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1Department of Optics, Palacký University, 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
2Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
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We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic
quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds
on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005)] and
are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of
these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is
particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the
bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper
bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum
filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally
convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that
more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization
and we compare our methods for different choices of the input probe states.
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I. INTRODUCTION

Characterization of quantum processes represents an indis-
pensable tool for testing, optimization, and benchmarking of
quantum information processing devices. A complete charac-
terization of a quantum device can be provided by quantum
process tomography [1,2], but this technique becomes very
time-consuming with increasing complexity of the device,
unless a special procedure such as compressed sensing can
be applied [3,4], because the number of parameters that need
to be estimated scales exponentially with the number of qubits.

Instead of full quantum tomography we may just attempt to
obtain an indication of how close we are to the target operation,
as quantified by the quantum process fidelity [5]. Monte Carlo
sampling has been proposed for efficient estimation of the
fidelity of multiqubit states and operations with resources
scaling polynomially with the estimation precision [6,7]. Yet
another experimentally appealing option is represented by the
Hofmann bounds on the quantum process fidelity [8]. In this
approach, a lower and an upper bound on fidelity with a
unitary operation is determined from measurements of average
output-state fidelities for input states forming two mutually
unbiased bases. The latter approach is particularly efficient
for characterization of few-qubit operations and it can be
used, e.g., for preliminary benchmarking of a quantum device
during its design and optimization before a more complete
characterization is carried out at the optimal operating point.
During recent years, the Hofmann bound has been successfully
utilized for experimental characterization of various two-qubit
and three-qubit quantum gates [9–16].

The Hofmann bound was designated to provide bounds
on the quantum process fidelity with a deterministic unitary
operation. Here we generalize this technique and propose
and investigate Hofmann-like quantum process fidelity bounds
for a special kind of probabilistic quantum operations called
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quantum filters. Quantum filters are completely positive trace-
decreasing maps that can be represented by a single Kraus
operator K . The quantum filter transforms a pure input state
|ψ〉 into a pure output state K|ψ〉, and the norm of the output
state 〈ψ |K†K|ψ〉 represents the probability of successful
application of the filter. The action of a quantum filter on the
input state can always be interpreted as a coherence-preserving
attenuation in a specific basis, which is preceded and also
followed by some unitary transformation. Mathematically, this
follows from the singular value decomposition K = UDV ,
where U and V are unitary matrices, and D � I is a
diagonal positive semidefinite matrix. Quantum filters form
an important tool in many branches of quantum information
science and beyond and they find applications, e.g., in
quantum state engineering, entanglement distillation [17–19],
and quantum-state discrimination [20,21].

Our derivation of the generalized Hofmann bounds for
quantum filters is based on operator inequalities that are
at the heart of the original Hofmann bound. In contrast
to unitary operations, where measurement of state fidelities
for two complementary bases is sufficient, in the case of
quantum filters one generally needs to perform an additional
set of measurements, which essentially characterizes the
performance of the filter in a basis of its eigenstates. The
number of measurements can be kept the same as for unitary
operations provided that one of the two input bases is formed
by the right eigenstates of K . In this case it can also be proved
that the resulting lower and upper bounds on the quantum
process fidelity are tight in the sense that, for a perfect filter, the
bounds are always equal to 1. The probabilistic and nonunitary
nature of the quantum filters thus leads to a symmetry-breaking
and the occurrence of a preferred set of probe input states. We
explicitly consider two bases connected via Fourier transform
and also two n-qubit bases connected by Hadamard transform
on each qubit.

As an illustration, we theoretically investigate the char-
acterization of a two-qubit optical quantum filter formed by
interference of two photons on a partially polarizing beam
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splitter (PPBS) followed by postselection of detection of
a single photon at each output port of the beam splitter.
This filter is utilized in various linear optical quantum
information processing devices such as linear optical quantum
gates [9,15,22–24]. We consider an experimentally convenient
choice of input probe states for which the required output-state
fidelities can be directly determined by product single-qubit
measurements. We show, that as a consequence of this basis
choice, the resulting upper and lower bounds are not tight. We
numerically find the ultimate upper and lower bounds for the
same data using the semidefinite programming approach. In
this way we illustrate that for the considered quantum filter
and the available data more stringent bounds can be obtained
by more sophisticated processing of the data and we compare
the two methods also for a different choice of basis states.

The rest of the paper is organized as follows. In Sec. II
we review the mathematical representation of quantum filters
and general trace-decreasing completely positive maps, we
introduce a formula for quantum filter fidelity and discuss its
properties. In Sec. III we review the original Hofmann bound
on the fidelity of a deterministic process with a fixed unitary
process and we generalize this bound to quantum filters. In
Sec. IV we study the quantum filter formed by interference of
two photons on a PPBS, and Sec. V presents the conclusions.
Finally, the appendices contain a proof of an alternative lower
bound for n-qubit filters and some technical derivations.

