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Quantum proofs can be verified using only single-qubit measurements
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Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a
quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum
version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the
verifier has only classical computational resources. In this paper, we study what happens when we restrict the
quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as
they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem
in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or
multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum
computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with
one-sided error.
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I. INTRODUCTION

One of the key questions in computational complexity is
to determine the resources required to find a solution to a
certain problem. On the other hand, even if we do not know
how to produce a solution with some given resources, we
can still ask whether those resources allow us to verify the
correctness of a given solution. Most importantly, this gives
rise to the complexity class NP, the class of decision problems
whose “yes” instances have proofs that can be efficiently
(in polynomial time, with perfect soundness) verified by
a deterministic classical computer. This concept can be
generalized by allowing probabilistic verification of proofs,
leading to the class Merlin Arthur (MA).

The natural quantum version of these classes is formed by
the class quantum Merlin Arthur (QMA) [1–4], which consists
of all problems whose “yes” instances have a “quantum proof”
(i.e., a quantum state) which can be efficiently verified in
polynomial time by a quantum computer. The prototypical
QMA-complete problem is to determine the ground-state
energy of a Hamiltonian with few-body interactions, known
as the local Hamiltonian problem [5] (for a review of recent
progress on QMA-complete problems, see [6]). Here, the proof
is the ground state itself, whose energy can be efficiently
estimated using a quantum computer.

All these classes can be understood in terms of a game
between an all-powerful prover Merlin and a rational verifier
Arthur with limited resources, where Merlin tries to prove
some statement to Arthur by sending him a classical or
quantum proof, which Arthur then verifies using a classical
(NP, MA) or quantum (QMA) computer. Adding quantum
mechanics opens new doors for Merlin to cheat, but on
the other hand, performing a quantum computation as a
verification procedure gives more power to Arthur as well.
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Indeed, since Arthur can always start by measuring in the
computational basis, effectively treating the proof as classical,
QMA is at least as powerful as NP and MA.

However, will we tip this balance when we restrict Arthur’s
power and supply him only with restricted quantum resources
rather than access to a full quantum computer? Most extremely,
we could imagine that Arthur does not have access to a quan-
tum memory and can only perform single-qubit measurements
on a sequence of qubits sent by Merlin one by one, possibly
in a restricted basis. It seems likely that the class of problems
that could be soundly verified in such a setup is much smaller
than QMA.

In this paper, we prove that this is not the case: Even
if Arthur is limited to single-qubit measurements which are
performed one by one on qubits sent sequentially by Merlin,
the class of problems which can be proven this way still equals
QMA. We will show this in two distinct ways: The first proof
utilizes measurement-based quantum computing (MBQC) [7],
while the second proof is based on a scheme for single-qubit
measurement verification of the ground state for the local
Hamiltonian problem [2].

Our first proof uses MBQC, a universal model of quantum
computing where adaptive single-qubit measurements are
applied to a certain highly entangled many-qubit state, such
as the graph state [7]. In our protocol, an honest Merlin
sends Arthur the graph state coupled with a witness state,
qubit by qubit. As Arthur receives each qubit, he measures it.
Using such adaptive single-qubit measurements, he applies the
desired QMA verification circuit via a MBQC scheme. On the
other hand, if Merlin is malicious, he does not necessarily
send the correct graph state. However, Arthur can verify
whether he received the proper graph state by measuring a
list of stabilizers, which can again be done using only single-
qubit measurements, maintaining soundness of the protocol.
Our proof relies on the idea of Ref. [8], where graph-state
verification is the basis of a multiprover quantum interactive
proof system for BQP (bounded quantum polytime) with a
classical verifier and several entangled but noncommunicating
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provers. Our usage of graph-state verification is much simpler
because Arthur does the measurements by himself, and
therefore he does not need to test device independence, while
his measurement choices are naturally hidden from Merlin.
Interestingly, this MBQC approach also allows the reduction
of the required classical computational ability of Arthur to
only XOR (exclusive OR) operations, since it is known [9]
that single-qubit unitary operations on a known single-qubit
state, single-qubit measurements, and the classical XOR gate
are enough for classical universal computing.

