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Abstract
In the context of a physical theory, two devices, A and B, described by the
theory are called incompatible if the theory does not allow the existence of a
third device C that would have both A and B as its components. Incompat-
ibility is a fascinating aspect of physical theories, especially in the case of
quantum theory. The concept of incompatibility gives a common ground for
several famous impossibility statements within quantum theory, such as ‘no-
cloning’ and ‘no information without disturbance’; these can be all seen as
statements about incompatibility of certain devices. The purpose of this paper
is to give a concise overview of some of the central aspects of incompatibility.

Keywords: quantum measurement, quantum observable, quantum channel,
incompatibility, quantum instrument, operational theory

(Some figures may appear in colour only in the online journal)

1. Introduction

The roots of quantum incompatibility go back to Heisenberg’s uncertainty principle [48] and
Bohr’s notion of complementarity [8]. The basic lesson from those early studies is that there
exist quantum measurements that cannot be implemented simultaneously, and it is in this
sense that they are incompatible. At first sight, incompatibility of quantum measurements may
seem more like an obstacle than an advantage. However, it has been realized that only
incompatible measurements enable the violation of a Bell inequality [32, 64, 91], one of the
most intriguing phenomenon within the realm of quantum physics. Bell inequalities are
frequently used to prove the suitability of an experimental setting for quantum information
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processing tasks, such as quantum cryptography [9]. This motivates attempting to see
incompatibility as a useful resource and investigating its features and possible uses.

It is illustrative to compare the incompatibility of pairs of measurements to the entan-
glement of bipartite states. There are various common features between incompatibility and
entanglement. Both of these are non-classical properties, meaning that classical physical
systems can possess neither property. Another common feature is that noise destroys both
entanglement and incompatibility. One can define several relevant notions analogously for
both of these concepts: for instance, an incompatibility breaking channel can be defined in an
analogous way to an entanglement breaking channel [39]. As with entanglement, incom-
patibility can be formulated and studied in the continuous variable Gaussian setting [40]. It is
also possible to study the robustness of incompatibility in the same way as the robustness of
entanglement [34]. There are many more connections that have either been studied or wait to
be studied.

Incompatibility is traditionally thought of as a property of a collection of measurements,
but the concept can be easily generalized to other collections of input–output devices. In this
way, the concept of incompatibility gives a common ground for several famous impossibility
statements within quantum theory, such as ‘no-cloning’ [77] and ‘no information without
disturbance’ [13, 89]; these can be all seen as statements about the incompatibility of certain
devices. The generalized notion of incompatibility also opens up the investigation to families
of more complex quantum devices, such as process measurements [80]. This has the potential
to reveal some new quantum limitations or applications.

Incompatibility can be defined equally well within a general operational theory as
quantum theory. Then it becomes clear that, as presumed, in a classical theory all devices are
compatible. More interestingly, it is possible to compare operational theories with respect to
the maximal amount of incompatibility that they can host. Quantum theory does, in fact,
contain pairs of devices that are as incompatible as a pair can be in any operational theory
[18, 45]. Investigating the fundamental features of quantum theory has a long tradition, and
the parents of incompatibility, complementarity and uncertainty principle, have been studied
within an axiomatic framework already some time ago [10]. From this kind of foundational
point of view incompatibility has not been studied extensively, and there are many open
question. In particular, it would be interesting to see if the degree of incompatibility within
quantum theory can be derived from some foundational principles.

The purpose of the present paper is to give a concise overview of some of the central
aspects of incompatibility. In section 2 we start with the general formulation of incompat-
ibility for input–output devices in an operational theory. We discuss the quantification of
incompatibility and some other general features that are most clearly stated at this general
level. In sections 3 and 4 we concentrate on quantum devices, mostly on observables and
channels, but we also point out elementary results for the incompatibility of process obser-
vables. In section 5 we review the order theoretic characterization of quantum incompatibility.
Some final remarks are given in section 6.

2. Incompatibility in operational theories

2.1. Preliminary definition of incompatibility

Before we go into the mathematical definition of incompatibility, we shall try to grasp the
concept intuitively. We consider physical devices as boxes that have input and output ports.
For simplicity, we restrict to devices that have a single input port but possibly several output
ports. An input for a device is taken to be a physical system, like a photon or neutron. An
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output can be a transformed physical system, or a measurement outcome, or both. For
instance, an optical fiber has a photon in a polarization state as both an input and output. This
kind of device is called a channel. A different kind of device is the one that gives a mea-
surement outcome as an output; this is called an observable. For instance, in the quantum
optical setting a physical implementation of an observable can be a combination of beam
splitters, phase shifters and photo detectors. We can still think of the whole setup as an input–
output box. A channel and observable as input–output devices are illustrated in figure 1.

Channels and observables with a single output port are the two most basic types of
devices. We may also have devices with several output ports. As an example, a device may
take a system as an input and then produce a measurement outcome together with a system in
a transformed state. Whenever we have a multiport device, we can ignore all but one of the
output ports and thus concentrate only on some part of the total device. In this sense, a device

Figure 1. A channel and observable illustrated as input–output devices.

Figure 2. Compatibility of two devices A (red) and B (blue) means that there exists a
third device C that is their joint device. Two devices are called incompatible if they do
not allow a joint device.
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with multiple output ports is a joint device for two or more devices with one output ports. We
are now ready to state our preliminary definition of incompatibility by first stating its anto-
nym, compatibility. Two devices A and B, both having a single output port, are called
compatible if there is a third device C with two output ports such that C is a joint device of A
and B; see figure 2. If a joint device does not exist, then A and B are called incompatible.

The essential point behind compatibility is that two devices that would otherwise need a
separate input each can be implemented by using just one input. Therefore, if a pair of devices
is compatible, then one does not have to make a choice which one to implement, whereas
with an incompatible pair of devices the choice is mandatory. In other words the incom-
patibility forces us to choose.

2.2. Incompatibility in operational theories

In what follows we will put the previous preliminary definition of incompatibility into
a proper mathematical context. For this purpose, we first briefly recall some basic
elements of the framework called operational theory or probabilistic theory in the studies
of quantum foundations; see e.g. [4, 25, 66] for further details. Before we can give the
definition of incompatibility, we need the concepts of a composite state space and a reduced
state.

The basic ingredients of an operational theory are states and devices. A state is a
mathematical description of a preparation procedure of a system, while a device is a proce-
dure applied after preparation. A device can operate only on certain kinds of systems,
so systems can be understood as labels on input and output ports of devices. For each
system described by the theory, there is a state space  , which is assumed to be a
convex subset of a real vector space  , the convexity reflecting the possibility to mix
preparations.

The state space of a classical system is the set ( ) W of all probability distributions on
a set Ω. By a classical theory we mean a theory that describes only classical systems.
An operational theory typically contains classical systems as special cases and then some
non-classical systems that have state spaces of a different type. In quantum theory the
state space of a quantum system is identified with the set of all positive trace class operators
of trace one on a complex Hilbert space . The dimension of  depends on the specific
system.

Devices are, mathematically speaking, functions from one state space to another. The
basic requirement for all devices is that they are affine functions, i.e., a convex mixture of two
inputs is mapped into the convex mixture of their outputs. The input and output state spaces
of a device determine its type. An operational theory may have additional requirements for
devices so that not all affine maps between two state spaces are valid devices. For instance, in
quantum theory one has the requirement of complete positivity.

The simplest device on a state space  is an effect, which is an affine function e from  to
the classical state space 0, 1[ ]. Physically speaking, an effect corresponds to a yes–no mea-
surement that produces an outcome ‘yes’ with the probability e(s) and ‘no’ with the prob-
ability e s1 ( )- . We denote by ( )  the set of all effects on  . The unit effect u is the constant
function u s 1( ) º .

An operational theory must specify the description of composite systems. Let 1 1 Ì
and 2 2 Ì be two state spaces. With some reasonable assumptions the composite state
space, denoted by 1 2 Ä , can be identified with a convex subset of the tensor product vector
space 1 2 Ä . There is, however, not a unique choice [67] and one has to understand the
choice of the composite state space as a part of the definition of a specific operational theory.
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We assume that the composite state space always contains the minimum tensor product
1 min 2 Ä , which is the set of all convex combinations of the product elements s s1 2Ä for

s1 1Î , s2 2Î . For classical systems this is the unique choice of a tensor product, but
otherwise not. In quantum theory the composite state space is strictly larger than the minimum
tensor. The convex combinations of product elements are referred to as separable states, and
the other states are called entangled.

The composite system has an effect denoted by e e1 2Ä for each e1 1( ) Î and
e2 2( ) Î , which represents independently applied measurements of e1 and e2. For a state
s 1 2 Î Ä , we define the reduced states or marginal states smarg1 1( ) Î and

smarg2 2( ) Î via the conditions

e s e u s e s u e smarg , marg , 11 1 1 2 2 2 1 2( ( )) ( )( ) ( ( )) ( )( ) ( )= Ä = Ä

required to hold for all effects e1 1( ) Î and e2 2( ) Î , and where u1 and u2 are the unit
effects in 1( )  and 2( )  , and respectively. The state s is a joint state of smarg1( ) and

smarg2( ). In quantum theory the marginal states of a state of a composite system are obtained
by taking partial traces of the corresponding operator.

The previous notions of marginal states and joint states are now lifted to devices. Let  ,
1 and 2 be state spaces and let us consider a device : 1 2   ÄD . The marginals ofD

are defined as

s s s smarg , marg . 21 1 2 2( ) ≔ ( ( )) ( ) ≔ ( ( )) ( )D D D D

The device D is a joint device of 1D and 2D .
We are then ready for the definition of our main concept.