II. QUANTUM FILTERS

Quantum filtersK(ρ) = KρK†, where K†K � I , represent
a specific subset of general trace-decreasing completely posi-
tive maps. According to the Choi-Jamiolkowski isomorphism
[25,26], any completely positive trace-nonincreasing map E is
isomorphic to some positive-semidefinite operator χ , which
can be obtained by applying the operation E to one part of a
maximally entangled bipartite state,

χ = I ⊗ E(|ω〉〈ω|). (1)

Here I represents the identity operation,

|ω〉 = 1√
d

d∑
j=1

|ej 〉|ej 〉 (2)

denotes a maximally entangled state, and {|ej 〉}dj=1 is an
orthonormal basis of a d-dimensional Hilbert space Hd . Us-
ing the Choi-Jamiolkowski isomorphism, the transformation
ρout = E(ρin) of a quantum state with density matrix ρin can
be expressed as

ρout = d Trin
(
ρT

in ⊗ I χ
)
, (3)

where T denotes transposition in the basis |ej 〉 and Trin stands
for a partial trace over the input Hilbert space. For probabilistic
operations, the output state is in general unnormalized, and
Tr(ρout) represents the probability that the operation E is
applied to the input state. Specifically, a quantum filter K
is represented by a rank 1 operator χK = |ωK〉〈ωK |, where
|ωK〉 = I ⊗ K|ω〉. Any quantum filter can be realized by using
an ancillary quantum system prepared in a pure quantum
state, which is projected onto a suitable pure state after it
unitarily interacts with the principal system. Each admissible

Kraus operator K represents some quantum filter and all
Kraus operators eiφK describe the same quantum filter. This
irrelevant overall phase factor eiφ is the only ambiguity in the
Kraus representation of K, which disappears when dealing
with χK.

Note that two quantum filters K and aK , where a is a
complex constant, produce essentially identical outputs, except
for the success probability, which differs [27] by a constant
factor |a|2 independent on the input state. One is usually
interested in the most efficient implementation of the quantum
filter, i.e., in operators K whose maximum singular value is
equal to 1. However, to make the experimental implementation
of a given quantum filter feasible at all, one often needs to
accept a reduced success probability. From this perspective,
we can say that all completely positive maps of the form qE ,
0 < q � 1, belong to the same class of probabilistic quantum
operations, because they produce the same normalized output
state

ρ̃out = ρout

Trρout
= d Trin

(
ρT

in ⊗ I qχ
)

d Tr
(
ρT

in ⊗ I qχ
) (4)

for any input state ρin. On the other hand, the success
probability pS(E,ρin) = Trρout will differ by a constant pref-
actor q again irrespectively of the input state ρin, because
pS(qE,ρin) = d Tr(ρT

in ⊗ I qχ ) = qpS(E,ρin). Thus, if we ac-
cept a constantly worse success probability all operations from
the given class can perform the same task.

In experimental practice, we would often like to quantify the
quality of the implemented quantum filter, i.e., we would like
to determine the similarity between the actually implemented
quantum operation E and the ideal quantum filter K. While
we can represent the two operations E and K by their
corresponding Choi operators χ and χK, their comparison is
somewhat complicated by the fact that the traces of these
two operators can differ. To facilitate the comparison of the
two quantum operations, we therefore introduce normalized
Choi operators χ̃ = χ/Tr(χ ) and χ̃K = χK/Tr(χK), which
can be seen as suitable representatives of the two classes
of operations that contain E and K, respectively. After this
preparatory step, we can define the fidelity between the actually
implemented quantum operation and the ideal quantum filter
as the fidelity between the normalized Choi operators [28–30].
Since χ̃K is a projector on a pure state (a rank 1 operator), the
general formula for the Uhlmann-Jozsa fidelity simplifies to
the overlap of the normalized Choi operators,

F = 〈ωK |χ |ωK〉
Tr(χ )〈ωK |ωK〉 = Tr(χχK)

Tr(χ ) Tr(χK)
, (5)

and it can be understood as a cosine of an angle in an operator
space. It holds that 0 � F � 1 and F = 1 if and only if χ =
|a|2|ωK〉〈ωK|, i.e., if the actually implemented operation is a
quantum filter aK , where a is a complex constant [28]. Since
〈ωK |ωL〉 = Tr(K†L)/d, a fidelity between two filters K and
L can be expressed as

F = |Tr(K†L)|2
Tr(K†K)Tr(L†L)

, (6)

which generalizes the formula for the fidelity of two unitary
operations, F = |Tr(U †

1U2)|2/d2. In particular, the fidelity
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between filters K and aK is equal to 1 and does not depend on
a, as expected, since both these filters belong to the same class
and implement essentially the same probabilistic quantum
operation, only one does it more efficiently than the other.

In parallel to the fidelity, it is useful to consider also
the average success probability pS = ∫

Tr[E(|ψ〉〈ψ |)]dψ of
the implemented operation [27]. Since

∫ |ψ〉〈ψ |dψ = I/d

according to Schur’s lemma, we obtain

pS = d Tr

(∫
|ψ〉〈ψ |T dψ ⊗ I χ

)
= Tr(χ ). (7)

The average probability pS can be, in practice, conveniently
determined as an average of a discrete set of d success
probabilities pj of the operation E for basis states |ej 〉. In
particular, we can write

pS = 1

d

d∑
j=1

pj (8)

and it can be shown [27] that this formula coincides with (7)
and does not depend on the basis choice. For a given class
of quantum operations qE we have pS = qTr(χ ), while the
fidelity does not depend on q, F = Tr(χχK)/[Tr(χ )Tr(χK)].
The fidelity F and the success probability pS thus represent
two complementary characterizations of probabilistic quantum
operations.