In the second proof, instead of implementing a quantum
verification circuit, we look at the possibility of determining
the ground-state energy of a local Hamiltonian using only
single-qubit measurements. The trick is to ask Merlin for
the ground state, but to keep secret which of the terms in
the Hamiltonian we will measure. In fact, we show how
to randomly choose and perform a sequence of single-qubit
measurements so that the protocol remains complete and
sound. Our single-qubit measurement approach to verifying
ground states of a local Hamiltonian was first presented by
one of the authors in a Stack-exchange post [10] in response
to a question by Lior Eldar. Note that another protocol for this
task can be derived from the recent multiprover verification
scheme by Ji [11].

The efficiency of our local-Hamiltonian-based protocol
is similar (up to polynomial factors) to that of the MBQC
approach, which is natural for quantum circuits. However, the
MBQC argument also applies to the verification procedure
of the complexity class QMA1, i.e., QMA with perfect
completeness, while the Hamiltonian approach does not work
there, because it is inherently probabilistic even for an honest
Merlin. On the other hand, the local-Hamiltonian approach
requires only Pauli measurements, while the MBQC approach
involves measurements outside the Clifford basis.

Note that recently another direction of restricting Arthur’s
power—to Clifford gate operations only—has been considered
[12]. It was shown there that even if Arthur’s power is restricted
to Clifford gate operations, the class equals QMA. The basic
tool there is the universality of Clifford gates plus magic states
[13]: Merlin sends Arthur many copies of magic states in
addition to the witness, and Arthur, who can perform only
Clifford gate operations, uses them for universal quantum
computing. Even if a malicious Merlin sends some other
states pretending to be magic states, Arthur can filter them
to guarantee the soundness. The result of this paper, showing
that restricting Arthur’s power to single-qubit measurements
does not weaken the complexity class QMA (or QMA1), is
therefore a step in a similar direction.

Furthermore, Ref. [14] introduced the class stoqMA. It
is another variant of QMA, restricting Arthur’s ability to
classical reversible gates on initial qubits prepared in |0〉 or
|+〉, and finally measurement of the output qubit in the X

basis. Unlike our case, stoqMA is not known to be equal to
QMA; we know it is contained in SBP (small bounded-error
probability). On the other hand, what if we put restrictions
on Merlin instead of Arthur? Reference [15] has shown that
even if the quantum witness is restricted to be an equal-weight
positive-constants superposition of computational basis states,
the class of problems provable in this way is still equal to
QMA.

II. PRELIMINARIES

A. QMA and its verification protocol

Consider a language L (i.e., the set of “yes” instances of a
problem such as the local Hamiltonian) and denote its instances
by x, and the length of the bit string x by |x|. The language
L belongs to the class QMA(a,b) with a − b � 1/poly(|x|) if
for each x, there exists a polynomial-size quantum circuit Qx

(from a uniform family of circuits), working on n = poly(|x|)
qubits and m = poly(|x|) ancilla qubits such that the following
is true:

(1) Completeness. If x ∈ L, there exists an n-qubit witness
state |ξx〉, such that the result of the computational-basis
measurement on the first qubit of Qx(|ξx〉 ⊗ |+〉⊗m) is 1 with
probability � a.

(2) Soundness. If x /∈ L, the result of the computational-
basis measurement on the first qubit of Qx(|ψ〉 ⊗ |+〉⊗m) is 1
with probability � b for any n-qubit input state |ψ〉.

Usually, each ancilla qubit is initialized in the state |0〉.
Here we choose the basis state |+〉 ≡ (|0〉 + |1〉)/√2 instead,
to make the procedure compatible with the standard notation
for MBQC.

A priori, the class QMA(a,b) depends on the completeness
and soundness parameters a and b. However, there are several
ways to amplify [16] the parameter a to make it close to 1
and the parameter b close to 0. In fact, as long as a − b �
1/poly(|x|), and a � 1 − e−poly(|x|),b � e−poly(|x|), the power
of this protocol does not change [4]; we thus simply call
QMA(a,b) with these restrictions QMA.

