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Abstract – The general eight-vertex model on a square lattice is studied numerically by using
the Corner Transfer Matrix Renormalization Group method. The method is tested on the sym-
metric (zero-field) version of the model, the obtained dependence of critical exponents on model’s
parameters is in agreement with Baxter’s exact solution and weak universality is verified with a
high accuracy. It was suggested long time ago that the symmetric eight-vertex model is a special
exceptional case and in the presence of external fields the eight-vertex model falls into the Ising
universality class. We confirm numerically this conjecture in a subspace of vertex weights, except
for two specific combinations of vertical and horizontal fields for which the system still exhibits
weak universality.

Copyright c© EPLA, 2016

Introduction. – The universality hypothesis states
that for a statistical system with a given symmetry of
microscopic state variables, critical exponents do not de-
pend on model’s Hamiltonian parameters [1]. Historically,
the first violation of the universality was observed in the
symmetric (zero-field) eight-vertex model on the square
lattice, whose critical exponents depend continuously on
model’s parameters. Baxter solved the symmetric eight-
vertex model by using the concept of commuting transfer
matrices and the Yang-Baxter equation for the scattering
matrix as the consistency condition [2–5]. This became
a basis for generating and solving systematically inte-
grable models within the “Quantum Inverse-Scattering
method” [6,7], see, e.g., monographs [8,9]. The next non-
universal model, the Ashkin-Teller model [10–13], is in
fact related to the eight-vertex model [14]. All these sys-
tems exhibit a “weak universality” as was proposed by
Suzuki [15]: defining the singularities of statistical quan-
tities near the critical point in terms of the inverse corre-
lation length, rather than the temperature difference, the
rescaled critical exponents are universal. The phenomenon
of weak universality appears in many other physical sys-
tems, like interacting dimers [16], frustrated spins [17],
quantum phase transitions [18] and so on. There are indi-
cations that both universality and weak universality are vi-
olated in the symmetric 16-vertex model on the 2D square
and 3D diamond lattices [19,20], Ising spin glasses [21],
frustrated spin models [22], experimental measurements
on composite materials [23,24], etc.

The general eight-vertex model on a square lattice can
be formulated as an Ising model on the dual square
lattice with (nearest-neighbour and diagonal) two-spin
and (plaquette) four-spin interactions [25,26]. The sym-
metric version of the eight-vertex model corresponds to
two Ising models on two alternating sublattices, coupled
with one another via plaquette couplings. Kadanoff and
Wegner [26] suggested that the variation of critical indices
is due to the special hidden symmetries of the zero-field
eight-vertex model. If an external field is applied, they
argued that the magnetic exponents should be constant
and equivalent to those of the standard Ising model, see
also monograph [5]. This conjecture was supported by
renormalization group calculations [14,27,28].

Since the eight-vertex model in a field is non-integrable,
the above conjecture about the Ising-type universality
must be checked numerically. To our knowledge, no nu-
merical test was done in the past, probably because of high
demands on numerical precision. In this letter, in order to
achieve a very high accuracy, we apply the Corner Transfer
Matrix Renormalization Group (CTMRG) method, hav-
ing its origin in the renormalization of the density ma-
trix [29–32]. A subspace of vertex weights is chosen to
ensure the symmetricity of the density matrix [5]. The
CTMRG method is first tested on the zero-field version of
the eight-vertex model, the obtained dependence of criti-
cal exponents on model’s parameters is in good agreement
with Baxter’s exact solution and weak universality is ver-
ified. In the presence of external fields, the critical indices
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Fig. 1: Admissible configurations of the eight-vertex model.

of the eight-vertex model turn out to be constant, equiva-
lent to the Ising ones, except for two specific combinations
of vertical and horizontal fields for which the system still
exhibits weak universality with critical indices dependent
on model’s parameters.

Model. – In vertex models, local state variables are lo-
calized on the edges of a lattice. For each configuration of
edge variables incident to a vertex, we associate a Boltz-
mann weight. For a given configuration of all edge states
on the lattice, the contribution to the partition function is
the product of all vertex Boltzmann weights. In the eight-
vertex model on the square lattice, we have two-state ar-
row (dipole) edge variables. Each vertex satisfies the rule
that only an even number (i.e., 0, 2 or 4) of arrows point
toward it. From among 24 = 16 possible configurations
8 ones fulfill this rule, see fig. 1. Denoting by E and E′

vertical and horizontal electric fields, respectively, and by
T the temperature (in units of kB = 1), the corresponding
Boltzmann weights can be expressed as

a1 = C exp [− (εa − E − E′) /T ] ,
a2 = C exp [− (εa + E + E′) /T ] ,
b1 = C exp [− (εb + E − E′) /T ] ,
b2 = C exp [− (εb − E + E′) /T ] ,
c = C exp (−εc/T ) ,
d = C exp (−εd/T ) .