We emphasize that we do not claim that the fidelity provides
a metric on the full space of trace-decreasing completely
positive maps. Nevertheless, it does provide an upper and a
lower bound on the trace distance between the normalized
Choi operators,

2(1 − F ) � ||χ̃ − χ̃K||1 � 2
√

1 − F, (9)

which also upper and lower bounds the trace distance between
Choi operators of the actually implemented operation E and
some ideal filter aK . Since pS = Tr(χ ) we can rewrite the
inequality (9) as

2pS(1 − F ) � ||χ − qχK||1 � 2pS

√
1 − F, (10)

where q = dpS/Tr(K†K), and qχK is a Choi operator rep-
resenting the quantum filter

√
qK . Let us note that the trace

distance of Choi-Jamiolkowski operators is a lower bound
on the diamond norm [31,32] (completely bounded norm
[33]) based distance of the corresponding two completely
positive maps. Thus, using the average success probability and
quantum filter fidelity we can lower bound the diamond norm
between the ideal quantum filter and the actually implemented
quantum operation. If the goal of an experiment is to build
the given quantum filter with a fixed tolerance in the diamond
norm, this places a lower bound on the quantum filter fidelity
with which it has to be implemented. Estimation of the
quantum filter fidelity can therefore serve as a diagnostic
measure [5] to guide experimentalists in choosing a suitable
operating point for their experiments, where it is meaningful to
perform a more detailed characterization of the implemented
quantum filter, e.g., by full quantum process tomography.

For deterministic unitary operations, the quantum process
fidelity can be directly related to the average quantum-state
fidelity [30]. However, for trace-decreasing operations there is

no simple relationship between the quantum filter fidelity (5)
and the average state fidelity. Moreover, even if the quantum
filter fidelity F gets arbitrarily close to 1, the state fidelity can
still be arbitrarily low for some particular state if the success
probability of the operation is sufficiently low for that state.

III. FIDELITY BOUNDS FOR QUANTUM FILTERS

Our aim is to propose a procedure that would lower and
upper bound the fidelity (5) based on measured state fidelities
of output states with respect to the ideal output for several input
states. To do this we first review the original Hofmann bound
for deterministic operations in d dimensions [8] and then
generalize it so that it will become applicable to nonunitary
quantum filters.

A. Original Hofmann bound

Suppose {|ej 〉}dj=1 and {|fk〉}dk=1 are two orthonormal bases
of Hd that are mutually related by discrete Fourier transform,
i.e.,

|fk〉 = 1√
d

d∑
j=1

ei 2π
d

jk|ej 〉. (11)

Since |〈ei |fj 〉|2 = 1/d ∀i,j , the two bases are mutually
unbiased. We denote by |eout

j 〉 ≡ U |ej 〉 and |f out
k 〉 ≡ U |fk〉

the ideal output states of a unitary transformation U . Density
matrices ρj and ξk of output states produced by the actually
implemented operation χ from the input states |ej 〉 and |fk〉
can be expressed as

ρj = d Trin(χ |ej 〉〈ej |T ⊗ I ),
(12)

ξk = d Trin(χ |fk〉〈fk|T ⊗ I ),

where the transposition is taken with respect to the basis
|ej 〉 used in the Choi-Jamiolkowski isomorphism. For de-
terministic operations Tr(ρj ) = Tr(ξk) = 1 holds, while for
probabilistic operations the trace of the output density matrix
equals the probability of successful application of χ to a
given input state, Tr(ρj ) = pj . In this subsection we consider
deterministic operations and review the derivation of the
original Hofmann bound on the fidelity of unitary operations
[8]. After these preparatory steps we then generalize this bound
to probabilistic quantum filters in the next subsection.

The average output-state fidelities for the two sets of probe
states are defined as follows:

F1 = 1

d

d∑
j=1

〈
eout
j |ρj |eout

j

〉
,

(13)

F2 = 1

d

d∑
k=1

〈
f out

k |ξk|f out
k

〉
.

The state fidelities appearing in this formula can be experi-
mentally determined by measuring the output states ρj (ξj ) in
a basis formed by states |eout

k 〉 (|f out
k 〉). The Hofmann lower

bound on the quantum process fidelity [8]

F � F1 + F2 − 1 (14)
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can be proved as follows. For deterministic transformations
Tr(χ ) = 1, hence the bound (14) is equivalent to

Tr(χ |ωU 〉〈ωU |) �
d∑

j=1

Tr(χ |ej 〉〈ej |T ⊗ ∣∣eout
j

〉〈
eout
j

∣∣)

+
d∑

k=1

Tr(χ |fk〉〈fk|T ⊗ ∣∣f out
k

〉〈
f out

k

∣∣)

− Tr(χI ⊗ I ). (15)

The validity of the inequality (15) would be guaranteed
by showing the positive semidefiniteness of an operator
X = I ⊗ URI ⊗ U †, where

R = |ω〉〈ω| −
d∑

j=1

|ej 〉〈ej |T ⊗ |ej 〉〈ej |

−
d∑

k=1

|fk〉〈fk|T ⊗ |fk〉〈fk| + I ⊗ I. (16)

If X � 0, then Tr(χX) � 0 due to χ � 0, which implies
inequality (15). As we show in Appendix A the operator R

can be rewritten (in the term-to-term fashion) as

R = |ω11〉〈ω11| −
d∑

j=1

|ωj1〉〈ωj1| −
d∑

k=1

|ω1k〉〈ω1k|

+
d∑

j,k=1

|ωjk〉〈ωjk|, (17)

where {|ωjk〉} is an orthonormal basis of maximally entangled
states in d dimensions.

From the above equation it is clear that R � 0, which
implies X � 0 and this proves the original Hofmann bound.
In a similar fashion, the upper bounds on the quantum process
fidelity F � F1, F � F2 can be derived from the following
two operator inequalities

|ω11〉〈ω11| �
d∑

j=1

|ωj1〉〈ωj1|, |ω11〉〈ω11| �
d∑

k=1

|ω1k〉〈ω1k|.