On the other hand, the case a = 1 is special, in that it
requires the existence of a proof which is accepted with
unit probability (perfect completeness); in that case, with the
conditions on b as before, the class is denoted by QMA1.

B. Measurement-based quantum computing

Measurement-based quantum computing (MBQC) is
a model of universal quantum computing proposed by
Raussendorf and Briegel [7]. In this model, universal quantum
computation can be realized by the preparation of a certain
many-qubit resource state, followed by sequential adaptive
single-qubit local measurements on the resource state’s qubits.
The cluster state (or the graph state) [7] is the canonical
example of such a resource state. Let G = (V,E) be a graph,
where V is the set of vertices and E is the set of edges. The
cluster state |G〉 on the graph G is defined by

|G〉 ≡
(⊗

e∈E

CZe

)
|+〉⊗|V |,

where a qubit in the state |+〉 is located on each vertex of G, and
CZe is the controlled-Z gate on the edge e. It is known that,
for example, the graph state on the two-dimensional square
lattice is a universal resource state [7].

The cluster state can also be used to apply a quantum circuit
to an arbitrary input state |ψ〉. To this end, one splits the
vertices into two sets V1 and V2. The vertices in V1 are prepared
in |+〉⊗|V1|, while the vertices in V2 are prepared in |ψ〉, and
subsequently, ⊗e∈ECZe is applied along the edges of the graph
as shown in Fig. 1 (i.e., a square lattice on V1 connected to the
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FIG. 1. Graph G = (V,E). Arthur expects Merlin to send him a
universal graph state on vertices V1 and a witness state on vertices
V2, coupled together by controlled-Z gates across the edges between
V1 and V2.

vertices in V2). Starting from a state of this form, one can then
carry out any desired quantum computation on |ψ〉 by doing
single-qubit measurements only.

III. MBQC APPROACH

Let us now give our first result: a QMA verifier which uses
only sequential single-qubit measurements based on MBQC.
The basic idea is as follows. Given a QMA problem specified
by a verifier circuit Qx , Arthur asks Merlin to send him the
witness state |ψ〉, coupled to a graph state, which allows Arthur
to implement Qx on |ψ〉 using MBQC, as in Fig. 1. With
an honest Merlin, Arthur can run Qx on |ψ〉 using MBQC
to verify the proof; on the other hand, we will show that a
cheating Merlin can be caught by testing the graph state using
only single-qubit measurements. Note that there is no need for
Arthur to explicitly ask for ancilla qubits, as these are implicit
in a sufficiently large graph state; we can take the ancillas
required for computation to be some of the |+〉 states in the
graph state (they are also coupled together with the rest of the
graph state by controlled-Z gates).

Let us thus consider a graph G = (V,E) as in Fig. 1. We
denote the set of vertices in the red (blue) region by V1 (V2),
and define N ≡ |V1| = poly(|x|). Note that |V2| = n. We also
denote the set of edges in the red region by E1. Let Econn be
the set of edges that connect the red and blue regions, i.e.,
Econn = E − E1.

Now consider the following interactive proof scheme.
Merlin sends a state ρ on G to Arthur, qubit by qubit, in
a predefined order. If Merlin is honest, ρ is the graph state
plus witness as described above, but if Merlin is malicious,
ρ can be any state. Arthur then runs the following protocol.
With some probability q, which will be specified later, Arthur
uses ρ to run the verifier circuit Qx on |ψ〉 using MBQC.
If the computation accepts (rejects), Arthur accepts (rejects).
On the other hand, with probability 1 − q, Arthur performs
the following stabilizer test: He randomly generates an N -bit
string k ≡ (k1, . . . ,kN ) ∈ {0,1}N and measures the operator

sk ≡
∏
j∈V1

g
kj

j ,

(note that we choose j only from the vertices V1, and not on the
vertices V2 where the witness is located), where the operator

gj ≡ Xj

⊗
i∈Sj

Zi

is a stabilizer of the graph state which applies X to vertex
j , and Z to its neighbors (here, Sj denotes the set of the
nearest-neighbor vertices of vertex j ). Since sk is a tensor
product of X,Z, and Y , Arthur can (destructively) measure
sk by measuring each qubit independently, as it arrives from
Merlin, without the need for memory or multiqubit operations.
If the result is +1 (−1), the test passes (fails), and Arthur
accepts (rejects) Merlin’s proof. The probability of passing
the stabilizer test is

ppass = 1

2N

∑
k∈{0,1}N

Tr

(
I + sk

2
ρ

)
.

