the limit of large N we obtain the number of steps (uses
of U or efficiency) in the quantum walk search:

2n0 = π

θ
� π

2

√
N

2
. (8)

This result holds when we start from state |ψ1〉. Using this
state as the initial state would, however, imply that we know
the path. There is a state, though, that is close to |ψ1〉, which
treats all the stars’ spokes equally, thus requiring no initial
information about the path. This is a state that has the same
amplitude for all of the outgoing edges and alternating signs

on subsequent stars:

|ψinit〉 = 1√
MN

⎡
⎣ M∑

j=1

N−1∑
k=1

(−1)j |Aj ,Bjk〉

+
M∑

j=1

(−1)j |Aj,B(j−1)1〉
⎤
⎦

= 1√
MN

(
√

M(N − 2)|ψ1〉 +
√

2M|ψ3〉)

= cos
θ

2
|ψ1〉 + sin

θ

2
|ψ3〉 � |ψ1〉 + O(N−1/2)|ψ3〉,

(9)

where the last approximation is for large N and leads to a
difference of O(1/N ) in the success probability (for a more
detailed explanation see Appendix A1). The result is that after
2n0 steps (uses of the unitary U ) the particle is localized on
the path connecting start and end vertices and a measurement
in the canonical (edge) basis reveals one of the connections
at random from the uniform distribution (except on the edges
connected to the start and end vertices, which have half the
probability to be found as the edges connecting stars). As
shown in Appendix B, by repeating the algorithm O(M log M)
times we can recover the whole path with the expected number
of steps being O(M

√
N log M), obtaining a speedup over the

classical case, which requires O(MN ) steps on average.

IV. EVOLUTION OF A LOCALIZED STATE
ON A RING OF STARS

The previous analysis contains two problems. First, the
efficiency M

√
N log M is not optimal and can be further

improved. Second, the initial state we produced in the previous
section is a large superposition of edge states from the whole
Hilbert space. In reality, such states are hard to create and
a simpler option would be a small superposition on spatially
localized edge states. Furthermore, the whole graphG might be
encoded in an oracle representing the search space and, thus,
inaccessible to us. We can draw some information from the
works [26–28], where an analogy between searches and state
transport is investigated. In similar way we shall explore the
possibility of starting on one of the connections and observe
“transport” of the state to the neighboring connections. Due
to the complexity of the underlying graph the analysis is more
involved, but the analogy is fitting.

We will consider an initial state localized around the start
vertex that is known and subsequent initial states localized
around known connections between stars. In the beginning,
when only the start vertex is known, we prepare initial state

|ψinit〉 = |A1,B01〉, (10)

and if we already know the kth connection (connecting stars k

and k + 1) we prepare initial state

|ψinit〉 = 1√
2

(|Ak+1,Bk1〉 − |Ak,Bk1〉). (11)

In both cases we are going to show that the evolution leads to
a localization on the next connection.
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Intuitively, the evolution on the star(s) we start at is roughly
similar to the evolution in the Grover search, as the centers
Aj are almost reflections with phase flips and to some extent
separate the two stars we start on from the rest. So we can
expect that after O(

√
N ) steps we will find the next connection,

or the end vertex, depending on our starting position. The
procedure of finding the whole path then requires O(M

√
N )

steps, which improves on the case of the large superposition
initial state from Eq. (9).

The analysis of this approach is more involved than the
previous case and we split it into two parts. In this section we
consider a different problem, an evolution from the initial state
(11) on a ring of stars, where the start vertex coincides with
the end vertex. In the following section, this result will be used
to solve the evolution for the original problem of the chain of
stars.

We now assume the start vertex and the end vertex coincide
and behave as all other connections between stars. The
periodicity of the system allows us to express the eigenstates
of U 2 using the Bloch theorem for periodic potentials in the
form [31]

|�±
m 〉 =

M∑
j=1

e2πijm/M

(
c±

0,m|Aj ,B(j−1)1〉

+
N−1∑
k=1

c±
k,m|Aj,Bjk〉

)
. (12)