(18)

Next, we use the operator R to derive lower and upper bounds
on the fidelity of quantum filters.

B. Generalization of the bound to quantum filters

Let us multiply operator R from Eq. (16) by I ⊗ K from
the left and by I ⊗ K† from the right. Using Eq. (16) we obtain

|ωK〉〈ωK | −
d∑

j=1

|ej 〉〈ej |T ⊗ K|ej 〉〈ej |K†

−
d∑

k=1

|fk〉〈fk|T ⊗ K|fk〉〈fk|K† + I ⊗ KK† � 0, (19)

where the inequality follows from R � 0. Taking the trace
with χ , Eq. (19) can be rewritten as

Tr(χ |ωK〉〈ωK |) − 1

d

d∑
j=1

Tr(K|ej 〉〈ej |K†ρj )

− 1

d

d∑
k=1

Tr(K|fk〉〈fk|K†ξk) + Tr(KK†	) � 0, (20)

where ρj and ξk , defined in Eq. (12), are the unnormalized
output states of a probabilistic operation χ corresponding
to pure input states |ej 〉 and |fk〉, respectively, and 	 =
d Trin(χ ( 1

d
I )T ⊗ I ) is the unnormalized output state for a

maximally mixed input state. To obtain a lower bound on
the fidelity of a quantum filter K , we divide the inequality (20)
by Tr(χ ) Tr(χK) and rewrite the resulting expression so that it
contains normalized overlaps,

F �
d∑

j=1

pj 〈ẽj |ρ̃j |ẽj 〉 +
d∑

k=1

qk〈f̃k|ξ̃k|f̃k〉 − 
 Tr(KK†	̃).

(21)

Here ρ̃j = ρj/ Tr(ρj ), ξ̃k = ξk/ Tr(ξk), and 	̃ = 	/ Tr(	) are
normalized output states of χ , and

|ẽj 〉 = K|ej 〉√〈ej |K†K|ej 〉
, |f̃k〉 = K|fk〉√

〈fk|K†K|fk〉
(22)

denote the normalized output states of the ideal filter K . The
weight factors read

pj = 
Pj 〈ej |K†K|ej 〉, qk = 
Qk〈fk|K†K|fk〉, (23)

where 
 = d/ Tr(K†K) = 1/ Tr(χK), and Pj = Tr(ρj )
d Tr(χ ) and

Qk = Tr(ξk)
d Tr(χ) denote the relative success probabilities of op-

eration χ for input basis states |ej 〉 and |fk〉, respectively.
These relative probabilities satisfy

∑
j Pj = ∑

k Qk = 1.
Formula (21) generalizes the Hofmann lower bound (14)

to quantum filters and represents one of our main results.
We can see that the fidelity of a quantum filter is lower
bounded by an expression which contains two weighted sums
of the output-state fidelities 〈ẽj |ρ̃j |ẽj 〉 and 〈f̃k|ξ̃k|f̃k〉, which
generalizes the average state fidelities F1 and F2 appearing in
the original Hofmann bound. The last term on the right-hand
side of inequality (21) provides a generalization of the factor
−1 to quantum filters and depends both on the ideal filter
K and on the actual operation χ through 	̃. It follows from
Eq. (20) that the summation in Eq. (21) should be performed
only over those terms for which the overlap 〈ej |K†K|ej 〉 or
〈fk|K†K|fk〉 is nonzero. This also ensures that the normalized
output states (22) are well defined.

A most straightforward way to experimentally determine
the output state fidelities and relative success probabilities Pj

and Qk consists of measuring the output state ρj (ξk) in a basis
including the corresponding output state |ẽj 〉 (|f̃k〉) produced
by an ideal filter. For quantum filters {|ẽj 〉}dj=1 and {|f̃k〉}dk=1
generally do not form a basis, which means that a separate
measurement basis must be set for each probe state, and
these measurement bases are generally not mutually unbiased.
Besides testing the unknown quantum transformation with 2d
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input states {|ej 〉}dj=1, {|fk〉}dk=1, we also need to determine the
term Tr(KK†	̃) by some measurements. To construct a suit-
able measurement, consider a singular value decomposition of
K ,

K =
d∑

l=1

√
λl|vl〉〈wl|, (24)

where the left and right eigenvectors |vl〉 and |wl〉 form two
orthonormal bases and the non-negative singular values were
chosen in the form

√
λl to simplify subsequent formulas. As a

consequence, the positive-semidefinite operators K†K , KK†

have the following spectral decompositions:

K†K =
d∑

l=1

λl|wl〉〈wl|, KK† =
d∑

l=1

λl|vl〉〈vl|. (25)

In principle, we can determine Tr(KK†	̃) from suitable
measurements on any d input states forming an orthonormal
basis (e.g., vectors |uj 〉). Let ζj = d Trin(χ |uj 〉〈uj |T ⊗ I )
and ζ̃j = ζj / Tr(ζj ) denote the unnormalized and normalized
output states corresponding to the input state |uj 〉, and
similarly as before we define the relative success probability
for this input state as Rj = Tr(ζj )

d Tr(χ) . The term Tr(KK†	̃) can
then be expressed as

Tr(KK†	̃) =
d∑

j,l=1

λlRj 〈vl|ζ̃j |vl〉. (26)

The relative success probabilities Rj as well as the overlaps
of output states ζ̃j with |vl〉 can be determined by measuring
each output state ζ̃j in the basis formed by the eigenstates |vl〉.