Definition. Two devices :1 1 D and :2 2 D with the same input space but
possibly different output spaces are compatible if there exists a device : 1 2   ÄD such
that 1D and 2D are the marginals of D. Otherwise 1D and 2D are incompatible.

Let us remark that a compatible pair of devices need not have a unique joint device. The
reason is simply that the marginal conditions (2) specify the map s s( ) D only partially. In
particular, if two devices 1D and 2D are compatible and have two joint devices, then all
convex mixtures of these devices are also joint devices of 1D and 2D . We conclude that a
compatible pair of devices has either a unique joint device or an infinite number of them. Let
us also note that definitions of marginals and compatibility naturally extend to any finite set of
devices.

2.3. Quantification of incompatibility

There are many ways to quantify the degree of incompatibility within a collection of
incompatible devices. One can, for instance, start by defining a distance on the set of devices
and then see how far the closest compatible devices are from the given incompatible col-
lection. However, what we discuss here is a method that does not require a distance and is
applicable to all devices, even of different type. This approach also allows us to compare
incompatibility between different operational theories.

A device that gives a fixed output independently of the input is called a trivial device. For
instance, a trivial observable corresponds to a coin tossing experiment, where the input state is
ignored and the output is decided by tossing a coin. A trivial device is compatible with any
other collection of devices. This is obvious from a physical point of view, since the input state
for a trivial device can be replaced with any fixed state. In that sense, a trivial device does not

J. Phys. A: Math. Theor. 49 (2016) 123001 Topical Review

5



need an input state and the input is therefore saved for another device that is desired to be
implemented jointly.

Suppose we are considering an approximate implementation of n incompatible devices
, , n1 ¼D D . For this purpose, we fix n trivial devices , , n1 ¼T T , one of the same type for each

device. In each measurement run we roll an n-sided dice and, depending on the result, we
implement one of the devices , , n1 ¼D D . In addition to this, we implement n 1- trivial
devices corresponding to those indices that were not chosen; see figure 3. We pretend that the
outputs of the trivial devices are the outputs for the devices that were not implemented. As a
result, we have implemented n devices , , n1¢ ¼ ¢D D of the form

, 3j n j
n

n j
1 1 ( )¢ = + -

D D T

and we can regard j¢D as a noisy version of jD . It should be emphasized that this procedure
works for all collections of n devices as it only includes mixing and dice rolling.

This universal way of approximating incompatible devices with compatible ones moti-
vates to look the best possible approximation of this form. Hence, for devices , , n1 ¼D D , we
look for numbers 0 1j l such that there exist trivial devices , , n1 ¼T T making the n
mixed devices 1j j j j( )l l+ -D T compatible. The set of those points , , 0, 1n

n
1( ) [ ]l l¼ Î

for which there exist such trivial devices is called the compatibility region of the devices
, , n1 ¼D D [18, 33]. The compatibility region characterizes how much noise (in terms of trivial

observables) we need to add to obtain compatible approximations. If the devices , , n1 ¼D D

are compatible to start with, then their compatibility region is the whole hypercube 0, 1 n[ ] .
It is sometimes desirable to quantify incompatibility with a single number. For this

purpose, we look at the subset of the compatibility region where the mixing parameters are
equal, i.e., n1l l l= = º . The degree of compatibility of the devices , , n1 ¼D D , denoted by
deg , , n1( )¼D D , is the supremum of numbers 0 1 l such that the n devices

1j j( )l l+ -D T are compatible for some choice of trivial devices , , n1 ¼T T [45]. For
instance, for two devices 1D and 2D the degree of compatibility is obtained as the intersection
of the compatibility region and the symmetry line ;1 2l l= see figure 4.

Figure 3. The idea of an approximate joint implementation of an arbitrary pair of
devices, mixed with trivial ones, is illustrated. The coin toss decides whether the red or
blue device is acting on the input state, while the remaining output is generated by a
suitable trivial device.
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As an example, let dQ and dP be the Fourier-connected von Neumann observables on a
finite d dimensional Hilbert space, also called finite dimensional position and momentum
observables (see e.g. [85]). It was shown in [22] that their compatibility region is the set of
those points , 0, 1 0, 11 2( ) [ ] [ ]l l Î ´ that satisfy

d d d d1 1 2 . 41 2 1 2
2( )( ) ( )( ) ( ) ( )l l l l- + - - - - -

Figure 4. The compatibility region (colored area) for a pair of observables illustrates
how the addition of noise affects their compatibility. The triangle area (dark area) is in
the compatible region of any pair of observables. The additional colored region (light
area) is greater for more compatible pairs of observables. The degree of compatibility is
obtained by taking the coordinate of the intersection point of the symmetry line (blue)
and the boundary of the compatibility region.

Figure 5. The compatibility regions of finite dimensional position and momentum
observables in dimensions 3 (whole colored area) and 100 (colored area bounded by
the dashed line). The compatibility region is the smaller the higher is the dimension.
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Hence, the degree of compatibility of dQ and dP is

d
deg , 1

1

1
. 5d d

1
2

( ) ( )
⎛
⎝⎜

⎞
⎠⎟= +

+
Q P

Since the degree of compatibility of dQ and dP decreases as d increases, it is justified to say
that the finite dimensional position and momentum observables become more incompatible
for increasing dimension d. The compatibility regions in two cases are illustrated in figure 5.

As we concluded earlier, for any n devices , , n1 ¼D D we can form noisy compatible
versions by tossing and mixing, and this leads to the devices given in (3). This implies that the
degree of compatibility of any collection of n devices satisfies

deg , , . 6n n1
1( ) ( )¼D D

For this reason, we say that a collection of n devices , , n1 ¼D D is maximally incompatible if
deg , , n n1

1( )¼ =D D . The existence or non-existence of maximally incompatible devices
should be seen as an intrinsic global property of an operational theory. A more refined
question is whether an operational theory has maximally incompatible collections among
some specific types of devices.

Quantum theory does contain maximally incompatible pairs of observables. It was shown
in [45] that the standard position and momentum observables Q and P on the infinite
dimensional Hilbert space L2 ( ) are maximally incompatible, i.e.

deg , . 71
2

( ) ( )=Q P

Another pair of complementary observables, namely the number and phase observables [20],
was also shown to be maximally incompatible. However, a pair of two-outcome quantum
observables cannot be maximally incompatible, while in a different operational theory this is
possible [18]. We conclude that quantum theory contains maximally incompatible pairs of
observables, but it does not include maximal incompatibility in the ultimate form. It seems to

Figure 6. A cloning device allows for joint implementation of arbitrary devices.
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be an open problem whether there exists a pair of finite outcome quantum observables which
is maximally incompatible.

2.4. Broadcasting

If we are considering an operational theory where an unknown state can be copied, then any
finite collection of devices is compatible. Namely, we can simply concatenate the desired
devices , , n1 ¼D D with the copying machine; see figure 6. The resulting device with multiple
output ports is a joint device for , , n1 ¼D D . This simple observation is more powerful that one
would perhaps first expect; it implies that if a theory contains some incompatible devices,
then a copying machine cannot exist in that theory [89].

For a more detailed discussion of this concept, we recall that a device
:    Ä broadcasts a state  if marg1( ( ))  = and marg2( ( ))  = . (The dif-

ference to cloning is that the final state is not required to be the product state  Ä .) A set of
states is broadcastable if there exists a channel  such that  broadcasts each state in that set.
It is known that a set of states is broadcastable if and only if it lies in a simplex generated by
states that are distinguishable by a single-shot measurement [4]. It follows that broadcasting
of all states is possible only in classical theories, whereas in quantum theory a set of states is
broadcastable if and only if we restrict ourselves to a collection of mutually commuting
density operators.

As universal broadcasting is impossible in quantum theory, its approximate versions have
been investigated extensively [77]. From these studies we can infer some general limits on the
degree of compatibility in quantum theory. In particular, a symmetric universal copying
machine C that makes n approximate copies is of the form [53]

C s S S, 8n d
n

,
1( ) ( ) ( ) = Ä -

where S is the projection from d
nÄ to the symmetric subspace of d

nÄ and the normalization
coefficient sn d, does not depend on  . The state ̃ of each approximate copy is obtained as the
corresponding marginal of C ( ) and, as it was shown in [88], it reads

c d n c d n
d

, 1 ,
1

, 9˜ ( ) ( ( )) ( ) = + - 

where the number c d n,( ) is independent of  and given by

c d n
n d

n d
,

1
. 10( )

( )
( )=

+
+

An action of a device D on the transformed state ̃ gives the same result as the action of the
noisy device c d n c d n, 1 ,( ) ( ( ))+ -D T on the initial state  , where T is the trivial device

mapping all states into
d

1( )D  . Therefore, we conclude that the degree of compatibility has a
lower bound

n d

n d
deg , ,

1
11n1( )

( )
( )¼

+
+

D D

for any choice of n quantum devices on a d dimensional quantum system. It follows that
maximally incompatible collections of devices, i.e., those having deg , , n n1

1( )¼ =D D , do not
exist in quantum theory if the dimension of the quantum system is finite [45].

It is an open question if the lower bound in (11) is tight for quantum observables in the
sense that there is equality for some observables , , n1 ¼D D . As observed in [26], for the usual
complementary spin-1

2
observables X, Y and Z (corresponding to three mutual unbiased
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bases) the lower bound (11) is not reached. Namely, the lower bound in this case is 5

9
, but it

follows from [12] that deg , , 1

3
( ) X Y Z . The question of the most incompatible pair of

quantum observables in a finite dimension d seems to be open even in the simplest case of
two-dimensional quantum systems.