For each m = 0,1, . . . ,M − 1 there are N − 2 eigenvectors
with eigenvalue −1 that have zero overlap with our initial
state from Eq. (11) and only two nontrivial eigenvectors
(differentiated by the signs) having nonzero overlap with
our initial state. An exception is m = 0, for which the
eigenvalue for both nontrivial eigenvectors is 1 and only
the eigenvector having c0,0 = −c1,0 = 1/

√
2M , cj,0 = 0 for

j � 2 has nonzero overlap with |ψinit〉; the other eigenstate
with an eigenvalue of 1 is the equal superposition. For m �= 0
the nontrivial eigenvalues are λ±

m = e±iωm with

cos ωm = 1 − t[1 − cos(φm)], (13)

and φm = 2πm/M , which implies that

ωm �
√

2t[1 − cos(φm)]. (14)

The corresponding (normalized) eigenstates are given by

c±
0,m = (c∓

1,m)∗ = 1√
2Mt(1 + cos ωm)

1 − λ±
m

λ±
m − eiφm

r (15)

and

c±
m,k = t/

√
2Mt(1 + cos ωm) (16)

for all other 2 � k � N − 1.
We can now expand the initial state in the eigenbasis of U 2,

so that the state after 2n steps is

|ψ(2n)〉 := U 2n|ψinit〉 =
M−1∑

m=0,±
〈�±

m |ψinit〉e±inωm |�±
m 〉. (17)

In general, let us try to find the amplitude for the state in
the connection k + b (we start at connection k). The states

FIG. 2. Typical evolutions of the success probability to find the
next connection in the chain of stars for different starting stars
connections with M = 11, N = 450—dark when starting near the
start vertex, medium gray when starting at the first connection, and
light when starting in the connection of some middle (fifth and sixth)
stars, or without correcting terms from reflections. Dots represent
exact solution from Eq. (20), while the lines are approximations by
Eq. (33).

corresponding to the connection at k + b are

|e(b)
+ 〉 = |Ak+1+b,B(k+b)1〉,

|e(b)
− 〉 = −|Ak+b,B(k+b)1〉. (18)

The corresponding amplitudes are

E
(b)
± (2n; M) = 〈e(b)

± |ψ(2n)〉

= 1√
2M

M−1∑
m=0

(
1 ∓ tm

sin φm

sin ωm

)
cos(nωm + bφm),

(19)

where tm = (1 − δm,0)t , and the success probability to get
located in one of the states (18) is (see Fig. 2)

psuc(2n) = [E(b)
+ (2n; M)]2 + [E(b)

− (2n; M)]2. (20)

The analysis in Appendix A2 shows that the restriction to
integer steps introduces only small errors to the probability,
which are of order 1/

√
N , and hence will not affect our results

on efficiency, which we shall present in the limits of large N

and M .
The term proportional to tm in Eq. (19) is of order 1/N and

we can set it to zero (in cases of large N ), while at the same
time we can replace the sum with an integral (taking M → ∞).
Making use of Eq. (14) and the integral representation for
Jn(z), the Bessel function of the first kind,

Jn(z) = 1

π

∫ π

0
dθ cos(z sin θ − nz), (21)

we find the approximation

E
(b)
± (2n; M) � 1√

2
J2b(2n

√
t). (22)

This then gives us psuc(2n) � J 2
2b(2n

√
t). This approximation

works when M
√

N � n.
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FIG. 3. The correspondence between the chain of stars of length M (here M = 4) and the ring of stars of length 2M . The state on the
normal part of the ring (black) is complemented by a mirroring part (gray) of the same size but opposite sign to simulate the reflections on
vertices B01 and BM1.

We can immediately see the first result for b = 1, i.e.,
the neighboring connection. By taking 2n

√
t = π , when

J2 is close to its maximum, it is easy to prove that both
success amplitudes are independent of both M and N and
roughly 1/

√
8 so that the success probability is approximately

1/4 = O(1). Hence, by starting on the ring we will end on the
next connection with probability of 1/4 and with the same
probability also on the previous connection, which, being
known to us, is of no importance any more. Making O(1)
rounds (roughly four on average) one finds the next connection.
The number of steps needed is proportional to 2n = π/

√
t =

4n0. As we can now find connections successively, to find
the whole path requires an expected number of O(M

√
N )

steps, which improves the efficiency of the initial state of large
superposition.