(1)

Here, εa, εb, εc, εd are energies invariant with respect to the
reversal of all arrows incident to a vertex and the value of
the constant C is irrelevant.

The eight-vertex model can be mapped into its Ising
counterpart defined on the dual (also square) lattice
[25,26], when assigning +1 to the arrows ↑,→ and −1 to
the opposite arrows ↓,←. The Ising Hamiltonian can be
written as H =

∑
plaq Hplaq, where each square plaque-

tte Hamiltonian Hplaq involves interactions of four spins
σ1, σ2, σ3, σ4 = ±1 as depicted in fig. 2. Namely, we have
horizontal nearest-neighbour interaction Jh between σ1, σ2
and σ3, σ4, vertical nearest-neighbour interaction Jv be-
tween σ1, σ3, and σ2, σ4, diagonal interactions J between
σ1, σ4 and J ′ between σ2, σ3 and finally four-spin interac-
tion J ′′ between all spins σ1, σ2, σ3, σ4, i.e.

−Hplaq =
Jh

2
(σ1σ2 + σ3σ4) +

Jv

2
(σ1σ3 + σ2σ4)

+ Jσ1σ4 + J ′σ2σ3 + J ′′σ1σ2σ3σ4. (2)

Note that nearest-neighbour couplings Jh and Jv are
shared by two plaquettes. In terms of the Ising couplings,

Fig. 2: Transformation from electric to magnetic Ising formu-
lation.

the original Boltzmann weights are written as

a1 = C exp [(Jh + Jv + J + J ′ + J ′′) /T ] ,
a2 = C exp [(−Jh − Jv + J + J ′ + J ′′) /T ] ,
b1 = C exp [(Jh − Jv − J − J ′ + J ′′) /T ] ,
b2 = C exp [(−Jh + Jv − J − J ′ + J ′′) /T ] ,
c = C exp [(−J + J ′ − J ′′) /T ] ,
d = C exp [(J − J ′ − J ′′) /T ] .

(3)

The symmetric eight-vertex model corresponds to the
case with no electric fields, E = E′ = 0. Comparing (1)
with (3) we see that the horizontal and vertical nearest-
neighbour Ising couplings vanish, Jh = Jv = 0. The sys-
tem is thus composed of two alternating Ising sublattices,
one with the two-spin coupling J and the other with J ′,
the interaction between the sublattices being provided ex-
clusively by the plaquette four-spin interactions J ′′. If
J ′′ = 0, the system splits into two separated Ising lattices.
The vertex weights (3) are reduced to

a1 = a2 ≡ a, a = C exp [(J + J ′ + J ′′) /T ] ,
b1 = b2 ≡ b, b = C exp [(−J − J ′ + J ′′) /T ] ,
c = C exp [(−J + J ′ − J ′′) /T ] ,
d = C exp [(J − J ′ − J ′′) /T ] .

(4)

The symmetric eight-vertex model has five phases [5].
We shall concentrate on the ferroelectric-A phase, defined
by the inequality a > b + c + d, and the disordered phase,
defined by a, b, c, d < (a + b + c + d)/2. The second-
order transition between these phases takes place at the
hypersurface

ac = bc + cc + dc, (5)

where c-subscript means evaluated at the critical temper-
ature Tc. In the special case J ′′ = 0 and J ′ = J , the re-
lation (5) implies the well-known critical condition for the
Ising model 2J/Tc = ln(1+

√
2). Within the framework of

the Ising representation, the magnetic critical exponents
α, β, γ and ν, which describe the singular dependence of
statistical quantities on the small temperature difference
ΔT = Tc − T , are expressible in terms of the auxiliary
parameter

μ = 2 arctan

(√
acbc

ccdc

)
= 2 arctan

(
e2J′′/Tc

)
(6)

as follows [5]:

α = 2− π

μ
, β =

π

16μ
, γ =

7π

8μ
, ν =

π

2μ
. (7)
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If J ′′ = 0, we have μ = π/2 and eq. (7) gives the standard
2D Ising indices

αI = 0, βI =
1
8
, γI =

7
4
, νI = 1. (8)

Suzuki [15] proposed to express the singular behaviour
of statistical quantities close to the critical point in terms
of the inverse correlation length ξ−1 ∝ (Tc − T )ν (T →
T −

c ), instead of the temperature difference Tc − T . The
new (rescaled) critical exponents

φ̂ ≡ 2− α

ν
= 2, β̂ ≡ β

ν
=

1
8
, γ̂ ≡ γ

ν
=

7
4

(9)

become universal and belong to the Ising universality
class. The remaining two exponents δ and η, defined just
at the critical point, are constant and have their 2D Ising
values

δ = 15, η =
1
4
. (10)

The phenomenon is known as “weak universality”.