2.5. Geometry of incompatibility

There is an extensive literature on the geometry of the state space (see e.g. [6]). In particular,
it is an interesting task to understand the boundary of entangled and separable states and the
relative sizes of these sets. This stimulates us to study similar questions in the context of
compatible and incompatible pairs of devices, or more generally, collections of devices.

To formulate the geometric framework of incompatibility, we need to fix the types T1 and
T2 of investigated devices. The total set is then the Cartesian product T T1 2´ . We separate this
set into the subset K of compatible pairs and its complement set KC consisting of incom-
patible pairs. The set K is convex since a mixture of joint devices of two pairs gives marginals
that are mixtures of the respective pairs. The separation of the total set into the sets of
compatible and incompatible pairs is thus analogous to the separation of bipartite state space
into separable and entangled states.

The line segment between two points x ,1 2( )= D D and y ,1 2( )= ¢ ¢D D in T T1 2´ consists
of all pairs

x y1 1 , 1 121 1 2 2( ) ( ( ) ( ) ) ( )l l l l l l+ - = + - ¢ + - ¢D D D D

for 0 1; l see figure 7. To learn something about the structure of the set KC, we can start
with a fixed incompatible pair x ,1 2( )= D D and then look for other pairs y ,1 2( )= ¢ ¢D D such
that the line segment (12) intersects the boundary of K and KC. An illuminating task is to
search for y such that the weight λ of x for the intersection point is as short as possible. In
finding the smallest possible weight λ we can limit the choice of y ,1 2( )= ¢ ¢D D , and there are
at least three natural restrictions:

(a) 1¢D and 2¢D are restricted to trivial devices
(b) 1¢D and 2¢D are restricted to compatible pairs of devices
(c) 1¢D and 2¢D can be any devices.

Choice (a) is related to the degree of incompatibility that was discussed in section 2.3,
while (b) is, from the geometric point of view, analogous to the robustness of entanglement
[84]. This option was adopted in [64] to quantify the degree of incompatibility. The third
option (c) was studied recently in [34]. It was shown, for instance, that for a pair consisting of

Figure 7. The set of all pairs of devices is separated into the convex set K of compatible
pairs (darker area) and the complement set KC of incompatible pairs. The boundary of
K and KC can be studied by investigating where line segments intersect it.
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two unitary channels on a finite d dimensional Hilbert space, the smallest weight λ is
1

d

1

2

1( )+ , while for a pair consisting of a von Neumann observable and a unitary channel the

number is 1
d

1

2

1( )+ . These numbers indicate again that higher dimensions permit greater

amounts of incompatibility.

2.6. Operational compatibility vs descriptive compatibility

Let us assume that two physicists, Alice and Bob, are using the same device but not
necessarily simultaneously. They may concentrate on different aspects or different functions
of the device. Since the origin of their description is the same device, their descriptions are
necessarily consistent. Assume, in contrast, that Alice and Bob deliver their descriptions to us
without telling or possibly without even knowing that the origin for their descriptions is the
same device. It may happen that their descriptions are not consistent, meaning that there is not
a single device that could give birth to both of their descriptions. It is clear that this kind of
consistency of descriptions is a precondition for compatibility. However, it does not yet
guarantee compatibility, since that would mean that the two devices can be simultaneously
operated on a single input.

To further clarify this viewpoint, let us consider two devices 1D and 2D , both with two
output ports. If they are compatible, a joint device D for them would have four output ports
according to our earlier definition. One can also think of a device ¢D with only three output
ports such that 1D is obtained when the first output port is ignored while 2D is obtained when
the last output port is ignored. The essential difference betweenD and ¢D is that the latter uses
the middle output port in both devices 1D and 2D , while in the first one there is no such
overlap. When there is a need to distinguish these two situations, we say that our earlier
definition of compatibility is operational compatibility whereas this new notion is descriptive
compatibility.

The mathematical formulation of descriptive compatibility is similar to the definition of
operational compatibility given in section 2.2, but now the marginals can have an overlap.
This is exactly the reason why descriptive compatibility only means that the devices can be
separately implemented on a single device, not necessarily simultaneously; see figure 8. We

Figure 8. Illustration of the difference between the concepts of (a) operational and (b)
descriptional compatibility.
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observe that for observables the notions of operational and descriptive compatibility are
equivalent since in that case we can get rid of any overlap simply by duplicating the obtained
measurement outcomes.

The prototypical instance of the descriptive compatibility question is the state marginal
problem [55]. A simple form of the state marginal problem is the following: we have
a composite system consisting of three systems A B C, , and we are given two bipartite states

1 and 2 of subsystems A, B and B, C, respectively. The question is: does there exists a state
ω of the composite system A–C such that 1 is the reduced state of the subsystem A and B
and 2 is the reduced state of the subsystem B and C? There are many variations of this
question. For instance, often there is an additional requirement that the state ω of the com-
posite system is pure. Let us stress again that the state marginal problem (with all its deri-
vatives) is about consistency of partial descriptions, not about their joint implementation. The
descriptive compatibility is relevant also in some other scenarios, including channel steer-
ing [70].

3. Incompatibility of quantum observables

3.1. Equivalent definitions of incompatibility for observables

A quantum observable is a device that has a quantum input and classical output. It is
customary to use an equivalent mathematical description of a quantum observable as a
positive operator valued measure (POVM) [16, 47]. A quantum observable M with finite
number of outcomes is identified with a function x x( ) M from the set of measurement
outcomes Ω to the set s( )  of selfadjoint operators on . For an input state ( )  Î , the
output probability distribution is x xtr[ ( )] M . Hence, the function M must satisfy

x0 ( ) M  (operators satisfying this property are called effects) for all x Î W and
xx ( )å =ÎWM . It is convenient to use the notation X xx X( ) ≔ ( )å ÎM M for any set X Ì W.

The normalization condition then simply reads ( )W =M . The observableM is called sharp if
for all X Ì W the effect X( )M is aprojection, i.e. X X X 2( ) ( ) ( )*= =M M M . In other words,
sharp observables correspond to projection-valued measures. We define the range of an
observable M as the set of effects X( )M associated with measurable sets X Ì W.

Applying the general definition from section 2.2 to the case of observables and trans-
lating it to the POVM language, we conclude that a joint observable is a device that
produces a list of outcomes x x x, , , n1 2( )¼ at each measurement round and its outcome set is a
product set n1 2W ´ W ´ ´W . Ignoring all but the kth outcome determines an observable kM ,
given as

x x x x x, , , , , . 13k k
l k x

k n1 2

l

( ) ( ) ( )åå= ¼ ¼
¹

M M

As in the general case, we say that kM is a marginal ofM, and thatM is a joint observable of
, , n1 ¼M M . Hence, a finite collection of observables is compatible if and only if they are

marginals of the same joint observable. Traditionally, compatible observables are called
jointly measurable. Using the set notation we can write (13) in the form

X X . 14k k k n1 1 1( ) ( ) ( )= W ´ ´W ´ ´ W ´ ´W- + M M

This way of writing the marginal condition is also applicable to observables with an infinite
number of outcomes; see e.g. [61].

There is another equivalent formulation of compatibility that may seem more intuitive.
Suppose that we have a quantum observable M with an outcome space Ω. At each
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measurement round we get some outcome x. Since this is just a number, we can make as
many copies of it as we want. We can further apply functions f f, , n1 ¼ to these copies,
respectively. We have thus produced n outcomes f x f x, , n1 ( ) ( )¼ even if we made only one
measurement. As a result, we have implemented n observables , , n1 ¼M M , and we can write
each of them as

y x , 15k
x

y f x, k
( ) ( ) ( )( )åd=M M

where a b,d is the Kronecker delta. It is evident that the observable M implements
simultaneously all the observables , , n1 ¼M M even if M is not their joint observable in the
strict sense of (13). In fact, (13) can be seen as a special case of (15), where the outcome space
Ω is the product set n1 2W ´ W ´ ´W and each function fk is the projection map from Ω to

kW . Let us note that this formulation is applicable to observables in any operational theory,
and it has been called functional coexistence [60].

The previous procedure can still be slightly generalized. Again, we measure an obser-
vableM and start by making n copies of the obtained measurement outcome x. For each copy,
we can have several possible relabeling functions. If we obtain x, we roll a dice to decide
which function we use to relabel the outcome. We denote by p y xk ( ∣ ) the conditional prob-
ability to relabel the kth copy of x to y. Hence, the actually implemented observables are given
as

y p y x x . 16k
x

k( ) ( ∣ ) ( ) ( )å=M M

Obviously, (15) is a special instance of (16). However, if observables , , n1 ¼M M can be
written as in (16) for some observable M, then they are jointly measurable. This can be seen
as follows: from the observableM and the functions pk we define a new observable ¢M on the
product set as

y y p y x p y x x, , . 17n
x

n n1 1 1( ) ( ∣ ) ( ∣ ) ( ) ( )å¢ ¼ = M M

Then ¢M gives observables , , n1 ¼M M as its marginals and is hence their joint observable.
Let us remark that an observable may have an infinite number of outcomes. In the case of

countably infinite outcome sets, the previous argument still applies and the same conclusion
on the equivalence of the three formulations applies. If the outcome set Ω is uncountable, then
one needs to specify a σ-algebra  consisting of subsets of Ω and observables must literally
be consider as measures. Proving the equivalence of the three formulations of joint mea-
surability may require assumptions on measurable spaces ,( )W and the argument contains
measure theoretic subtleties. In the case where outcome sets are Hausdorff locally compact
second countable topological spaces and σ-algebras are their Borel σ-algebras, the equiva-
lence has been proven in [1]. Other equivalent formulations of joint measurability have been
discussed in [61].