At this point it is useful to realize that the experimental
effort can be kept the same as for K being unitary at the price
of a suitable choice of basis |ej 〉 and, consequently, |fk〉. Thus,
if we choose |ej 〉 = |wj 〉 and also |uj 〉 = |wj 〉, then

|ẽj 〉 = K|wj 〉√〈wj |K†K|wj 〉
= |vj 〉 (27)

and the data for input states |ej 〉 measured after the filter in
basis |ẽj 〉 can be used to determine the last term in Eq. (21),
i.e., ζ̃j = ρ̃j , Rj = Pj ∀j . After some algebra we find that the
lower bound now equals

F �
d∑

k=1

Qk〈f̃k|ξ̃k|f̃k〉 −
d∑

j,l=1

λl

λ
(1 − δjl)Pj 〈ẽl|ρ̃j |ẽl〉, (28)

where λ ≡ (
∑d

j=1 λj )/d and we have used the identity

〈fk|K†K|fk〉 = λ, which holds since the two bases |ej 〉 and
|fk〉 are related by quantum Fourier transform.

An important property of the lower bound is its tightness.
Especially, if the implemented transformation is the desired
one, then the fidelity F = 1 and we want our lower bound
to attain the value 1 as well. If the implementation of the
filter is perfect, then 〈f̃k|ξ̃k|f̃k〉 = 1 and 〈ẽl|ρ̃j |ẽl〉 = δjk . If
we insert these expressions into Eq. (28), then we get F � 1,
which confirms that the lower bound (28) is tight for any
quantum filter K . Note that this tightness is achieved due to
the special choice of the probe states, where |ej 〉 coincide

with the right eigenvectors of K . For other choices of the
probe states the lower bound (21) is generally not tight and
can be strictly lower than 1 even for a perfect filter. This
should be contrasted with the original Hofmann bound (14)
which always attains the value 1 if the target unitary U is
implemented perfectly, irrespective of the choice of the two
probe bases. The nonunitarity of the filter K thus leads to a
symmetry breaking and emergence of preferred states suitable
for benchmarking of the filter.

In a fashion very similar to that above, also a pair of upper
bounds can be derived,

F �
d∑

j=1

pj 〈ẽj |ρ̃j |ẽj 〉, F �
d∑

k=1

qk〈f̃k|ξ̃k|f̃k〉, (29)

if we start from the inequalities

|ω〉〈ω| �
d∑

j=1

|ej 〉〈ej |T ⊗ |ej 〉〈ej |,
(30)

|ω〉〈ω| �
d∑

k=1

|fk〉〈fk|T ⊗ |fk〉〈fk|,

which are equivalent to inequalities (18). For the special choice
of probe states |ej 〉 = |wj 〉 the upper bounds simplify to

F �
d∑

j=1

λj

λ
Pj 〈vj |ρ̃j |vj 〉, F �

d∑
k=1

Qk〈f̃k|ξ̃k|f̃k〉. (31)

Similarly to the lower bound (28) also the upper bounds (31)
are tight in the sense that they yield F � 1 if the filter is
implemented perfectly.

From the application point of view, the n-qubit systems
whose Hilbert space is endowed with a tensor product structure
and d = 2n are particularly relevant. In this case a natural
choice of |ej 〉 could be the computational basis formed by
tensor products of single-qubit states |0〉 and |1〉. By its
construction, the discrete quantum Fourier transform of the
n-qubit computational basis states leads to product n-qubit
states |fk〉. This is good for experiments, since preparation
of product states is often much simpler than preparation of
entangled states. Unfortunately, for most quantum filters at
least some (ideal) output quantum states for the above inputs
are entangled. For that reason it might be useful to study
also other pairs of input bases, which could be tested more
easily. One such combination could be the computational
basis and the Hadamard basis formed by tensor products of
states |±〉 = (|0〉 ± |1〉)/√2. As we show in Appendix B the
above derived lower and upper bounds hold also for the latter
setting.

IV. TWO-QUBIT QUANTUM FILTERS

The Hofmann bound (14) proved particularly useful for
characterization of various linear optical quantum gates
[9–13,15,16]. As a case study, we therefore investigate here a
characterization of a quantum filter acting on the polarization
state of two photons. The filtering is realized by interference
of the photons on a PPBS followed by postselection of
events when a single photon is observed at each output
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MICHAL SEDLÁK AND JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 93, 042316 (2016)

port of the beam splitter. In the basis of vertical and
horizontal polarizations, the resulting two-qubit quantum filter
reads

K =

⎛
⎜⎜⎝

t2
H − r2

H 0 0 0
0 tH tV −rH rV 0
0 −rH rV tH tV 0
0 0 0 t2

V − r2
V

⎞
⎟⎟⎠, (32)

where tH , tV and rH , rV denote the amplitude transmittances
and reflectances of PPBS for horizontal and vertical polar-
izations, respectively. We assume that the transmittances and
reflectances are real and that the beam splitter is lossless, hence
t2
j + r2

j = 1.
We investigate further only the case tH = 1, since this

element is often used in optical quantum information pro-
cessing experiments and its fidelity should be assessed. In this
case the filter becomes diagonal, K = diag{1,tV ,tV ,2t2

V − 1}.
Choosing {|ej 〉}4

j=1 as the computational basis in which
the filter is diagonal would, for probe states |fk〉, lead to
measurements on output states in an entangled basis, which is
problematic in many optical experimental setups. Instead, we
introduce alternative probe states that require just preparations
and measurements in product bases. The idea is to employ the
following pair of bases:

|e1〉 = |0〉|+〉, |f1〉 = |+〉|0〉,
|e2〉 = |0〉|−〉, |f2〉 = |+〉|1〉,
|e3〉 = |1〉|+〉, |f3〉 = |−〉|0〉,
|e4〉 = |1〉|−〉, |f4〉 = |−〉|1〉. (33)