V. EVOLUTION OF A LOCALIZED STATE
ON A CHAIN OF STARS

We can use the previous result to obtain the success
probabilities also on a chain of stars. The π -phased reflection
on start and end vertices can be imagined as flows of oppositely
signed amplitudes of the same size from some parallel chain.
We will thus simulate the evolution on the chain of stars
of length M by introducing a ring of length 2M . The
correspondence is depicted in Fig. 3.

In the newly constructed ring graph we shall number
the stars corresponding to the chain in the same way by
numbers 1,2, . . . ,M; we call this half normal. The other half
of the ring graph will be called the mirror part, and the stars
are labeled by negative numbers −1,−2, . . . ,−M . In this
way each chain star k has a mirroring counterpart −k. The

numbering of the vertices is as follows: star centers Ak and A−k

are counterparts, as are Bkl and B(−k)l for l = 2,3, . . . ,N − 1.
The only inconsistencies appear in the vertices Bk1, due to the
fact that we want to simulate the evolution on the chain by
evolution on the ring; these vertices are paired in the following
way.

(1) Vertex “START”, previously labeled B01, is connected
to and identified with vertex B(−1)1 of the chain.

(2) Vertex “END”, labeled BM1, is connected to and
identified with vertex B(−M−1)1 of the chain.

(3) Vertices Bk1 for k = 1,2, . . . ,M − 1 have their mirror-
ing counterparts B(−k−1)1.

The first two vertices will now act as other star connections,
being purely transmissive. Having constructed a ring graph
corresponding to the chain graph G we now specify suitable
states on it.

A. Mirroring states on the ring graph

The idea behind the mapping is that now each edge state of
the chain graph has its own unique ring counterpart. We will
construct these ring states by pairing states, one in each part of
the ring. Namely, let us define the following (un-normalized)
states, which consist of normal and mirror parts, the span
of which forms a subspace S of the whole ring Hilbert
space:

|Bkl,Ak〉 := |Bkl,Ak〉 − |B(−k)l ,A−k〉
for l = 2,3, . . . ,N − 1,

|Ak,Bkl〉 := |Ak,Bkl〉 − |A−k,B(−k)l〉
for l = 2,3, . . . ,N − 1,
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|Bk1,Al〉 := |Bk1,Al〉 − |B(−k−1)1,A−l〉
for l ∈ {k,k + 1},

|Al,Bk1〉 := |Al,Bk1〉 − |A−l ,B(−k−1)1〉
for l ∈ {k,k + 1}. (23)

We shall refer to these states as mirroring states.
Acting with the unitary for the ring, U , on these states shows

that, although these are states from the ring, the evolution when
restricted to the subspace S is the same as the evolution on a
chain. In particular,

U |Ak,Bkl〉 = |Bkl,Ak〉 for l �= 1,

U |Ak,Bk1〉 = |Bk1,Ak+1〉 for k �= M ,

U |AM,BM1〉 = −|BM1,AM〉,
U |Ak,B(k−1)1〉 = |B(k−1)1,Ak−1〉 for k �= 1,

U |A1,B01〉 = −|B01,A1〉. (24)

The rest is described by the same equations as Eqs. (1) and (2),
but with the mirroring (bar) versions of states. Now we have
established that the evolution of the mirroring state on the ring
of stars is described by the same equations as the evolution of
the original state on the chain of stars when restricted to S.

B. Resulting probabilities

Due to the symmetry of the subspace S, the amplitudes on
the opposing edge states in the ring are always of opposing
sign and of the same size. This means that since we did not
normalize the mirroring states the squares of amplitudes on
the normal side of the ring sum up to 1 and provide all the
information about the probability distribution on the chain;
i.e., we only need to measure the position of the particle
only on the normal side of the ring. At the same time, the
flow of the amplitude from and to the mirror part of the ring
simulates the reflections on the vertices B01 and BM1 of the
chain.

Let us first consider an initial state (10) on the chain. The
corresponding initial state on the mirroring ring is

|ψinit〉 = |A1,B01〉 = |A1,B01〉 − |A−1,B01〉. (25)

This state is just the renormalized initial state of the type of
Eq. (11) on the ring, and the success amplitudes and success
probabilities for the following connection (b = 1) are sim-
ply

√
2E

(1)
± (2n; 2M) � J2(2n

√
t) and psuc(n) � 2J 2

2 (2n
√

t),
respectively.