3.2. Commutativity and its derivatives

Traditionally, the compatibility of observables has been often identified with their commu-
tativity. The compatibility is, in fact, equivalent to commutativity for observables consisting
of projections, i.e., for sharp observables. In the following we reproduce a proof of this fact
and present a wider perspective on the role of commutativity. A full list of equivalent
conditions for the compatibility of sharp observables is presented in [57].
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We recall that the Jordan product of two operators E E,1 2 ( ) Î is defined as
E E E E1

2 1 2 2 1( )+ . As a generalization, for each integer n 2, 3,= ¼ we define a function
J :n

n( ) ( )    by

J E E
n

E E, ,
1

, 18n n n1 1

n

( ) ≔
!

( )( ) ( )å¼
p

p p
ÎP



where nP is the set of all permutations of the set n1, 2, ,{ }¼ . If E E, , n1 ¼ are selfadjoint
operators, then J E E, ,n n1( )¼ is also a selfadjoint operator.

The Jordan product can be used to define a joint observable. Namely, let , , n1 ¼M M be
observables with an outcome space Ω. We define

x x J x x, , , , 19n n n n1 1 1( ) ≔ ( ( ) ( )) ( )¼ ¼J M M

for all x x, , n1 ¼ Î W. Using (18) we obtain

x x x, , 20
x x

n
, ,

1 1 1

n2

( ) ( ) ( )å ¼ =


J M

and similarly for other marginals. This means that J is a joint observable whenever the
operators x x, , n1( )¼J are positive. We thus obtain a sufficient condition for compatibility [36]:
observables , , n1 ¼M M are compatible if the operator J x x, ,n n n1 1( ( ) ( ))¼M M is positive
for all x x, , n1 ¼ Î W.

The fact that commuting observables are compatible is a consequence of the previous
condition. To see this, we observe that the product of n commuting positive operators
E E, , n1 ¼ is positive since

E E E E E E E . 21n n n1 2 1 1( ) ( ) ( )*=  

It follows that J x x, ,n n n1 1( ( ) ( ))¼M M is positive whenever the operators x x, , n n1 1( ) ( )¼M M
commute. It should be noted that the previous sufficient condition for compatibility covers a
much wider class of compatible observables than just the commuting sets [36].

Let us then look the other side of the coin, namely, cases where non-commutativity is a
sufficient criterion for incompatibility. Let 1M and 2M be two observables on a Hilbert space
. It was shown in [65] that if operators x1( )M and y2 ( )M satisfy the inequality

x y y x x x y y4 , 221 2 2 1
2

1 1
2

2 2
2( ) ( ) ( ) ( ) ( ) ( ) · ( ) ( ) ( )- > - -     M M M M M M M M

then 1M and 2M are incompatible. The number x x1 1
2( ) ( )- M M quantifies the unsharpness

of an effect x1( )M , and it vanishes if and only if x1( )M is a projection. Therefore, as a special
case of this result we see that if x1( )M is a projection for some outcome x, then the
compatibility of 1M and 2M requires that

x y y x 231 2 2 1( ) ( ) ( ) ( ) ( )=M M M M

for all y 2Î W . (For an alternative proof of this latter fact, see [43].)
To explain the proof of the statement that (22) implies incompatibility, let us suppose that

1M and 2M are compatible observables. We denote their joint observable by M. Due to the
Naimark dilation theoremM can be presented as a restriction of a sharp observable on a larger
Hilbert space; there exist a Hilbert space , an isometry V :   , and a sharp observable
M̂ on  satisfying

V x y V x y, , . 24ˆ ( ) ( ) ( )* =M M

This sharp observable also defines Naimark dilations of 1M and 2M by x x y,y1
ˆ ( ) ≔ ˆ ( )åM M

and y x y,x2
ˆ ( ) ≔ ˆ ( )åM M . Now, for two bounded operators C and D we have, by the C*-
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property of the operator norm

C D C D C D D CC D . 252 ( ) ( ) ( )* * * * * *= =     

Noting that D CC D CC D D* * * *   we further get

D CC D CC D D C C D D . 26( )* * * * * * =       

Using this operator norm inequality forC VV y V2
ˆ ( )*= - M and D VV x V1

ˆ ( )*= - M
we then obtain

V x y V x y

x x y y . 27
1 2 1 2

1 1
2 1 2

2 2
2 1 2

ˆ ( ) ˆ ( ) ( ) ( )
( ) ( ) · ( ) ( ) ( )

*


-

- -

 
   
M M M M

M M M M

The observables 1M̂ and 2M̂ commute with each other as M̂ is commutative, and using this we
get

x y y x

V y x V y x V x y V x y

V y x V y x V x y V x y

x x y y2 ,

1 2 2 1

2 1 2 1 1 2 1 2

2 1 2 1 1 2 1 2

1 1
2 1 2

2 2
2 1 2

( ) ( ) ( ) ( )
( ˆ ( ) ˆ ( ) ( ) ( )) ( ˆ ( ) ˆ ( ) ( ) ( ))

ˆ ( ) ˆ ( ) ( ) ( ) ˆ ( ) ˆ ( ) ( ) ( )
( ) ( ) · ( ) ( )

* *

* *


-

= - - -

- + -

- -

 
 
   
   

M M M M

M M M M M M M M

M M M M M M M M

M M M M

and the claimed statement thus holds.

3.3. Measurement uncertainty relations

Starting from the famous article of Heisenberg [48], uncertainty relations have been studied
extensively in many different variants. Most of the uncertainty relations that can be found in the
literature can be divided into preparation uncertainty relations and measurement uncertainty
relations [17, 29]. While preparation uncertainty relations are telling about the limitations how a
quantum object can be prepared, measurement uncertainty relations set limitations on simul-
taneous measurements of two physical quantities. Many measurement uncertainty relations can
be seen as necessary conditions for compatibility, or alternatively, as sufficient conditions for
incompatibility. Reviewing the vast literature on uncertainty relations is beyond the scope of
this paper. We will rather briefly exemplify their role as incompatibility tests.

The general setting for a measurement uncertainty relation is the following. We have two
incompatible observablesM and N, and we have another pair of observables ¢M and ¢N which
are consider as approximations ofM andN, respectively. The quality of these approximations
are given by some non-negative numbers ,( )d ¢M M and ,( )d ¢N N . A measurement uncertainty
relation is then a statement saying that if ¢M and ¢N are compatible, there should be a lower
bound for some specified expression of ,( )d ¢M M and ,( )d ¢N N , the lower bound obviously
depending on M and N. In the simplest case the lower bound can be for the product

, ,( ) · ( )d d¢ ¢M M N N or the sum , ,( ) ( )d d¢ + ¢M M N N , but it can be also for some more
involved expression.

As an example, the discrepancy between two observablesM and ¢M can be quantified as

x x x x, max max sup tr tr , 28
x x

( ) ( ) ( ) ∣ [ ( )] [ ( )]∣ ( )d r r¢ = - ¢ = - ¢
r

 M M M M M M

while the inherent unsharpness of M can be quantified as

x xmax . 29
x

2( ) ( ) ( ) ( )n = - M M M
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It was proved in [65] that for these measures, the following inequality holds:

c

2 , , , , 2 2 ,

2 , ,1 2 1 2
,

( ) ( ) ( ) ( ) ( ( )
( )) ( ( ) ( )) 

d d d d d

n d n

¢ ¢ + ¢ + ¢ + ¢

+ ¢ +

M M N N M M N N M M

M N N N M N

where

c x y y xmax . 30
x y

,
,

( ) ( ) ( ) ( ) ( )= - M N N MM N

If we now fix M and N, then the violation of this inequality is a sufficient condition for
incompatibility of any two observables ¢M and ¢N .

As an example, let us choose d=M Q and d=N P , the finite dimensional position and
momentum observables introduced in section 2.3. In this case 0d d( ) ( )n n= =Q P and

c d

d,
1

d d
= -

Q P . Thus we obtain

d

d

2 , , , ,

4 , ,
1

, 31

d d d

d d
1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( )

d d d d

d d

¢ ¢ + ¢ + ¢

+ ¢ ¢ -

Q M P N Q M P N

Q M P N

which holds for all compatible observables ¢M and ¢N . Therefore, if two observables ¢M and ¢N
violate (31), then they must be incompatible.

3.4. Information and incompatibility

An observableM is called informationally complete if it gives different measurement outcome
distributions to all quantum states [19, 71]. In this way, an informationally complete obser-
vable allows the reconstruction of an unknown input state. Once we know the input state, we
can calculate the probability distributions of any observable we want. This may lead to a false
thought that incompatibility can be circumvented by measuring an informationally complete
observable. It is important and instructive to understand that the existence of an informa-
tionally complete observable does not mean that all observables are jointly measurable. To
see the difference to joint measurements, we recall that (in a finite dimensional Hilbert space)
an observableM is informationally complete if and only if any observableN can be written as
a sum

y f x y x, , 32
x

( ) ( ) ( ) ( )å=N MN

where fN is a real valued processing function [27]. This differs from (16) since fN can take
negative values. In practice, this means that if we measure an informationally complete
observableM only once and obtain a single outcome, we cannot infer much on the outcomes
of other observables.

