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Critical behavior of the two-dimensional icosahedron model
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In the context of a discrete analog of the classical Heisenberg model, we investigate the critical behavior of
the icosahedron model, where the interaction energy is defined as the inner product of neighboring vector spins
of unit length pointing to the vertices of the icosahedron. The effective correlation length and magnetization
of the model are calculated by means of the corner-transfer-matrix renormalization group (CTMRG) method.
A scaling analysis with respect to the cutoff dimension m in CTMRG reveals a second-order phase transition
characterized by the exponents ν = 1.62 ± 0.02 and β = 0.12 ± 0.01. We also extract the central charge from
the classical analog of entanglement entropy as c = 1.90 ± 0.02, which cannot be explained by the minimal
series of conformal field theory.
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I. INTRODUCTION

Statistical models with short-range interactions on two-
dimensional (2D) regular lattices exhibit no spontaneously
symmetry breaking at finite temperatures, if the symmetry
in local degrees of freedom is continuous [1]. The classical
ferromagnetic XY model is a typical example, which has O(2)
symmetry, where the thermal average of the magnetization is
zero at finite temperature. An introduction of discrete nature
to local degrees of freedom then induces an order-disorder
transition at low temperatures, where the universality class
is dependent on the type of discretization. The q-state clock
model, which has Zq symmetry, is a well-known discrete
analog of the XY model. For the case of q � 4, the clock model
exhibits a second-order phase transition described by the
unitary minimal series of conformal field theory (CFT). If q >

4, the clock model has an intermediate critical phase between
the high-temperature disordered phase and low-temperature
ordered phase [2–5], where transitions to the critical phase
are of Berezinskii-Kosterlitz-Thouless (BKT) type [6–8]. As
q increases, the low-temperature ordered phase shrinks, and
the O(2) symmetry is finally recovered in the limit q → ∞.

Discretization of the classical Heisenberg model, which has
O(3) symmetry, is not straightforward, in the sense that there
is no established route of taking the continuous-symmetry
limit. A possible manner of discretization is to introduce
polyhedral anisotropies, such as tetrahedral, cubic, octahedral,
icosahedral, and dodecahedral ones, which correspond to
the discrete subgroups of the O(3) symmetry group. Let
us consider the discrete vector-spin models, where on each
lattice site there is a unit vector spin that can point to the
vertices of a polyhedron. The tetrahedron model can be
mapped to the four-state Potts model [9]. For the octahedron
model, the presence of a weak first-order phase transition was
suggested by Patrascioiu and Seiler [10], and afterward was
numerically confirmed [11]. The cube model can be mapped
to three decoupled Ising models. Patrascioiu et al. reported a
second-order transition for the icosahedron and dodecahedron

models, respectively, which have 12 and 20 local degrees of
freedom [10,12,13]. For the icosahedron model, the estimated
transition temperatures is 1/Tc = 1.802 ± 0.001 and its crit-
ical indices are ν ∼ 1.7 and γ ∼ 3.0, which are inconsistent
with the minimal series of CFT. By contrast, Surungan et al.
gave another estimation ν � 1.31 for the same transition
temperature [14]. However, the system sizes of Monte Carlo
simulations in previous works may be too small to conclude the
universality of the icosahedron model. Finally, the possibility
of an intermediate phase was suggested for the dodecahedron
model in Refs. [12,13], whereas a solo second-order transition
was suggested in Ref. [14].

In this article, we focus on the critical behavior of the
icosahedron model. We calculate the magnetization, effective
correlation length, and entanglement entropy in the bulk
limit by means of the corner-transfer-matrix renormalization
group (CTMRG) method [15,16], which is based on Baxter’s
corner-transfer-matrix (CTM) scheme [17–19]. An advantage
of the CTMRG method is that we can treat sufficiently large
system sizes to obtain conventional bulk physical quantities.
Actually, the system size of CTM in this work is up to
104 × 104 sites, which can be viewed as a bulk limit in
comparison with the (effective) correlation length of the
system. Instead, CTMRG results are strongly dependent on
m, the number of states kept for the block-spin variables,
near the transition point. Nevertheless, this m dependence
of CTMRG results provides a powerful tool for the scaling
analysis with respect to m [20–23], the formulation of which
is similar to conventional finite-size scaling analyses [24,25].
The m-scaling analysis actually extracts the presence of
a second-order phase transition with the critical exponents
ν = 1.62 ± 0.02 and β = 0.12 ± 0.01. Another interesting
point about the CTMRG approach is that the classical analog of
entanglement entropy [26] can be straightforwardly calculated
through a reduced density matrix constructed from CTMs. The
m-dependence analysis of entanglement entropy also yields a
central charge c = 1.90 ± 0.02, which cannot be explained by
the minimal series of CFT.
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FIG. 1. (a) Numbering of the vertices of the icosahedron. (b)
Local Boltzmann weight in Eq. (2) defined for a “black” plaquette,
and its tensor representation.