The choice of these probe states is motivated by previous
experiments, where bounds on the fidelity of a quantum
controlled-NOT gate and controlled-Z gate were determined
[9–12,16]. The two bases (33) are related via a Hadamard
transform on each qubit, |fj 〉 = H ⊗ H |ej 〉, and this relation
together with the factorized form of the basis states |ej 〉 and
|fk〉 ensures that the lower and upper fidelity bounds, (21)
and (29), are applicable (cf. also Appendix B). The practical
advantage of the probe states (33) is that the filter K maps
them on product states,

|ẽ1〉 = |0〉|a+〉, |f̃1〉 = |a+〉|0〉,
|ẽ2〉 = |0〉|a−〉, |f̃2〉 = |b+〉|1〉,
|ẽ3〉 = |1〉|b+〉, |f̃3〉 = |a−〉|0〉,
|ẽ4〉 = |1〉|b−〉, |f̃4〉 = |b−〉|1〉,

where

|a±〉 = 1√
1 + t2

V

|0〉 ± tV√
1 + t2

V

|1〉,

|b±〉 = tV√
t2
V + (

2t2
V − 1

)2
|0〉 ± 2t2

V − 1√
t2
V + (

2t2
V − 1

)2
|1〉.

Since the filter K is not diagonal in either of the two
probe bases (33), additional measurements are required to
estimate the term Tr(KK†	̃). A natural choice is to employ
the computational basis states as additional probes |uj 〉 and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

TV

Fi
de
lit
y

Fideal

FLB− ideal

FIG. 1. A lower bound (21) on the fidelity F of a two-qubit
quantum filter K is plotted dependent on the intensity transmittance
TV = t2

V of the partially polarizing beam splitter. Ideal implemen-
tation of the filter is assumed, hence the true fidelity F = 1 and it
is depicted by the dashed blue line. The gap between the two lines
illustrates the tightness of the bound.

measure the resulting output states in the computational basis.
Mathematically, we have |uj 〉 = |wj 〉 = |vj 〉 and

|v1〉 = |00〉, |v2〉 = |01〉, |v3〉 = |10〉, |v4〉 = |11〉.
(34)

The above outlined procedure to test the unknown quan-
tum filter requires 3d = 12 product input states and each
output state needs to be measured in a single product
basis. For comparison, full quantum process tomography
of a two-qubit quantum filter [34] would typically in-
volve about 144 different combinations of input states and
output measurements. Thus, characterization of the filter
via the generalized Hofmann bounds requires far fewer
resources.

Let us now discuss the tightness of the lower bound (21)
for our choice of the filter and the probe states. A detailed
analysis reveals that in the present case this bound is tight for
the ideal quantum filter, i.e., equal to 1, only if TV = 1

2 or
TV = 1, where TV = t2

V . Otherwise there is a gap, which is
smaller than 1% if the desired PPBS has TV > 1

2 (see Fig. 1).
We also considered the situation where the actual value of
the transmittance TV differs from the desired one, which we
denote T̃V . The dependence of the lower bound on the actual
value of TV is plotted in Fig. 2 for four desired values of T̃V .
The results indicate that the proposed lower bound works well
for T̃V > 1

2 . However, for T̃V < 1
2 the bound quickly becomes

too loose to be useful.

A. Semidefinite programming approach

The above considerations open the question what are the
best upper and lower bounds on fidelity given certain data
from experiments [35]. Finding the best bounds requires
the solution of a convex optimization problem, namely, a
so-called semidefinite program [36]. Since the fidelity and the
constraints given by the measured data are linear in A = χ

Tr(χ ) ,
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FIG. 2. The solid red lines show the dependence of the lower
bound of the fidelity of a quantum filter K on the actual intensity
transmittance TV = t2

V of the PPBS for four target transmittances:
(a) T̃V = 0.1, (b), T̃V = 0.25, (c) T̃V = 0.5, and (d) T̃V = 0.75. The
true fidelity of the filter is depicted by the dashed blue lines.

we might write

FUB = max
A � 0, Tr(A) = 1
∀k Tr(AMk) = rk


 Tr(A|ωK〉〈ωK |),

(35)
FLB = min

A � 0, Tr(A) = 1
∀k Tr(AMk) = rk


 Tr(A|ωK〉〈ωK |),

where the matrices Mk and parameters rk capture the linear
constraints provided by the data, and the optimization is carried
over all semidefinite operators A that represent equivalence
classes of all trace-decreasing completely positive maps χ

(consistent with the data) with respect to the fidelity (5). To
make our formulation of these constraints sufficiently general,

consider a set of input probe states {|mj 〉}dj=1 forming a basis,
where each output state is measured in a generally different
basis {|njk〉}dk=1. Let fjk denote the measured frequencies
which sample the theoretical probabilities

pjk = d Tr(χ |mj 〉〈mj |T ⊗ |njk〉〈njk|). (36)

Using the identity
∑d

j,k=1 pjk = d Tr(χ ) we can express the
set of constraints on A imposed by the data fjk as follows:

Tr(A|mj 〉〈mj |T ⊗ |njk〉〈njk|) = fjk∑d
l,m=1 flm

. (37)

In our present case, each probe basis |ej 〉, |fk〉, and |vl〉
provides a set of 15 linearly independent constraints.