Let us now consider an initial state (11) on the chain. The
corresponding initial state on the mirroring ring is

|ψinit〉 = 1√
2

(|Ak+1,Bk1〉 − |Ak,Bk1〉)

= 1√
2

(|Ak+1,Bk1〉 − |Ak,Bk1〉

− |A−k−1,B(−k−1)1〉 + |A−k,B(−k−1)1〉). (26)

The first two terms correspond to the normal part of the state
and the second two terms correspond to the mirror part of
the state. The amplitudes for the connection b positions away

from connection k are then composed of two terms. The first
one coming from the normal part is E

(b)
± (2n; 2M) with ±

representing the two edges of the connection on which we
measure position:

E
(b)
± (2n; 2M) = 〈e(b)

± |U 2n
∣∣ψnorm

init

〉
. (27)

Here

|ψnorm
init 〉 = 1√

2
(|Ak+1,Bk1〉 − |Ak,Bk1〉) (28)

is the normal part of the initial state as in Eq. (11) and |e(b)
± 〉

are defined in Eq. (18). The mirror part of the state needs to
travel a longer distance. If we go through the start vertex, the
mirror part has to traverse the distance to the corresponding
connection B01 and then back on the normal part of the ring.
The correction to the success amplitude is then given by
E

(2k+b)
± (2n; 2M), where

E
(2k+b)
± (2n; 2M) = 〈e(b)

± |U 2n
∣∣ψmirror

init

〉
, (29)

and

|ψmirror
init 〉 = 1√

2
(|A−k,B(−k−1)1〉 − |A−k−1,B(−k−1)1〉) (30)

is the mirror part of the initial state. The overall amplitudes on
the desired star connections are the sums of these terms, i.e.,

F
(b)
± (2n; k; M) = E

(b)
± (2n; 2M) + E

(2k+b)
± (2n; 2M). (31)

The success probability for being located on the following
connection on the chain (b = 1) is then given as

psuc(2n) = [F+(2n; k; M)]2 + [F−(2n; k; M)]2, (32)

where F±(2n; k; M) := F
(1)
± (2n; k; M). There is one additional

caveat: when the measurement is performed on the last star
(k + b = M) the success probability includes only the F+ term
and previous equations have to be changed accordingly.

C. Approximations

Let us consider b = 1 for simplicity. If we want to use an
approximation for the amplitudes in terms of Bessel functions
as in Eq. (22), we have to be careful. This approximation is
based on taking M → ∞, which means that it can be used
to describe what is happening at the beginning and middle of
the chain, but will require modifications if we want to use it
near the end vertex. In particular, it means that reflections that
take place at the end vertex are not taken into account. Near
the start vertex and for short times, including the optimal time
4n0, we have

F±(2n; k; M) � J2(2n
√

t) + J2(2k+1)(2n
√

t). (33)

For short times of up to 4n0 the Bessel functions are positive,
and they decrease rapidly with the increasing index. That
means that in time 4n0 the correction increases the success
probability and is observable in the vicinity of the start vertex
(up to three stars away, as the numerical results show) and does
not change the efficiency of the search.

Near the end vertex, when k is close to M , we must do
something else. In particular, we can take advantage of a
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symmetry of ring amplitudes. Amplitudes on a ring of length
2M obey

E
(b)
± (n; 2M) = E

(2M−b)
∓ (n; 2M). (34)

Using this symmetry allows us to account for the reflection
from the end vertex. In particular, we can use it to replace the
second term in Eq. (33) giving us

F±(2n; k; M) = E
(1)
± (2n; 2M) + E

(2M−2k−1)
± (2n; 2M)

� J2(2n
√

t) + J2(2k′−1)(2n
√

t), (35)

where k′ = M − k is the distance from the end vertex. As k′
does not depend on M any more, the limit M → ∞ will not
have an effect on it and so the term will faithfully reconstruct
the reflection of the walker from the end vertex in this limit.

D. When the start vertex is unknown

We have assumed that the start vertex is known to us. This
assumption lets us start at this vertex and uncover the path
connection by connection. However, this assumption may not
hold. Let us lift this condition so that all we require is the
knowledge of the order of the stars; we cannot lift this condition
because of the necessity of different phases on different stars
in all initial states. In this case we still know which star is the
first one containing the start vertex, but we do not know the
location of this vertex.