This article is organized as follows. In the next section, we
introduce the icosahedron model, and briefly explain its tensor-
network representation and CTMRG method. We first show
the temperature dependence of the magnetization to capture
the nature of the phase transition. In Sec. III, we apply finite-
m scaling to the effective correlation length, magnetization,
and entanglement entropy. The transition temperature, critical
exponents, and the central charge are estimated in detail. The
results are summarized in the last section.

II. ICOSAHEDRON MODEL

Let us consider the icosahedron model, which is a discrete
analog of the classical Heisenberg model. On each site of the
square lattice, there is a vector spin v(p) of unit length, which
points to one of the vertices of the icosahedron, shown in
Fig. 1(a), where p is the index of vertices running from 1 to
12. Figure 1(b) shows four vector spins v(p), v(q), v(r), and
v(s), around a “black” plaquette, where we have introduced a
chessboard pattern on the lattice. We have omitted the lattice
index of these spins, since they can be formally distinguished
by p, q, r , and s, which represent the directions of the spins.
Neighboring spins have Heisenberg-like interaction, which is
represented by the inner product between them. Thus, the local
energy around the plaquette in Fig. 1(b) is written as

hpqrs = −J (v(p) · v(q) + v(q) · v(r) + v(r) · v(s) + v(s) · v(p)).

(1)

In the following, we assume that the coupling constant is
spatially uniform and ferromagnetic J > 0.

We represent the partition function of the system in the form
of a vertex model, which can be regarded as a two-dimensional
tensor network. For each black plaquette on the chessboard
pattern introduced onto the square lattice, we assign the local
Boltzmann weight

Wpqrs = exp

[
hpqrs

T

]
, (2)

where T denotes the temperature in the unit of the Boltzmann
constant. Note that the vertex weight Wpqrs is invariant under
cyclic rotations of the indices. Throughout this article we
choose J as the unit of energy. As shown in Fig. 1(b), the
weight Wpqrs is naturally interpreted as a four-leg tensor, and
thus the partition function can be represented as a contraction
among tensors, as schematically drawn in the right-hand side
panel of Fig. 2.

In Baxter’s CTM formulation, the whole lattice is divided
into four quadrants [17–19], as shown in Fig. 2. The partition
function of a square-shaped finite-size lattice is expressed by

FIG. 2. Icosahedron model on the diagonal lattice, where W on
each black plaquette represents the local Boltzmann weight of Eq. (2).
The partition function can be represented by a tensor network on the
square lattice. The dashed lines show the division of the system into
quadrants corresponding to CTMs.

a trace of the fourth power of CTMs,

Z = Tr C4, (3)

where C denotes the CTM. Note that each matrix element of
C corresponds to the partition function of the quadrant where
the spin configurations along the row and column edges are
specified. We numerically obtain Z by means of the CTMRG
method [15,16], where the area of CTM is increased iteratively
by repeating the system-size extension and renormalization
group (RG) transformation. Then, the matrix dimension of
C is truncated with a cutoff dimension m, and under an
appropriate normalization, C converges to its bulk limit after
a sufficient number of iterations, even if we assume a fixed
boundary condition. All the numerical data shown in this
article are obtained after such a convergence. The numerical
precision of CTMRG results are controlled by the cutoff m for
the singular value spectrum {λi} of CTMs with a truncation
error ε(m) = 1 − ∑m

i=1 λ4
i . The universal distribution of the

spectrum [27,28] suggests that the asymptotic behavior of ε(m)
could be model independent.

In practical computations, we assume a fixed boundary
condition, where all the spins are pointing to the direction v(1)

on the boundary of the system. We define an order parameter
as the magnetization M at the center of the system,

M = 1

Z

12∑
s=1

(v(1) · v(s) Tr′[C4]), (4)

where v(s) is the vector spin at the center, and Tr′ represents
the partial trace except for v(s). Figure 3 shows the temperature
dependence of the magnetization M calculated with m = 100,
200, 300, 400, and 500. The magnetization is well converged
with respect to m for T < 0.55 or T > 0.57, and the result
supports the emergence of the ordered phase in the low-
temperature region, as reported by Patrascioiu et al. [10,12,13].
As shown in the inset, however, the curve of M has a shoulder
structure exhibiting a strong m dependence in the region
0.55 < T < 0.57.