We will now show that this protocol is complete and sound.
First let us consider the case of x ∈ L. Since Merlin is honest,
he sends Arthur⎛

⎝ ⊗
e∈Econn

CZe

⎞
⎠(|G〉V1 ⊗ |ξx〉V2 ),

where |G〉 is the graph state on the graph (V1,E1), and |ξx〉
is the correct witness state on V2, which is accepted with
probability � a in the original QMA protocol. The probability
of passing the stabilizer test is 1, since we are measuring the
stabilizers of a proper graph state. On the other hand, when
Arthur chooses to do the computation, he will accept Merlin’s
proof with probability larger than a (the completeness of the
QMA protocol). Therefore, the overall acceptance probability
is

px∈L
acc � qa + (1 − q) ≡ α. (1)

Next, let us consider the case x /∈ L. If Merlin wants to fool
Arthur, he has two options: (i) He sends a state that is close to
the correct proof (graph state plus witness) and thus has a high
probability ppass of passing the stabilizer test; as we will show,
such a state will fail the QMA verification. Or (ii) Merlin could
try to send a state which is farther away from the correct proof
and thus can pass the QMA verification, but such a state will
fail the stabilizer test.

Let us thus fix some (small) ε > 0 (which will be specified
later), and first consider the case where Merlin sends Arthur a
state with ppass � 1 − ε. Then,

Tr

⎛
⎝∏

j∈V1

I + gj

2
ρ

⎞
⎠ = Tr

⎛
⎝ 1

2N

∑
k∈{0,1}N

sk ρ

⎞
⎠ � 1 − 2ε,

using the relation

∏
j∈V1

I + gj

2
= 1

2N

∑
k∈{0,1}N

sk.
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Let W ≡ ⊗
e∈E CZe be the product of controlled-Z gates on

all edges. Then,

Tr

⎛
⎝∏

j∈V1

I + gj

2
ρ

⎞
⎠ = Tr

⎛
⎝∏

j∈V1

(
W

I + gj

2
W

)
WρW

⎞
⎠

= Tr

⎛
⎝⊗

j∈V1

I + Xj

2
WρW

⎞
⎠

= Tr
(|+〉〈+|⊗N

V1
⊗ IV2WρW

)
= Tr

(|+〉〈+|⊗N
V1

TrV2 (WρW )
)

= F
(|+〉〈+|⊗N

V1
,TrV2 (WρW )

)2

= max
wV2

F
(|+〉〈+|⊗N

V1
⊗ wV2 ,WρW

)2

= F
(
W

(|+〉〈+|⊗N
V1

⊗ w∗
V2

)
W,ρ

)2
,

where TrV2 is the partial trace over V2, and F (ρ,σ ) ≡
Tr

√√
ρ σ

√
ρ is the fidelity between ρ and σ . We have relied

on the identity [17]

F
(|+〉〈+|⊗N

V1
,TrV2 (WρW )

)
= max

wV2

F
(|+〉〈+|⊗N

V1
⊗ wV2 ,WρW

)
,

and called w∗
V2

the state that achieves the maximum. By using
the relationship between the trace distance and fidelity, we
obtain

1
2

∥∥W
(|+〉〈+|⊗N

V1
⊗ w∗

V2

)
W − ρ

∥∥
1

�
√

1 − F
(
W

(|+〉〈+|⊗N
V1

⊗ w∗
V2

)
W,ρ

)2

�
√

1 − (1 − 2ε) =
√

2ε.