Although in this case we do not have an analytical solution,
numerical simulations show that we can start in other states
that lead to the same speedup up to a constant; the running
time of single run is now instead of 4n0 halved to 2n0. For
example, we can start in a smaller superposition on the first
and second star:

|ψinit〉 = 1√
2N

[N−1∑
k=1

(|A2,B2k〉 − |A1,B1k〉)

+ (|A2,B11〉 − |A1,B01〉)
]
. (36)

This state localizes with high probability on the connection
between the two stars, but gets localized also on the start vertex
with probability around 1/4 and on the connection between
the second and third stars with probability of roughly 1/8.
Therefore, repeating this setup several times will uncover the
start vertex and the aforementioned connection. To uncover
other connections, we can now continue as in the previous
case in which we know the start vertex, or we can prepare a
state on the next two stars the connection of which we wish
to find, which is analogous to the state in Eq. (36) with a
complete superposition of all edge states on the stars with
phases on one of the stars being +1 and on the other star being
−1. Such a setup reveals both neighboring connections with
probability 1/8, unless there is no further connection in one of
these direction, i.e., we are at the start or end vertices; these are
obtained with probability 1/2. All the probabilities mentioned
in this paragraph depend neither on the number of spokes, N ,
nor on the number of stars, M .

Hence, even if the start vertex is unknown, we can uncover
the whole path with the same efficiency as in the case in which
it is known.

VI. CONCLUSION

We have investigated a task of finding a path in a maze that
was a chain of M stars with N spokes. The simple approach,
starting in the phase-modulated equally weighed superposition
of all states, is reducible to the Grover search, which localizes
the state on the whole path in O(

√
N ) steps. Measurement then

reveals a single element of this path at random. By repeating
this search we can recover the whole path in O(M

√
N log M)

steps on average.
The preparation of the highly superposed initial state for

this task may be, however, difficult. We have shown that
we can recover the path star by star by successive searches
of O(

√
N ) steps and improve on the overall efficiency as

well. First, we start at the beginning of the path and uncover
the first star connection. To reveal the next connection, with
high probability we then repeat the algorithm but start in a
state localized on the newly acquired connection. The whole
path is then obtained in O(M) successive searches leading to
O(M

√
N ) steps for the whole process.

The solution in this case cannot be obtained directly by
reducing the dimensionality of the problem; an intermediate
step is necessary. We can replace the task on the chain with
the task on a ring of twice the length, for which the periodicity
allows us to solve the problem analytically. This result can be
then used to find an exact analytical result for the successive
search on the chain of stars with the efficiency of O(M

√
N ).
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APPENDIX A: CORRECTIONS TO THE
SUCCESS PROBABILITY

1. Initial state of a large superposition

In the case presented in Sec. III after a time of 2n0

the success probability to find an element from the path is
psuc(2n0) = 1. But 2n0 is a real number in general, while
the number of steps n has to be an integer. Choosing integer
n such that 2n is the closest to 2n0 introduces an error we
would like to quantify. In order to do so, let us study a more
general situation, namely, having done 2n steps (where we
allow now “steps” to be also real numbers), how much the
success probability changes if we make 2(n + ε) steps with
ε ∈ [−1,1]; this interval includes also an integer number of
steps closest to n0.

In particular, we are interested in quantity

�ε(2n) = |psuc(2n) − psuc[2(n + ε)]|. (A1)

In our case psuc(2n) = sin2 [(2n + 1) θ
2 ] with cos θ = 1 −

4/N ; we included also the effect of small overlap of the initial
state with the eigenvector |ψ3〉. After some manipulation we
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obtain

�ε(2n) = |sin[(2n + 1 + ε)θ ] sin εθ | � | sin εθ | � sin θ,

(A2)

where the last inequality holds because θ is small. Substituting
for θ gives

�ε(2n) � 2

√
2

N
. (A3)

Hence, in general, the error in the success probability for time
differences smaller than one step decreases as 1/

√
N . In the

optimum case, when 2nθ = π the bound is even stricter as the
first part of Eq. (A2) gives

�ε(2n) � sin2 θ = 8

N
. (A4)

2. Localized initial state

In the case presented in Sec. IV we are again interested in
quantity �ε(2n) from Eq. (A1), but now the success probability
is given by Eq. (20). After some simple manipulation we get

�ε(2n) � Q+,+,ε(2n)Q+,−,ε(2n) + Q−,+,ε(2n)Q−,−,ε(2n),

(A5)

where

Qp,±,ε(2n) = |Ep(2n) ± Ep[2(n + ε)]|, (A6)

and p = ± and E±(2n) are given by Eq. (19); we dropped
upper index b as it will have no consequences in this
computation.