An observation related to the difference between joint observables and informationally
complete observables is that there are compatible observables that cannot have an infor-
mationally complete joint observable. Namely, suppose that M is a joint observable of some
set of observables containing an observable A such that one of the operators, say 1( )A , is a
projection. (For instance, A can be the observable that corresponds to an orthonormal basis

x{ }j , i.e., x x x( ) ∣ ⟩⟨ ∣j j=A .) Since 1( )A is a sum of some elements x x, , n1( )¼M , it is clearly in
the range of M. But an informationally complete observable cannot have a projection in its
range [15], hence M is not informationally complete. This example is, in fact, linked to the
well-known foundational feature of quantum theory that it is impossible to identify an
unknown quantum state if only a single system is available. Namely, the observable A defined
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above has the property that if we know that the input state is one of the vector states xj but we
do not know which one, then A can determine the correct state already from a single outcome.
Suppose that another observable B is informationally complete, hence able to identify a
completely unknown state from the full measurement statistics. Then A and B are necessarily
incompatible, as their hypothetical joint observable would be capable of performing both
tasks, which is impossible by the earlier argument. It is also interesting to note that in some
odd dimensions optimal approximate position and momentum observables allow informa-
tionally complete joint measurements, but in even dimensions not [22]. In the infinite
dimensional case there seems to be no connection between the informational completeness of
a joint phase space observable and state distinction properties of its marginal obser-
vables [79].

Clearly, a joint observable of a set of observables gives at least as much information as
each marginal observable. This leads to the idea that a set of observables must be incom-
patible if their hypothetical joint measurement would provide too much information. To make
this idea useful, one has to formulate the concept of information in a proper way. As was
demonstrated in [86, 93], the Fisher information is a useful measure of information for
making the intuitive idea work. The method is then to use quantum estimation theory to
derive limitations on joint measurements. The limitations derived in [93] for compatibility are
particularly effective for multiple observables, where incompatibility conditions are studied
less. For instance, let , , n1 ¼M M be complementary von Neumann observables and let T be
the trivial observable x

d

1( ) =T . It was proved in [93] that the mixtures
1 , , 1n n n1 1 1( ) ( )l l l l+ - ¼ + -M T M T are incompatible if

1. 33
j

n

j
1

2 ( )ål >
=

This inequality is known also to be a necessary condition for incompatibility in the case of
two or three complementary qubit observables [12].

3.5. Coexistence

Deciding, either numerically or analytically, whether observables 1M and 2M are jointly
observable becomes more and more tedious as the number of outcomes increases. Therefore,
any reduction of the compatibility problem to a simplified compatibility problem is of general
interest. On the more conceptual side, one may wonder if the joint measurability is essentially
a property of the operators in the range of two observables or if it depends in the specific way
in which an observable assigns an operator to an outcome. For instance, the commutativity of
two observables is decided solely on the level of operators.

Suppose M is an observable with an outcome set Ω, and fix a subset X Ì W. We may
define a new (binary) observable XM with the outcomes 1 and 0 as

X X1 , 0 . 34X X( ) ≔ ( ) ( ) ≔ ( ) ( )-M M M M

This observable is called a binarization of M. One could expect that having the collection of
all these binarizations should be, in some sense, same as having M. From the compatibility
point of view, we may introduce the following two natural concepts. Observables , , n1 ¼M M
are called

(a) Coexistent if the collection of all their binarizations ℓ
XℓM is jointly measurable.

(b) Weakly coexistent if for any fixed choice of subsets Xj jÍ W , the collection of
binarizations , ,X

n
X

1
n1 ¼M M is jointly measurable.
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It follows immediately from these definitions that for a finite collection of observables,
we have the following hierarchy of the properties:

jointly measurable coexistent weakly coexistent. 

It is also clear that the three concepts are equivalent for any collection of two-outcome
observables.

The concepts of coexistence and joint measurability were clearly distinguished in
[58, 59] and it was noted that their equivalence or inequivalence is an open question. By
providing suitable examples it was shown in [43] that

weakly coexistent jointly measurable

and later in [74] a stronger result that

coexistent jointly measurable.

Finally, an example demonstrating that

weakly coexistent coexistent

was given in [35]. Hence, the three concepts are indeed different. Let us note that all the
relevant examples were using qubit observables and can be extended to higher dimensions, so
the concepts are inequivalent in all dimensions. However, even if the three concepts are
inequivalent, there are some important classes of observables under which all three concepts
coincide. For example, a pair of observables such that at least one of them is discrete and
extreme in the convex set of observables is jointly measurable if and only if the pair is
coexistent [35].

3.6. Role of incompatibility in bipartite settings

The violation of local realism, demonstrated by the Einstein–Podolski–Rosen paradox [31], or
the violation of Bell inequalities [5], is probably the most puzzling feature of quantum
systems. For this phenomenon to occur the existence of quantum entanglement is essential,
but not sufficient [87]. A requirement on the side of measurement devices is that the entangled
particles must be probed by incompatible observables. In other words, without incompat-
ibility we couldn’t experience quantum non-locality. A connection between joint measure-
ments and Bell inequalities was investigated in [81]. A tight relation between these two
notions was proved in [91], where it was shown that an arbitrary pair of incompatible binary
observables enables the violation of the Bell-CHSH inequality. Further, violations of certain
scaled versions of the Bell-CHSH inequality are related to some operationally motivated
incompatibility monotones [38]. A compatible set of observables cannot violate any Bell
inequality, but it still seems to be an open question if there are incompatible sets that cannot
violate any Bell inequality. There is, however, some indication that measurement incom-
patibility would not imply Bell non-locality [72].

Back in the 1930s, quite simultaneously with the discussion of the EPR paradox,
Schrödinger realized [78] that for bipartite quantum systems one of the parties can steer
distantly the properties of the second system by acting locally on his/her system and com-
municating the classical information. He discovered the phenomenon that is now called
quantum steering [90]. In quantum steering two parties, Alice and Bob, share a state ABw .
Suppose that Alice chooses to measure an observable A on her part of the composite system.
After observing the outcome x with the probability x Itr AB[( ( ) ) ]wÄA , Bob’s system is
described by the conditional (subnormalized) state
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xtr . 35B
x

A AB[( ( ) ) ] ( )∣ w= ÄAA 

This conditional state does not depend on the specific way Alice measures the observable A.
Moreover, the ensemble on Bob’s side is described by the same average state

tr , 36
x

B
x

B B AB[ ] ( )∣ å w= ºA

for all choices of A. It is the decomposition of B that is the subject of Alice’s steering. But
can Alice really prove to Bob that she can affect his system?

Clearly, Alice has to send the choice and the result of her measurement to Bob, so that
Bob can verify the conditional states. However, for any chosen family of observables

,..., n1A A Bob could think of his system as being described by a collection of states l
distributed according to some (unknown) probability distribution pl and in this way forming
the marginal state B . If there exists a valid conditional probability distribution q x ,j( ∣ )lA ,
where x labels potential outcomes of a measurement jA , such that

q x , , 37B
x j

j( ∣ ) ( )∣ åp l=
l

l lA

for all observables jA and all outcomes x, then Bob can provide a local explanation for the
update of his state. If this is the case then the action of Alice is not necessary in order to
manipulate Bob’s system into the post-selected state B

x j , and, consequently, Alice cannot
prove she is really steering the state of Bob’s system distantly. Instead, she could cheat by
preparing the ensemble ,{ }pl l and sending the information in accordance with probability
q x ,j( ∣ )lA to prepare the desired states B

x j . It was shown in [90] that entanglement of ABw is
necessary to exhibit the quantum steering and also that this phenomenon is different from
Bell’s non-locality.

We will refer to the set of subnormalized states x j{ } as an assemblage. The description
of Bob’s assemblage by an ensemble ,{ }pl l and some conditional probabilities q x ,j( ∣ )lA is
called a local hidden state model. The assemblage is then called steerable only if such a local
hidden state model does not exist. It was shown in [73, 82] that the assemblage x j{ }
associated with a family of observables ,..., n1A A is steerable if and only if the observables are
jointly measurable. In other words, the incompatibility of observables is necessary and suf-
ficient to demonstrate the phenomenon of quantum steering. This connection holds, in fact, in
a general class of probabilistic theories [2]. Additional aspects on the connection between
steering and joint measurability have been investigated in [3, 52, 83].

4. Incompatibility of other quantum devices

4.1. Incompatibility of quantum channels

A quantum channel is an input–output device that transforms quantum states into quantum
states. The dimension of the output system need not be the same as the dimension of the input
system, as a channel may, for instance, incorporate a new system.

Let us consider a channel  that acts on states of a composite system A+B consisting of
two subsystems A and B. The system A can be in an arbitrary state  , while the system B is
assumed to be in a fixed blank state 0 . In this way we have a device with a single input port
and two output ports. After the channel has operated on the joint state 0 Ä , we isolate the
subsystems and investigate their reduced states. The overall procedure thus determines two
channels
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: tr and : tr . 38A B B A0 0[ ( )] [ ( )] ( )        Ä Ä 

Within the framework of incompatibility we are interested on the reverse question: if two
channels A and B are given, is there a channel  acting on the composite system A+B such
that A and B are of the form (38) for some blank state 0 ? This is equivalent to asking if A
and B are compatible in the sense of the general definition discussed in section 2.2. In fact,
suppose that A and B are compatible. This means that there exists a channel  such that
trB A[ ( )] ( )  = and trA B[ ( )] ( )  = . Then according to the Stinespring dilation
theorem there exist an additional system C and isometry V : A A B C    Ä Ä such
that V V( ) *  = holds. This isometry can be extended to a unitary operator U acting on

A B C  Ä Ä and satisfying

V U 390 1( ) ( )y y f f= Ä Ä

for all Ay Î and a fixed B C0 1  f fÄ Î Ä . We define 0 0 0≔ ∣ ⟩⟨ ∣ f f and a joint device
then reads

U Utr . 40C0 0 1 1( ) [ ( ∣ ⟩⟨ ∣) ] ( )*    f fÄ = Ä Ä

The most prominent example of incompatibility of quantum channels is related to the
celebrated no-cloning theorem [30, 92]. We already noticed a connection between compat-
ibility and cloning in section 2.4, and now we point out a supplementing aspect. A universal
cloning device [21] is a machine that accepts an unknown state  on its input and produces a
state  Ä on its output. We can relax this condition by not requiring the output state to be a
product state but only demanding that its reduced states are exact copies of  , and this is often
called broadcasting in order to distinguish it from a cloning device producing independent
copies. If  is the broadcasting channel, then the broadcasting requirement is equivalent to the
condition that both A and B in (38) are identity channels, i.e., A B( ) ( )   = = for all
states  . The question of the existence of universal broadcasting is then equivalent to the
question of compatibility of these two identity channels. The fact that universal broadcasting
is not possible in quantum theory is thus equivalent with the statement that two identity
channels are incompatible.