Therefore, the acceptance probability for a malicious Merlin
that wants to pass the stabilizer test with probability greater
than 1 − ε is bounded from above by

px /∈L
acc,1 � q(b +

√
2ε) + (1 − q) ≡ β1. (2)

On the other hand, what happens when Merlin sends Arthur
a state that passes the stabilizer test with probability at most
ppass < 1 − ε? In that case, we can assume that this false state
is far from the graph state, and that Merlin tweaked it in such
a way that it passes the computational test with probability =
1. However, the detection probability from the stabilizer test
is enough to give us an upper bound on the overall acceptance
probability:

px /∈L
acc,2 < q + (1 − q)(1 − ε) ≡ β2. (3)

We now need to show that the acceptance probabilities of
Eqs. (2) and (3) are necessarily lower than that of Eq. (1),
resulting in a completeness-soundness gap for the MBQC-
based single-qubit measurement QMA protocol which is lower
bounded by an inverse polynomial.

We will do this by finding a setting for q and ε that gives
us the best completeness-soundness gap. Let us look at the
possible gaps:

	1(q,ε) ≡ α − β1 = qa − q(b +
√

2ε),

	2(q,ε) ≡ α − β2 = qa − q + ε(1 − q).

It is optimal for Arthur to choose the value of q that satisfies
	1 = 	2:

q∗ = ε

1 + ε − b − √
2ε

.

It is then straightforward to choose a = 2
3 , b = 1

3 (using
amplification for the original circuit), and ε = 1

2|x|2 , and obtain
a completeness-soundness gap for the new MBQC-based
protocol

px∈L
acc − px /∈L

acc � 	(q∗,ε) = ε(a − b − √
2ε)

1 + ε − b − √
2ε

� ε(a − b − √
2ε)

2
=

1
3 − 1

|x|
4|x|2 � 1

48|x|2 ,

for |x| � 4. We have thus proved the new protocol is complete
and sound, with an inverse-polynomial promise gap.

Note that this also works for a perfectly complete original
QMA protocol with a = 1, since the honest acceptance proba-
bility remains perfect, px∈L

acc = 1. Therefore, this MBQC-based
single-qubit measurement protocol is valid also for QMA1.

IV. LOCAL-HAMILTONIAN APPROACH

Let us now turn to our second construction for a QMA
verification restricted to single-qubit measurements. Rather
than implementing the verifier circuit using MBQC, we
now devise a way to perform a restricted-quantum-power
verification of proofs for a particular QMA-complete problem:
the local Hamiltonian [2].

The k-local Hamiltonian promise problem asks whether a
Hamiltonian H = ∑M

m=1 Hm made from k-local (i.e., k-body)
terms has a ground-state energy below some Ea , or above
some Eb, with a promise gap Eb − Ea > 1/poly(|x|). (Here,
each Hm is bounded.) This problem is QMA complete in
short because a successful verification of a proof using a
quantum circuit Qx can be encoded into the ground state
of a particular Hamiltonian, and measuring the energy of a
state is a simple task using a quantum computer. This can be
done either by picking a term Hm at random according to its
norm and measuring the expectation value of this term [4] (this
procedure can be amplified using multiple copies of the state),
or in one go by doing phase estimation of e−iHτ [18]. Yet both
these schemes require joint measurements on at least k qubits.
However, as we will show in the following, it is possible to
estimate 〈ψ |H |ψ〉 with single-qubit Pauli measurements only.

The trick is to decompose the Hamiltonian terms in the Pauli
basis (or any other local basis), pick one of the Pauli terms
according to a particular probability distribution, and measure
this term qubit by qubit. Let us present the scheme in full detail.
Consider an N -qubit system, and a k-local Hamiltonian H =∑M

m=1 Hm, together with a promise pair Ea,Eb, separated by
Eb − Ea � 1/poly(|x|). Each of the terms Hm is k local, acting
nontrivially on at most k qubits. We can thus decompose it in
the Pauli basis as

Hm =
∑
S∈P

cm
S S,
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where P is the set of tensor products of N Pauli matrices (or
identities). We can then rearrange the Hamiltonian H as

H =
∑
S∈P

(
M∑

m=1

cm
S

)
︸ ︷︷ ︸

dS

S,

labeling dS the sum of all the prefactors that contribute to
the particular k-local Pauli operator S. We now shift the
Hamiltonian’s spectrum by adding a term proportional to the
identity,