Using the specific form of Eq. (19), we can now write

Qp,±,ε(2n) � 1√
2M

M−1∑
m=0

∣∣ap
m

∣∣ · | cos(nωm + φ)

± cos[(n + ε)ωm + φ]|, (A7)

where we used notation φ = bφm for simplicity and

a±
m = 1 ∓ tm

sin φm

sin ωm

. (A8)

The modulus of a±
m can be bounded, irrespective of the sign of

the upper index and the lower index m, as

∣∣a±
m

∣∣ � 1 + 2| sin φm|
N sin ωm

= 1 +
√

1 + cos φm

N − 1 + cos φm

� 1 +
√

2

N − 2
� 2. (A9)

We can immediately obtain

Q±,+,ε(2n) � 1√
2M

M−1∑
m=0

4 = 2
√

2. (A10)

For Q±,−,ε(2n) we use inequality

| cos(nωm + φ) − cos[(n + ε)ωm + φ]|
= 2

∣∣∣sin
[
(2n − ε)

ωm

2
+ φ

]
sin

εωm

2

∣∣∣
� 2

∣∣∣sin
εωm

2

∣∣∣ � 2 sin
ωm

2
= 2

√
2

N
, (A11)

where in the last inequality we used the fact that ωm is small.
Now,

Q±,−,ε(2n) � 1√
2M

M−1∑
m=0

4
√

2√
N

= 4√
N

. (A12)

Putting all the partial results together into Eq. (A5) we
finally find that

�ε(2n) � 16√
N

. (A13)

So the error in the success probability that emerges when
taking an integer number of steps decreases as 1/

√
N .

APPENDIX B: RECOVERING THE PATH WHEN
STARTING IN A LARGE SUPERPOSITION

The case of an initial state in a large superposition from
Sec. III localizes the state of the walker on the path between
the start and the end vertices. A measurement then reveals one
connection at random. Here we will show that the whole path
can be recovered in M log M repetitions of the search, where
M is the number of stars.

First, let us suppose that the probability to find an unknown
connection is p. The average number of repetitions we need
to make is then

r̄ =
∞∑

r=1

(1 − p)r−1pr = p

[1 − (1 − p)]2
= 1

p
, (B1)

where we used formula
∞∑

j=1

qj−1j = d

dq

[ ∞∑
j=0

qj

]
= 1

(1 − q)2
. (B2)

Now, let us analyze the situation of uncovering the whole
path. Suppose we know k connections already, then the proba-
bility to uncover an unknown connection is pk = (M − k)/M .
Then, by Eq. (B1) we need

r̄k = 1

pk

= M

M − k
(B3)

repetitions on average to find that connection. The overall
number of repetitions is the sum of these:

r̄ =
M−1∑
k=0

r̄k = M

M∑
k=1

1

k
. (B4)

The last sum is a truncated harmonic series which can be
bounded from above by an integral, which gives

r̄ � M + M

∫ M

1

1

k
dk = M log M + M. (B5)

The number of repetitions needed to recover the whole path is
then of order M log M .

In our particular case the inclusion of start and end vertices
poses only a slight complication. First we can consider them
to form together another connection. Overall we then have M

connections, which we will recover in O(M log M) repetitions
by Eq. (B5). After this many steps (on average) we have

032323-8



FINDING PATHS WITH QUANTUM WALKS OR QUANTUM . . . PHYSICAL REVIEW A 96, 032323 (2017)

recovered all connections and in the worst-case scenario only
the start or the end vertex. The probability to find the other one

is now p = (2M)−1; this requires an additional 2M steps on
average, which does not change the complexity.
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