The incompatibility of two identity channels also serves as a demonstration that a
channel need not be compatible with itself. This is a clear difference compared to observables,
and the underlying reason is, indeed, that classical information can be copied but quantum
information cannot. To further illustrate incompatibility of channels, let us introduce a family
of diagonalizing channels. These channels completely destroy quantum coherences and are
not able to transfer quantum information at a non-vanishing rate, however, they keep
orthogonality of exactly d quantum states (forming an orthonormal basis), thus, they may act
as noiseless from the point of view of classical information transfer. For each orthonormal
basis j j

d
1{ } j= = , we define a channel diag as

diag . 41
j

d

j j j j
1

( ) ⟨ ∣ ⟩∣ ⟩⟨ ∣ ( )  å j j j j=
=

Suppose that two diagonalizing channels diag and diag¢ are compatible. Then, by applying
their joint channel  , we can produce states diag ( ) and diag ( )¢ from an input state  . By
measuring in the basis  for the state diag ( ) and in the basis ¢ for the state diag ( )¢ , we
are implementing a joint measurement of sharp observables corresponding to  and ¢. As we
have seen in section 3.2 these two observables are compatible only if they commute.
Therefore, we conclude that the diagonalizing channels diag and diag¢ are incompatible
if  ¹ ¢.
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4.2. Conjugate channels

If the joint channel  in (38) is unitary, then the marginal channels A and B are called
conjugate channels, or complementary channels. Hence, by definition, conjugate channels are
compatible. Often conjugate channels are considered in a situation where A is used to
transmit a quantum state and its conjugate channel B describes what happens on the
environment, in particular, how the information (either classical, or quantum) encoded in  is
diluted into the environment. Therefore, it is not surprising that transmission capacities of
complementary channels are closely related [54] and possess some common qualitative
features, e.g. the additivity of capacities [49].

The special role of conjugate pairs of channels compared to other compatible pairs
derives from the fact that a unitary channel cannot loose any information on the input state.
Therefore, if A destroys some information, there is a corresponding flow of information to
the environment. A neat quantitative formulation of this information-disturbance trade-off is
the following [56]:

1

4
inf id 2 inf id , 42A cb B cb A cb

2 1
2◦ ◦ ( )     

 
 - - -x     

where all channels are written in the Heisenberg picture, the norm is the completely bounded
norm, the infimum is taken over all decoding channels  andx is a completely depolarizing
channel for some fixed state ξ, i.e., A B tr B( ) [ ]x=x  for all  . This result shows that if we
can find a decoding channel  such that almost all the information can be retrieved from the
output of A , then the conjugate channel B is well approximated by a completely depolarizing
channel, hence the information flow to the environment is small.

If A is a unitary channel, then it is reversible and can be perfectly decoded. From (42) we
conclude that then the conjugate channel B must be a completely depolarizing channel.
Similarly, if we start from the assumption that B is a completely depolarizing channel, then

A must be perfectly decodable. As a consequence, two completely depolarizing channels are
not conjugate. However, as they clearly are compatible (as they are trivial devices), we have
demonstrated that there are compatible channels that are not conjugate.

Let us remark that, perhaps surprisingly, a channel can be conjugated with itself. To see
this, let  be a channel that is induced by a controlled unitary operator Uctrl acting on two
qubits

U U 430 ctrl 0 ctrl( ) ( ) ( )†    Ä = Ä

with

U I , 44zctrl ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ( )j j s j j= Ä + Ä ^ ^

where ,{ }j ĵ is an orthonormal basis. Setting 0 ∣ ⟩⟨ ∣ j j= + + with 2( )j j j=  ^ we
obtain

1

2

1

2
diag , 45A z z z( ) ( ) ( )    s s= + =

I
1

2
tr . 46B z( ) [ [ ](∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)] ( )  s j j j j= + -+ + - -

If we further choose ∣ ⟩ ∣ ⟩j = + and ∣ ⟩ ∣ ⟩j = -^ , then diagA B z = = .
This example can be generalized to arbitrary dimension. In particular, consider a set of d

mutually commuting unitary operators U U,..., d1 such that U U dtr j k jk[ ]† d= . Choose a vector
state j. Then the vectors Uj j∣ ⟩ ∣ ⟩j j= form an orthonormal basis  of the Hilbert space d .
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Further, let us define a control unitary operator U Uj j j jctrl ∣ ⟩⟨ ∣j j= å Ä and 0 ∣ ⟩⟨ ∣ j j= ,

where d1 j j∣ ⟩ ( ) ∣ ⟩j j= å is the equal superposition of all basis vector states. It follows that

U U
d

U Utr
1

, 47A B
j

j jctrl 0 ctrl( ) [ ( ) ] ( )† †    å= Ä =

and

U U
d

U Utr
1

tr . 48B A
j k

j k j kctrl 0 ctrl
,

( ) [ ( ) ] [ ]∣ ⟩⟨ ∣ ( )† †    å j j= Ä =

Using the fact that

U U U U U U U Utr 49j k
n

n j k n j
n

n n k[ ] ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩ ( )† † † †
⎛
⎝⎜

⎞
⎠⎟  å åj j j j= =

we obtain

d
U U

d
U U

1

1
diag .

B
j k

j j
n

n n k k

n
n n A

,

( ) ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣

( ) ( )

†

†

⎛
⎝⎜

⎞
⎠⎟ 

  



 

å å

å

j j j j=

= = =

In conclusion, every diagonalizing channel is conjugate with itself. Combining this fact
with the last paragraph of the previous subsection we conclude that the diagonalizing
channels diag and diag¢ are compatible if and only if = ¢.

4.3. Incompatibility of quantum observable and channel

A quantum instrument represents the mathematical tool enabling us to go beyond a purely
statistical description of quantum measurements [16, 47]. It includes not only the probabilities
for measurement outcomes but also the effect of the measurement process on the state of the
measured object conditioned on the recorded outcome. The most general state transformation
is described by a quantum operation, which is a completely positive trace-non-increasing
linear map acting on the set of trace class operators. Quantum instruments are then normalized
operation-valued measures. In particular, a measurement with a finite number of outcomes is
described by mapping x x , where for each outcome x Î W the transformation x is a
quantum operation. The probability of outcome x given the initial state  is p x tr x( ) [ ( )] =

and the conditioned state equals x p x x
1 ( )
( )

 


= . Clearly, the condition p x 1x ( )å = is

guaranteed if W is trace-preserving. In conclusion, quantum instrument can be understood as
a device having a state  as its input and producing two outputs: (i) a probability distribution
(described by some observable) and (ii) an average output state (described by a channel).
Every quantum instrument has a representation in the form of a measurement process [68],
and this fact justifies their use in the description of quantum measurements.

A quantum instrument is, by definition, a device with one input port and two output
ports, one classical and one quantum. Hence, the connection to the general definition in
section 2.2 can be directly applied, and we thus conclude that an observableM and a channel
 are compatible exactly if there exist a quantum instrument  such that

xtr tr x[ ( )] [ ( )] =M and ( ) ( )  = W for all outcomes x and input states  . This type of
compatibility was already investigated in [68, 69]. The concept of an instrument also gives
rise to another sort of compatibility, as two operations may or may not belong to the range of
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a single instrument [44]. Further, the limitations on approximate joint measurability of two
measurements become different if our aim is to approximate not only measurement outcome
probabilities but also state transformations [37].

To demonstrate the compatibility relations between observables and channels, and the
mathematical form of instruments, we write explicitly the joint devices for an observable and
a channel when one of them is a trivial devices. First, any channel is compatible with any
trivial observable, meaning that whatever we do with the input system, we can additionally
toss a coin. An instrument for a channel  and a trivial observable T is simply

x . 50x( ) ( ) ( ) ( )  = T

Second, any observable is compatible with any trivial channel, meaning that any observable
can be measured in a totally destructive way. An instrument for an observable M and a
completely depolarizing channel x is

xtr . 51x( ) [ ( )] ( )  x= M

A general instrument has, of course, a more complicated structure and it need not be
decomposable as the previous instruments. For some examples of instruments arising from
realistic measurement models we refer to [16].

There is a slightly more general class of channels that can be written for any observable.
LetM be an observable and fix a state xx for each possible outcome x. We can then define an
instrument as

xtr . 52x x( ) [ ( )] ( )  x= M

This instrument describes a measurement process where we measureM and, depending on the
obtained outcome, prepare one of the states xx . The channel W derived from this instrument
maps an input state  into the convex mixture p xx x( ) xå . Typically an observable has a
variety of other kinds of compatible channels as well, but if each operator x( )M is rank-1,
then M has no other kind of compatible channels [46]. The destructive nature of
measurements of rank-1 observables is connected to the partial order of observables, where
rank-1 observables are maximal; this aspect will be explained in section 5.