H ′ = H + I
∑
S∈P

|dS |

=
∑
S∈P

|dS |[I + sign(dS)S] =
∑
S∈P

2|dS |PS,

which gives us a weighted sum of k-local projectors of the form
PS = 1

2 [I + sign(dS)S]. We now further rescale H ′, getting

H ′′ = 1∑
S 2|dS |H

′ =
∑

S

πSPS,

another weighted sum of projectors, whose weights

πS = |dS |∑
S |dS | � 0

now sum to 1, and thus defines a probability distribution π on
a list of at most k-local Pauli operators. The ground state of H

is also the ground state of this shifted and rescaled H ′′. Note
that all of these transformations can be carried out classically
using only polynomial resources.

Arthur now asks Merlin to send the qubits of the ground
state of H one by one. Arthur can estimate the energy of
the state |ψ〉 he receives using the following single-qubit-
measurement verification procedure:

(1) Pick S, an at most k-local Pauli product, at random,
according to the distribution π .

(2) Ask Merlin to send the qubits of the witness state |ψ〉
one by one.

(3) On each qubit on which S acts nontrivially, measure
the corresponding single-qubit Pauli operator. Take the list of
results xi = ±1 for i = 1, . . . ,k, and calculate the quantity
r = 1

2 [1 + sign(dS)x1x2 . . . xk], which can take the value 0
or 1.

(4) Accept if r = 0.
In the “yes” case, the ground-state energy is promised to be

� Ea , and the single-shot probability of obtaining the result 1
when looking at r is

pyes(1) = 〈r〉 = 〈ψ |H ′′|ψ〉 = 1∑
S 2|dS | 〈ψ |H ′|ψ〉

= 1∑
S 2|dS |

(
〈ψ |H |ψ〉 +

∑
S

|dS |
)

� Ea∑
S 2|dS | + 1

2
, (4)

when Merlin sends us a good witness |ψ〉, whose energy (for
the Hamiltonian H ) is � Ea . We accept if we measure 0, so

the acceptance probability in this case is at least

pyes
acc = 1 − pyes(1) � 1

2
− Ea∑

S 2|dS | . (5)

On the other hand, in the “no” case, all states have energy
that is guaranteed to be � Eb. With this in mind, we can
just look at Eq. (4) and find a lower bound in terms of Eb.
The single-shot probability of measuring the result 1 in our
procedure is bounded from below by

pno(1) � Eb∑
S 2|dS | + 1

2
.

Thus, Arthur will measure r = 0 and accept a false proof in
this case with probability

pno
acc = 1 − pno(1) � 1

2
− Eb∑

S 2|dS | . (6)

Putting together Eqs. (5) and (6) we obtain a gap in the
acceptance probabilities between the “yes” and “no” cases:

pyes
acc − pno

acc � Eb − Ea∑
S 2|dS | .

As the original Hamiltonian H contains M = poly(|x|) terms
Hm of bounded strength, and each Hm has contributions from
4k = poly(|x|) Pauli products [as long as k = O(log |x|)],
we have that

∑
S |dS | � poly(|x|) from above, and thus have

obtained a 1/poly(|x|) completeness-soundness gap for our
1-qubit measurement procedure.

This scheme can be used to construct a QMA verification
using single-qubit measurements only. Given an instance
of a QMA problem, Arthur rewrites the proof as a local
Hamiltonian H and asks Merlin for the ground state of H .
Using the outlined procedure, Arthur accepts with p

yes
acc and

pno
acc, respectively, putting the problem in QMA(pyes

acc,p
no
acc) =

QMA. Alternatively, this can be seen as a scheme to estimate
the ground-state energy with single-qubit measurements only,
where multiple copies of the ground state can be used to obtain
a more accurate estimate.

Note that the construction presented in this section does
not work for QMA1. For problems in this complexity class
one needs to be able to accept perfect witnesses or proofs

with 100% probability (perfect completeness). However,
our single-qubit-measurement-only procedure for estimating
the expectation value of a k-qubit operator is inherently
probabilistic for any k-local operator that is not a product
of Pauli operators; thus, there is a finite probability that we
will reject even a perfect witness.
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