To test the performance of this approach, we used it to
find the best upper and lower bounds from the data that
we generated for 1000 randomly chosen quantum operations
χ that were constructed as a random mixture of an ideal
quantum filter K and some other randomly chosen filter K ′.
The optimization, (35), was performed numerically with the
use of CVX, a package for specifying and solving convex
programs [37,38]. For a given random quantum filter χ we
also compute the analytical lower and upper fidelity bounds
according to our procedure and the true fidelity. In Fig. 3
we plot the obtained results as a function of the true fidelity,
hence the graph of the true fidelity forms a straight line with
a unit slope. For comparison, we consider probing with two
sets of input states. The first set is specified by Eq. (33) and
requires only product measurements on output states, but the
analytical bounds are not tight. The second set of probe states
is constructed such that it leads to tight analytical bounds (28)
and (31) at the price of the requirement of measurements in an
entangled basis for some of the output states. Interestingly, the
approach based on semidefinite programming provides tight
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FIG. 3. Graphs of upper and lower bounds on the fidelity of two-qubit quantum filters. Upper and lowermost dots in each graph correspond
to analytical bounds for randomly generated quantum operations constructed as a mixture of a fixed ideal filter with transmittance TV specified
in each panel and a randomly chosen filter. The dots just above and below the solid line correspond to the bounds obtained from the same data,
but using a semidefinite programming approach. Results in the upper row correspond to probing with states (33) for which measurements in
the product basis are sufficient. For comparison, the three graphs in the lower row were obtained for a different set of probe states with |ej 〉
chosen to be the computational basis, where the ideal filter K is diagonal. The latter choice of probe states requires that some of the output
states are measured in an entangled basis.
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bounds in both cases; i.e., for ideal implementation of the filter
the upper and lower bounds coincide and FLB = FUB = 1.

V. CONCLUSIONS

In summary, we have designed and analyzed bounds
on the quantum process fidelity F of a specific type of
nondeterministic operations called quantum filters. These
operations are mathematically characterized as completely
positive maps, which can be expressed by a single Kraus
operator K . Operationally they correspond to operations
which succeed only with a limited probability that depends
on the input state and they map any pure state again to a
pure state. The proposed bounds represent a generalization
of the original Hofmann bounds on the fidelity of unitary
transformations [8]. For quantum filters, the average state
fidelities are replaced with specific weighted averages, and the
lower bound contains also an additional term that depends both
on the desired and on the actual operation. As a consequence,
in addition to the determination of relative success rates and
output-state fidelities for two sets of input basis states, further
measurements are generally needed. Nevertheless, we show
that the number of input states and measurements can be kept
the same as for unitary operations if one of the two input bases
is formed by the right eigenstates of K . An important property
of any bound is its tightness. In particular, for quantum process
fidelity bounds we would like to have both the upper and
the lower bounds equal to 1 if the actual and the desired
quantum transformations coincide, because in that case the
fidelity is F = 1. We demonstrated that our bound is tight if
one set of probe states is formed by right eigenstates of K

and the other by their quantum Fourier transform or by their
Hadamard transform. The proposed bounds extend the toolbox
of efficient methods of characterization of quantum operations
[3,4,6–8,39–41] and provide a method for quick checking of
the quality of quantum filters before their more comprehensive
characterization, e.g., by quantum process tomography.

As an illustration, we have theoretically investigated the
application of the proposed fidelity bounds to characterization
of a specific two-qubit linear-optical quantum filter. This filter
is implemented by two-photon interference on a partially
polarizing beam splitter followed by conditioning on the
emergence of a single photon at each output port of the
beam splitter, and it is often utilized in optical quantum
information processing with polarization-encoded qubits. We
consider experimentally convenient choices of product input
probe states for which the required output-state fidelities can be
directly determined by product single-qubit measurements. It
turns out that the price to pay for this experimental convenience
is that the resulting bounds are generally not tight. We compare
our analytical bounds with ultimate lower and upper bounds
that can be obtained from given experimental data with the
help of convex optimization. The experimental data represent
a set of linear constraints and we numerically solve a so-called
semidefinite program that, among all quantum operations
satisfying given linear constraints, finds an operation with
minimum and maximum overlap with the target quantum filter
K . We observe that the ultimate lower and upper fidelity
bounds obtained in this way are tight, i.e., equal to 1 for
perfect filters, even if the analytical bounds are not. In this

way we illustrate that for the considered quantum filter and the
available data more stringent bounds can be obtained by more
sophisticated data processing.
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APPENDIX A: POSITIVITY OF OPERATOR R

Let us define an orthonormal basis {|ωjk〉}dj,k=1 of maxi-
mally entangled states via the action of a pair of operators

Z =
∑

j

|ej⊕1〉〈ej |, W =
∑

j

ei
2πj

d |ej 〉〈ej | (A1)

on the state |ω〉 as

|ωjk〉 = Zj−1Wk−1 ⊗ I |ω〉. (A2)

By definition |ω11〉 = |ω〉 and

d∑
j=1

|ω1j 〉〈ω1j | = 1

d

d∑
j,k,l=1

ei
2πj (k−l)

d |ek〉|ek〉〈el |〈el|

=
d∑

j=1

|ej 〉〈ej |T ⊗ |ej 〉〈ej |, (A3)

because here the transposition is taken with respect to the basis
|ej 〉. Similarly,

d∑
j=1

|ωj1〉〈ωj1| = 1

d

d∑
j,k,l=1

|ek⊕j 〉|ek〉〈el⊕j |〈el|. (A4)