The mathematical formalism of instruments allows one to formulate the notion of
sequential measurements [14, 28]. A sequential measurement of two observables A and B
gives rise to a joint measurement of A and a deformed version ¢B of B. Clearly, a sequential
measurement is a special kind of realization of a joint measurement, so the implemented
observables A and ¢B must always be compatible. However, if A and B are compatible, then
one can try to foresee the disturbance caused by the first measurement and measure some
other observable C instead of B in order to implement a joint measurement of A and B. It was
shown in [42] that there is, in fact, a fixed instrument for A such that all observables
compatible with A can be obtained by measuring sequentially some observable after A.
Hence, it is possible to perform a measurement of a quantum observable in a way that does
not disturb the subsequent measurements more than is dictated by joint measurability.

4.4. No information without disturbance

It is one of the main features of quantum theory that the disturbance caused by a measurement
must be irreversible if the measurement provides some non-trivial information about the
system. This statement is known as no information without disturbance. In the language of
incompatibility this means that a unitary channel is incompatible with any non-trivial
observable.
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A proof of this statement can be found in many textbooks (see e.g. [47]). Here we sketch
a simple argument. Suppose that a unitary channel U U*  is compatible with an
observable A. This means that there is an instrument  such that xx( ) ( )* = A and

U Ux x ( ) * å = for all x and  . Let then B be any observable. By measuring the obser-
vable U U*B afterwards, we can realize a simultaneous measurement of A and B. As B is
arbitrary, we conclude that each operator x( )A commutes with all projections (recall
section 3.2). Hence, A must be a trivial observable.

Although universally no information is a necessary requirement for no disturbance there
are cases when some information can be extracted without causing disturbance. For example,
this may happen when quantum systems are used to encode classical information, hence,
orthogonal vector states ,0 1j j are selected to represent one bit of information. Denote by
Pj j j∣ ⟩⟨ ∣j j= the associated one-dimensional projections. These projections describe pure
states, but they also determine an observable j Pj( ) =M . Since P ktr j jk[ ( )] d=M , we see that
M can perfectly discriminate the states ,0 1j j from just one measurement outcome. Further, if
we choose a measurement of M implementing the Lüders instrument L given as

j j , 53j
L( ) ( ) ( ) ( )  = M M

then the following non-disturbance condition for the states Pj holds:

P P . 54L
j j( ) ( ) =W

In conclusion, if the set of input states is restricted, then it is possible to retrieve information
without disturbance. In the area of quantum measurement theory, this is related to the
possibility of measurements of the first kind [14].

The previous simple example resembles the classical setting as all operators commute,
and for this reason the conclusion is not that surprising although good to bear in mind.
However, at the same time (without the a priori information on states) the measurement in
(53) is highly state disturbing if its action is considered on a different collection of states. In
particular, let us consider two pairs of orthogonal states Z ,0 1≔ { }j j and

X , ,0 1
1

2 0 1
1

2 0 1≔ { } ≔ { ( ) ( )}y y j j j j+ - . While Lüders measurement of M extracts
perfectly the bit of information encoded in Z without destroying the states, it completely
spoils the bit of information encoded in states X. In fact we have L

j j
1

2
(∣ ⟩⟨ ∣) y y =W  for j = 1,

2. There are numerous quantitative trade-off relations for the noise and disturbance in the
measurement of two quantum observables. For some interesting recent developments that
have an incompatibility twist, we refer to [11, 62, 75].

An important application of ‘no information without disturbance’ is in the area of
quantum security, where it is used to guarantee the security of quantum key distribution
(QKD) protocols. Let us briefly recall one of the simplest QKD protocols known as B92, first
described in [7]. B92, as any QKD protocol, has three phases:

(i) establish perfectly correlated strings (representing the raw keys) between Alice and Bob,
(ii) verify the presence of the eavesdropper (comparing part of the keys),
(iii) purify the key (if possible).

The first phase employs the so-called unambiguous state discrimination (USD) procedure
that either reliably identifies non-orthogonal states, or results in an inconclusive outcome [23].
So Alice randomly prepares one of the non-orthogonal vector states ψ or f (representing bit
values 0, or 1, respectively), and sends it to Bob. Bob performs USD measurement and
publicly announce when an inconclusive outcome was recorded. Both Alice and Bob remove
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these bits from their strings to obtain a perfectly correlated string of bits each. Quantum
incompatibility is relevant in the second phase. In this phase Alice and Bob compare random
bits from their raw keys. Observation of any error implies that the protocol was not imple-
mented perfectly and no one can say whether the observed imperfections are due to some
eavesdropper, or of some other (less dangerous) origin. The goal of the eavesdropper is to
learn the key while being undetected. However, the act of learning is necessarily related to a
measurement process, whereas the detection is impossible only when no disturbance occurs
during the eavesdropping process. Therefore, ‘no information without disturbance’ implies
that any curious eavesdropper will be detected. Naturally, in practice the situation is never
ideal and the protocol should tolerate some degree of disturbance. For practical QKD it is
important to understand which actions are tolerable in a sense that the third phase could
correct the disturbances without compromising the security [76].

4.5. Incompatible process POVMs

In this section we will illustrate the concept of incompatibility in a rather non-standard
framework. In particular, we will introduce the compatibility questions for measurements on
quantum channels; see figure 9. Let us stress that the incompatibility of processes is not yet
explored in much details, therefore, in this section we will only illustrate several simple
features that make the incompatibility of processes qualitatively different from the typically
considered state-based incompatibility. Namely, we will see that for processes the commu-
tativity is not sufficient to guarantee the compatibility. Moreover, the commutative pair of
process observables is among the most incompatible pair of observables and the theoretical
maximum (discussed in section 2.3) is achieved for quantum systems of arbitrary dimension.

Figure 9. Process measurement device (process observable) accepts processes at its
input and produces a probability distribution of observed events at its output. These
events are composed of a preparation of the probe system and its measurement.
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Let us recall that quantum channels (for finite dimensional systems) can be represented
by Choi–Jamiolkowski operators [47], i.e.

I: dtr .chan 2{ ( ) [ ] }   w wº Î Ä =

By definition a process effect is any affine mapping e : 0, 1chan [ ]  . It turns out [50] they
can be associated with positive operators M ( )  Î Ä satisfying the relation

O M I,  x Ä

for some density operator ( ) x Î . Consequently, the observables on channels are
represented by sets of process effects M M,..., n1 (forming a process POVM [94], or one-tester
[24]) with the normalization M Ij j xå = Ä . All effects in the range of a process POVM are
bounded by the same density operator ξ, i.e., M Ij  x Ä . The probability of observing the
experimental event described by process effect Mj providing that channel chanw Î is tested
is given by the Born-like formula p Mtrj j( ) [ ]w w= .

Consider a pair of two-outcome process observables

M P P M P P
N P P N P P

: ,
: , , 55

0 0 0 1 0 1

0 1 0 1 1 1 ( )
= Ä = Ä
= Ä = Ä

D

D
M

N

where P 0 00 ∣ ⟩⟨ ∣= and P 1 11 ∣ ⟩⟨ ∣= . By definition these process observables are compatible if
there exists a process observable GD with outcomes Gjl such that G G Mj j j0 1+ = and
G G Nl l l0 1+ = . The normalization of Mj and Nl implies that G P Ijl 0 Ä and G P Ijl 1 Ä ,
hence, G P g P gjl jl jl0 1= Ä = Ä ¢ for some positive operators gjl and gjl

¢ . However, this is

possible only if g g Ojl jl= ¢ = (which implies G Ojl = ) for all j l, . In conclusion, the process
observables DM and DN are incompatible although they are commuting, i.e. , 0[ ] =D DM N

(meaning all process effects are commuting). In other words, for measurements on quantum
processes we are coming with the following rather unexpected conclusion: commutativity
does not imply compatibility. This suggests that questions on compatibility of measurements
on processes are not reducible to analogous questions for measurements of states.

The process observable DM represents an experiment in which the qubit process is
applied on the initial state 0∣ ⟩ and the output is measured by projection-valued observable zs .
Similarly, DN describes almost the same experiment, only the initial state is chosen to be 1∣ ⟩.
The incompatibility has relatively clear intuitive meaning. It simply says that this process
cannot be probed simultaneously by two orthogonal pure states although formally they are
commuting. Let us stress that this is true for any pair of pure states, however, for non-
orthogonal pair the resulting devices are non-commuting.

Moreover, as it is shown in [80] making these process observables compatible requires
maximal possible addition of noise. Let us denote by ID the trivial process observable. In
particular, a process observable is trivial if and only if the process effects takes the form
M Ij jx= Ä for some positive operators jx such that j jx xå = is a density operator. Such
process observable can be implemented in an experiment in which an arbitrary test state is
used to probe the process and ancilla system is measured by arbitrary POVM. Let us note that
trivial process observables are compatible with any other process observable.

It follows that process observables q q1q I, ( )= + -D D DMM and qq, = +D DNN

q1 I( )- D are compatible only if q 1 2 , which is the worst case for compatibility. Any
pair of process observables is compatible at this fraction of added noise. However, let us
recall from section 2.3 that for the usual observables the trivial value 1

2
can be improved in all

cases apart of some special pairs of observables in infinite-dimensional Hilbert space. Here
we have discovered that for process observables already the two-dimensional system is
sufficient to host the maximally incompatible process measurement devices.

J. Phys. A: Math. Theor. 49 (2016) 123001 Topical Review

26



5. Order theoretic characterization of quantum incompatibility

5.1. Preordering of devices

As in section 2.1, we consider devices with a fixed input space  but arbitrary output space.
For two devices :1 1 D and :2 2 D , we write 1 2D D if there exists a third
device :12 1 2 D such that

, 5612 1 2◦ ( )=D D D

where ◦ denotes function composition of two mappings. The physical meaning of 1 2D D is
that 2D can be simulated by using 1D and 12D sequentially.