In order to see the nature of the observed shoulder structure
in M , we calculate the probability P (s) of finding v(s) at
the center of the system. Figure 4 shows the temperature
dependence of P (s) with m = 500. In the region T < 0.55,
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FIG. 3. Temperature dependence of magnetization M for several
m. Inset: Magnified view in the region 0.54 � T � 0.59.

the probability P (1) is dominant. Around T ∼ 0.56, the values
of P (s) for s = 2, 3, 4, 5, and 6 are comparable to P (1), and
the sum P (2) + P (3) + P (4) + P (5) + P (6) is larger than P (1).
Such a marginal behavior might suggest the possibility of
an intermediate (or floating) critical phase, such as the two
succeeding phase transitions in clocklike models [5,29–37].
We perform a scaling analysis with respect to m to clarify the
nature of the phase transition in the next section.

III. SCALING ANALYSIS

As described above, the calculated results of the magnetiza-
tion M exhibit a finite-m dependence near the transition point.
In general, the cutoff dimension m for the CTM introduces an
effective correlation length in the critical region [38,39], which
corresponds to a regularization for the infrared divergence. By
controlling the cutoff m, we can systematically analyze the
critical behavior in the vicinity of the critical point, which we
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FIG. 4. Probability P (s) of finding v(s) at the center of the system
with m = 500. Plus marks and green circles denote P (1) and P (12),
respectively. Blue squares denote P (s) for s = 2, 3, 4, 5, and 6, where
these probabilities are the same. Red crosses denote P (s) for s = 7,
8, 9, 10, and 11.

call finite-m scaling [20–23], which shares many aspects with
finite-size scaling analyses [24,25].

In the scaling analysis, one generally assumes that an
observable A with the scaling dimension xA obeys the
following scaling function,

A(b,t) = bxA/νfA(b1/ν t), (5)

where t = T/Tc − 1 is the scaled temperature and b is a
characteristic length scale intrinsic to the system, which
basically corresponds to the correlation length. In the finite-
size scaling analysis, b is replaced by the linear dimension
of system �, and then the scaling function fA is extracted
by a systematic control of �. Note that the asymptotic forms
fA(y) ∼ y−xA for y � 1 and fA(y) ∼ const for y → 0 are also
assumed in Eq. (5), in order to reproduce the proper scaling
law in the bulk limit � → ∞.

For finite-m scaling in CTMRG, meanwhile, we introduce a
well-controllable length scale through the cutoff dimension m,
instead of �. After a sufficient number of iterations in CTMRG,
we have a renormalized row-to-row transfer matrix. We can
then define an effective correlation length

ξ (m,t) = [ln(ζ1/ζ2)]−1, (6)

where ζ1 and ζ2 are the largest and second-largest eigenvalues
of the renormalized row-to-row transfer matrix. Note that the
unit of length is set as the lattice constant. An essential point
is that the following scaling relation can be assumed,

ξ (m,t) ∼ mκg(mκ/νt), (7)

with the asymptotic forms g(y) ∼ |y|−ν for y � 1 and g(y) ∼
const for y → 0. Each limit yields the behavior ξ (m,t) ∼ t−ν

for a finite t under the condition mκ � t−ν , and ξ (m,t) ∼
mκ for a finite m under mκ � t−ν [20,21]. Note that κ is an
independent scaling dimension, which is characteristic of the
matrix-product-state (MPS) description of the eigenvector of
the row-to-row transfer matrix. Combining b ∼ ξ (m,t) and
Eq. (5), we obtain the finite-m scaling formula as

A(m,t) = mxAκ/νχA(mκ/νt), (8)

where χA is a new scaling function satisfying χA(y) ∼ |y|−xA

for y � 1. For a finite t under the condition mκ/νt � 1,
Eq. (8) reproduces A(m,t) ∼ |t |−xA , while for a finite m under
mκ/νt � 1, Eq. (8) gives A(m,t) ∼ m−κxA/ν .

We apply the scaling analysis to several quantities cal-
culated by CTMRG, with the help of a Bayesian analysis
for fitting [40]. We consider the temperature region 0.520 �
T � 0.619 for m = 100, 200, 300, 400, and 500 in the
following scaling analysis. We first apply the analysis to
ξ (m,t) in Eq. (6) and estimate the critical temperature Tc,
and exponents κ and ν. Figure 5(a) shows the scaling plot
of ξ (m,t) with the best fit values, Tc = 0.555 048(43), ν =
1.617(13), and κ = 0.8983(17), where all data collapse on
the scaling function g in Eq. (7). The fitting errors in the
Bayesian analysis are shown in the parentheses. If we use the
data for 200 � m � 500, we obtain Tc = 0.554 940(42), ν =
1.623(13), and κ = 0.8830(19). Comparing these two fitting
results, we adopt Tc = 0.5550 ± 0.0001, ν = 1.62 ± 0.02, and
κ = 0.89 ± 0.02. This result of Tc is consistent with the values
Tc � 0.555 reported by both Patrascioiu et al. [10,12,13]
and Surungan et al. [14]. While the critical exponent ν is
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FIG. 5. Finite-m scalings for (a) correlation length in Eq. (6), (b)
magnetization M in Eq. (4), and (c) entanglement entropy in Eq. (10).