On the other hand,

d∑
k=1

|fk〉〈fk|T ⊗ |fk〉〈fk|

= 1

d

d∑
j,k,l,m,n=1

ei
2πk(l−j+m−n)

d |ej 〉|el〉〈em|〈en|

=
∑

j,l,m,n

j−l = m−n

|ej 〉|el〉〈em|〈en|, (A5)

which is clearly equivalent to (A4). Thus the operator R

defined by Eq. (16) can be expressed as

R = |ω11〉〈ω11| −
d∑

j=1

|ωj1〉〈ωj1| −
d∑

k=1

|ω1k〉〈ω1k|

+
d∑

j,k=1

|ωjk〉〈ωjk|, (A6)

where we have used the identity I ⊗ I = ∑d
j,k=1 |ωjk〉〈ωjk|.

Since we managed to rewrite R as a sum of projectors, R =∑d
j,k=2 |ωjk〉〈ωjk|, this proves that R � 0.
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APPENDIX B: ALTERNATIVE LOWER BOUND FOR
n-QUBIT FILTERS

Our goal is to prove the positivity of operator R defined in
Eq. (16) for a different pair of orthonormal bases {|ej 〉}dj=1,
{|fk〉}dk=1. This would allow us to exactly repeat the same
steps as in the text and thus we could use all the derived
lower and upper bounds, but for a different choice of |ej 〉,
|fk〉. Specifically, we consider systems of n qubits, hence
d = 2n. Let {|ej 〉}dj=1 be the computational basis, where
|ej 〉 = |j1〉|j2〉 . . . |jn〉 and jm is the mth digit in the binary
representation of number j − 1. Similarly, let {|fk〉}dk=1 be the
computational basis transformed by the Hadamard transform
[acting as H |jm〉 = (|0〉 + (−1)jm |1〉)/√2] on every qubit,
|fk〉 = H |k1〉 ⊗ H |k2〉 . . . ⊗ H |kn〉. The operator R is acting
on 2n qubits, which are ordered as n qubits related to the input
state tensored with another n qubits related to the output state
of the quantum filter. It is useful to divide the 2n-qubit Hilbert
space on which the operator R acts into two-qubit subsystems
formed by the mth qubit of the input and the mth qubit of
the output. We introduce a unitary operator W which groups
together the mth input and output qubits [15],

W |j1 . . . ,jn〉|k1, . . . ,kn〉 = |j1,k1〉 . . . |jn,kn〉. (B1)

In this way the maximally entangled state can be written
as W |ω〉 = |�+〉1 · · · |�+〉n, where |�±〉 = 1√

2
(|00〉 ± |11〉)

are the Bell states and the subscripts indicate the two-qubit
subsystems. It is not difficult to show that the summations over
all projectors |ej 〉〈ej |T ⊗ |ej 〉〈ej | and |fk〉〈fk|T ⊗ |fk〉〈fk|
in Eq. (16) factorize into products of n summations over

two-qubit subsystems consisting of a single input and output
qubit. The summations over the two-qubit subspaces can be
performed with the use of the identities

|00〉〈00| + |11〉〈11| = �+ + �−,
(B2)

| + +〉〈+ + | + | − −〉〈− − | = �+ + �+,

where |�±〉 = 1√
2
(|01〉 ± |10〉) are the other two Bell states

and we used the notation �+ ≡ |�+〉〈�+|. Identities (B2)
allow us to rewrite the operator R as

WR W † = (�+)⊗n − (�+ + �−)⊗n − (�+ + �+)⊗n

+(�+ + �− + �+ + �−)⊗n, (B3)

where we have used the four Bell states to express the identity
in the two-qubit Hilbert space as I = �+ + �− + �+ + �−.
Since W is unitary, the operator WR W † has the same eigen-
values as R. Moreover, WR W † is diagonal in the basis formed
by tensor products of Bell states, hence the eigenvalues can be
directly determined from expression (B3). All the projectors
contained in the first three terms on the right-hand side of
(B3) determine the (2n+1 − 1)–dimensional zero-eigenvalue
subspace and it is easy to see that in the remaining subspace
the eigenvalue is 1. Thus, all the eigenvalues of WR W †

are nonnegative, which proves that R is a positive semidefinite
operator. This proves that the fidelity bound (21) holds also
for the case, when the bases {|ej 〉}dj=1 and {|fk〉}dk=1 are the
computational basis and its Hadamard transform on every
qubit.
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R. Filip, and J. Fiurášek, Phys. Rev. A 92, 022341 (2015).
[28] I. Bongioanni, L. Sansoni, F. Sciarrino, and G. Vallone, and P.

Mataloni, Phys. Rev. A 82, 042307 (2010).
[29] B. Schumacher, Phys. Rev. A 54, 2614 (1996).
[30] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A

60, 1888 (1999).
[31] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, in Classical

and Quantum Computation, Vol. 47, Graduate Studies in
Mathematics (American Mathematical Society, Providence, RI,
2002), Sec. 11.

[32] J. Watrous, Theory of Quantum Information, Chap. 20;
https://cs.uwaterloo.ca/˜watrous/CS766/LectureNotes/20.pdf.

[33] V. Paulsen, Completely Bounded Maps and Operator Algebras
(Cambridge University Press, Cambridge, UK, 2003).

[34] M. W. Mitchell, C. W. Ellenor, S. Schneider, and A. M.
Steinberg, Phys. Rev. Lett. 91, 120402 (2003).
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