It follows from the definition that if 1 2D D and 2 3D D , then 1 3D D . Moreover,
1 1D D since the identity map is a possible device. We conclude that on any subset of

devices, the relation  is a preorder. In typical considerations there are devices that
can simulate each other without being the same (e.g. reversible channels), so the preorder
fails to be a partial order. We now obtain a direct consequence of the definition of
compatibility:

If 1D and 2D are two compatible devices and some other devices 1¢D
and 2¢D satisfy 1 1 ¢D D and 2 2 ¢D D , then 1¢D and 2¢D are compatible.

Namely, letD be a joint device of 1D and 2D . Let 1¢D and 2¢D be such that 1 11 1◦¢ =D D D

and 2 22 2◦¢ =D D D for some devices 11D and 22D . We set

. 5711 22( ) ◦ ( )¢ = ÄD D D D

Then ¢D is a joint device of 1¢D and 2¢D .
We denote 1 1¢D D if both 1 1 ¢D D and 1 1¢D D hold. From the previous observation

we conclude the following:

Let 1D and 1¢D be two devices and 1 1¢D D . A device 2D is compatible
with 1D if and only if 2D is compatible with 1¢D .

This observation indicates that a more natural setting for the incompatibility relation is
equivalence classes of devices rather than single devices. In the following subsections we
demonstrate how naturally many incompatibility results on quantum devices follow from this
order structure.

5.2. Preordering of quantum observables

In order to formulate the preorder between observables in the sense of section 5.1 we have to
first recall the notion of a classical channel, which is an affine map from ( ) W to ( ) W¢ ,
where ( ) W denotes the set of all probability distributions on a set Ω. A classical channel can
be conveniently presented by a real valued function x y p y x,( ) ( ∣ ) on the Cartesian product
W ´ W¢ satisfying p y x 0( ∣ )  and p y x 1x ( ∣ )å = for all y Î W¢. A probability distribution ν

on Ω is then mapped into a probability distribution n¢ on W¢,

y p y x x . 58
x

( ) ( ∣ ) ( ) ( )ån n¢ =

Given two observables M and N, we denote M N if there exists a classical channel p such
that
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y p y x x 59
x

( ) ( ∣ ) ( ) ( )å=N M

for all y Î WN. Our formulation of incompatibility in section 3.1 can be now restated as
follows:

Observables , , n1 ¼M M are compatible if and only if there exists an
observable M such that j ⪯M M for every j = 1,K,n.

As in section 5.1, we denote M N if both M N and N M hold. Then ; is an
equivalence relation and the equivalence class ofM is denoted by [ ]M . We introduce the set of
equivalence classes ≔~ O O and the preorder ⪯ then induces a partial order ⪯ on ~O by
[ ] ⪯ [ ]M N if and only if ⪯M N. (We use the same symbol ⪯ for these two different relations,
but this should not cause a confusion.) From the fact that incompatibility properties are the
same for two observables belonging to the same equivalence class we can already conclude
some useful facts. In particular, the commutativity results stated in section 3.2 for sharp
observables remain unchanged for an observable that is equivalent to a sharp observable. A
sharp observable can be a smearing of another observable only if the corresponding classical
channel takes only the values 0 and 1 [51], so a typical example of an observable M that is
equivalent to a sharp observable P is of the form

x y p x y x, , , 60( ) ( ) ( ) ( )=M P

where p x y0 , 1( )  .
As shown in [63], the least element in ~O consists of all trivial observables, while there

is no greatest element in ~O . The first statement can be equivalently formulated as: a
quantum observables that is compatible with all other observables is trivial, while the second
statement can be equivalently formulated as: not all quantum observables are compatible.
The order theoretic structure of ~O is thus directly reflected in the compatibility relation of
observables.

While there is no greatest element in ~O , there are maximal elements, i.e., elements that
are not below any other element. An individual observableM is called maximal if it belongs to
a maximal equivalence class. Hence, M is maximal if and only if ⪯M N implies M N. In
the case of a finite dimensional Hilbert space, maximal observables are exactly those whose
non-zero operators are all rank-1 [63]. We thus conclude that two rank-1 observables are
compatible if and only if they are equivalent.

5.3. Preordering of quantum channels

In the following it is more convenient to use the Heisenberg picture for quantum channels. A
quantum channel is then defined as a normal completely positive map : ( ) ( )    
satisfying ( )  =  , where  is the output Hilbert space. The Schrödinger picture
description S of a channel  can be obtained from the relation

T Ttr tr , 61S[ ( ) ] [ ( )] ( )  =

required for all states ( )  Î and operators T ( ) Î .
We denote by C the set of all channels from an arbitrary output space ( )  to the fixed

input space ( )  . The sequential implementation of channels is opposite in the Heisenberg
picture as in the Schrödinger picture, so for two channels ,1 2  Î C we have 1 2⪯  if there
exists a channel  such that 1 2 ◦  = . As explained earlier, it is often convenient to work
on the level of equivalence classes of channels, and we denote ≔ ~~C C . In the partially
order set ~C , there exists the least element and the greatest element. The least equivalence
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class consist of all complete depolarizing channels, which in the Heisenberg picture are

T Ttr , 62( ) [ ] ( )hL =h 

where η is some fixed state. The greatest element in ~C is the equivalence class of the identity
channel id.

The compatibility of two channels can be neatly expressed in terms of conjugate chan-
nels. In this context a conjugate channel c of a channel  from ( ) ¢ to ( )  is introduced
by using the Stinespring representation V ,( )¢ of  , and then

A V A V B V B V, .c( ) ( ) ( ) ( )* * = Ä = Ä 

Any channel has a unique equivalence class of its conjugate channel irrespective of the choice
of Stinespring representation [42]. Therefore, we can understand the conjugation as a function

c[ ] [ ]  on ~C . We then have the following characterization of compatibility:

Two channels 1 and 2 are compatible if and only if c
2 1[ ] ⪯ [ ]  (or

equivalently c
1 2[ ] ⪯ [ ]  ) holds.

While the ‘if’ part in this statement is trivial, the ’only if’ may require some explanation.
Suppose that 1 and 2 are compatible. Then there exists a channel  such that

A A1( ) ( ) Ä = and B B2( ) ( ) Ä = hold. Let us denote the Stinespring representation
of  by V ,( ) , so that

A B V A B V. 63( ) ( ) ( )* Ä = Ä Ä 

Now c
1 is written as B C V B C Vc

1( )( ) ( )* Ä = Ä Ä . We define a channel  by
B B( ) = Ä  . Then c

1 2◦  = holds. This result verifies the intuition that for a given
channel 1 , its conjugate channels are the best channels still compatible with 1 .

5.4. Incompatibility between observable and channel

Let us denote by CM the set of all channels compatible with an observable M. We call a
channel compatible with M an M-channel. It was proved in [41] that there exists a
channelLM such that the set CM of all channels compatible with M consists of all channels
that are belowLM, i.e.

. 64{ ∣ ⪯ } ( ) = Î LC CM M

From a physical point of view, this result tells that there is a specific channel LM among all
M-channels such that all other M-channels can be obtained from LM by applying a suitable
channel after the measurement. It is even justified to call LM a least disturbingM-channel
since an additional channel after it cannot decrease the caused disturbance.

The mathematical form of LM is simple to write by using the Naimark dilation of M.
Namely, let V, ,( ˆ ) M be a Naimark dilation ofM, i.e.,  is a Hilbert space, V is an isometry
V :   , and M̂ is a sharp observable on  satisfying

V x V x . 65ˆ ( ) ( ) ( )* =M M

Then

x V V x 66
x

( ) ˆ ( ) ˆ ( ) ( )* åL = M MM

for all input states  . Of course, any channel equivalent with LM has the same order property,
so the least disturbing channel is unique only up to an equivalence class.
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As one would expect, more noise on the observableM allows less disturbance in its least
disturbing channel LM. In fact, it was shown in [41] that the following conditions are
equivalent:

(i) ⪯M N
(ii) ÍC CN M

(iii) ⪯L LN M.

This result can be seen as a qualitative noise-disturbance relation; even without any
quantification of disturbance we can clearly say that the condition ÍC CN M means that M
allows for a less or equally disturbing measurement than the least disturbing measurement
of N.

6. Outlook

In the early days of quantum theory its founding fathers realized that measurement statistics of
conjugated physical quantities, such as position and momentum, have mutual limitations.
Formulating the notions of uncertainty principle and complementarity (in a relatively vague
form) they discovered the first signs of puzzling phenomenon of quantum incompatibility.
After one hundred years of development in quantum physics and quantum technologies the
quantum incompatibility has changed its status from a peculiar limitation to the very quantum
paradigm. In the earlier sections we hope to have demonstrated that the quantum incom-
patibility is present across many parts of quantum theory and it provides a conceptual way to
separate quantum and classical features.

Although nowadays many aspects of quantum incompatibility are understood in detail
and related applications are the focus of ongoing research programs, there are still parts of
quantum theory where the role of incompatibility is not yet fully recognized. For example, the
area of incompatibility of measurements of quantum processes is unexplored research terri-
tory. And because of its qualitative and quantitative differences (illustrated in section 4.5) it
could have potential impact on future quantum applications.

In our presentation the phenomenon of incompatibility is purely a consequence of the
used mathematical framework. We have discussed its elementary mathematical properties and
impacts on physics of quantum systems and related information processing. However,
understanding conceptually the physical, or informational origins of incompatibility is
something that definitely deserves future attention. The incompatibility as discussed in this
paper can be studied in any probabilistic (toy) theory. There seems to be no satisfactory
explanation why quantum theory is as incompatible as it is, and a general framework is
needed to investigate this question.
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