consistent with the value ν = 1.7+0.3
−0.1 in Refs. [10,12,13], it

has a discrepancy from ν = 1.31 ± 0.01 in Ref. [14].
On the basis of the above Tc, ν, and κ , moreover, we perform

a finite-m scaling analysis for the magnetization M shown
in Fig. 3. A particular point is that the shoulder structure in
the inset of Fig. 3 directly reflects on the scaling function of
Fig. 5(b). Moreover, such shoulder structures of the scaling
functions are consistently observed in Figs. 5(a) and 5(c).
These behaviors imply that the transition of the icosahedron
model is described by a solo second-order transition, unlike
the clock models of q > 4 where an intermediate critical
region emerges. Using the Bayesian fitting, then, we obtain
β = 0.1293(27) for m = 100–500 and β = 0.1234(33) for
m = 200–500. Taking into account the discrepancy, we adopt
β = 0.12 ± 0.01. We, however, think that this value should be
improved in further extensive calculations.

In order to obtain additional information for the scaling uni-
versality, we calculate the classical analog of the entanglement

entropy. The concept of entanglement can be introduced to
two-dimensional statistical models through quantum-classical
correspondence [41–44]. Then, an essential point is that the
fourth power of CTM, which appears in Eqs. (3) and (4),
can be interpreted as a density matrix of the corresponding
one-dimensional quantum system [45]. From the normalized
density matrix

ρ = C4

Z
, (9)

we obtain the classical analog of entanglement entropy, in the
form of von Neumann entropy [46,47],

SE = −Tr ρ ln ρ. (10)

In the context of CTMRG, the following relation,

SE(m,t) ∼ c

6
ln ξ (m,t) + const, (11)

is satisfied around the criticality [48,49], where c is the central
charge. Taking the exponential of both sides of this equation,
and substituting Eq. (7), we obtain

eSE ∼ a[ξ (m,t)]c/6 = a[mκg(mκ/νt)]c/6 = mcκ/6g̃(mκ/νt),

(12)

where a is a nonuniversal constant, and g̃ ≡ agc/6. Thus the
critical exponent for eSE is identified as cν/6.

Using Tc, κ , and ν previously obtained by the finite-m
scaling for ξ (m,t), we can estimate the central charge c.
Figure 5(c) shows the scaling plot of Eq. (12) for the data
of m = 100, 200, 300, 400, and 500. The central charge is
estimated as c = 1.894(12). If we exclude the case m = 100
for the scaling analysis, we obtain c = 1.900(15). Considering
the discrepancy between the above values of c, we adopt
c = 1.90 ± 0.02.

Here, it should be noted that this value is consistent with
the relation

κ = 6

c(
√

12/c + 1)
, (13)

which is derived from the MPS description of a one-
dimensional critical quantum system [22]. Substituting
c = 1.90 and κ = 0.89 into Eq. (13), we actually have
6/{c(

√
12/c + 1)} − κ = 0.009, which provides a comple-

mentary check of the finite-m scaling in CTMRG.

IV. SUMMARY AND DISCUSSION

We have investigated the phase transition and its critical
properties of the icosahedron model on a square lattice, where
the local vector spin has 12 degrees of freedom. We have
calculated the magnetization, the effective correlation length,
and the classical analog of entanglement entropy by means
of the CTMRG method. The CTMRG results are strongly
dependent on m, which is the cutoff dimension of CTMs, near
the critical point. We have then performed a finite-m scaling
analysis and found that the numerical data can be well fitted
with the scaling functions, including the shoulder structures.
We have thus confirmed that the icosahedron model exhibits a
second-order phase transition at Tc = 0.5550 ± 0.0001, below
which the icosahedral symmetry is broken to a fivefold axial
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symmetry. Also, the scaling exponents are estimated as ν =
1.62 ± 0.02, κ = 0.89 ± 0.02, and β = 0.12 ± 0.01. From
the relation between entanglement entropy and the effective
correlation length, moreover, we have extracted the central
charge as c = 1.90 ± 0.02, which cannot be described by the
minimal series of CFT. The clarification of the mechanism of
such a nontrivial critical behavior in the icosahedron model is
an important future issue.

Our original motivation was from a systematical analysis
of the continuous-symmetry limit toward the O(3) Heisenberg
spin. In this sense, the next target is a dodecahedron model
having 20 local degrees of freedom, which requires massive
parallelized computations of CTMRG. In addition, it is an
interesting problem to introduce XY -like uniaxial anisotropy
to the icosahedron and dodecahedron models. A crossover
of universality between the icosahedron/dodecahedron model

and the clock models can be expected, where the shoulder
structures of the scaling functions may play an essential role.
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