Method. – The CTMRG method [33,34] is based on
Baxter’s corner transfer matrices [5]. Each quadrant of
the square lattice with dimension L× L is represented by
one corner matrix C and the partition function Z = TrC4.
The density matrix is defined by ρ = C4, so that Z = Trρ.
The number of degrees of freedom grows exponentially
with L and the density matrix is used in the process of
their reduction. Namely, degrees of freedom are iteratively
projected to the space generated by the eigenvectors of the
density matrix with largest eigenvalues. Dimension of the
truncated space is denoted by the D; the larger the value
of D taken, the better precision of the results is attained.
The fixed boundary conditions are used, each spin at the
boundary is set to value σ = −1. This choice ensures a
quicker convergence of the method in the ordered phase.

From a technical point of view, it is important that the
density matrix ρ be symmetric. It turns out that the sym-
metricity of ρ is ensured by the condition

c = d, (11)

which corresponds, in the Ising representation (3), to the
constraint J = J ′. The subspace of vertex weights (11) in-
volves both cases without and with external fields. This is
why the restriction (11), considered throughout the whole
work, does not prevent us from studying the effect of fields
on critical properties of the eight-vertex model. We shall
focus on the critical exponents ν, η, β and the central
charge c.

The critical exponent ν can be obtained from the de-
pendence of the internal energy U on the linear size of the
system L at the critical point [35],

U(L)− U(∞) ∼ L1/ν−2, T = Tc. (12)

The effective (i.e., L-dependent) exponent νeff is calcu-
lated as the logarithmic derivative of the internal energy

as follows:

νeff =
[
3 +

∂

∂ ln L
ln

(
∂U

∂L

)]−1

. (13)

If T �= Tc, the plot νeff(L) either goes quickly to 0 or
diverges as L increases. This means that we can determine
the critical temperature Tc from the requirement

lim
L→∞

νeff(L)→ ν, (14)

where 0 < ν < ∞ is the critical exponent we are looking
for.

The critical index η can be deduced from the L-
dependence of the magnetization M = 〈σ〉 at the critical
point [35],

M ∼ L−η/2, T = Tc. (15)

The effective exponent ηeff is calculated as a logarithmic
derivative of magnetization

ηeff = −2
∂ ln(M)
∂ ln(L)

. (16)

As before, η = limL→∞ ηeff(L).
To calculate the critical exponent β, we make use of the

T -dependence of the spontaneous magnetization M close
to the critical temperature Tc:

M ∝ (Tc − T )β as T → T −
c . (17)

The critical exponent β is extracted via the logarithmic
derivative

βeff =
∂ ln(M)

∂ ln(Tc − T )
. (18)

In general, βeff as a function of T has one extreme (maxi-
mum) at T ∗, decays slowly for T < T ∗ and drops abruptly
for T ∗ < T < Tc, since the CTMRG method is inaccurate
close to Tc. This is why we take as the critical index β the
maximal value of βeff, β = βeff(T ∗).

Another important quantity is the von Neumann en-
tropy, defined by

SN = −Tr ρ ln ρ. (19)

Close to a critical point, it behaves as [36,37]

SN ∼ c

6
ln ξ, (20)

where c is the central charge. Consequently, SN has a
logarithmic divergence at the critical point. We ignore
this alternative way of determining Tc since the previous
determination of Tc via the stability condition (14) with
a finite value of ν requires less computation and leads to
more accurate results. At the critical point, SN grows with
the system size L as follows:

SN ∼ c

6
ln L, T = Tc. (21)
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10 100 1000
L

0.6

0.8

1

1.2

1.4

ν ef
f

b
c
 = 0.1

b
c
 = 0.2

b
c
 = 0.3

b
c
 = 0.5

Fig. 3: The symmetric eight-vertex model: the dependence of
the effective critical index νeff on the system size L, for four
values of the critical vertex weight bc = 0.1, 0.2, 0.3 and 0.5. As
L increases, νeff tends to Baxter’s exact value of ν represented
by dotted lines D = 1000.

The effective central charge is given by

ceff = 6
∂SN

∂ ln L
(22)

and the central charge c = limL→∞ ceff(L). We recall that
c = 1/2 for the universal Ising model and c = 1 for the
weakly universal symmetric eight-vertex model [5].

Test on the symmetric eight-vertex model. – We
first test the CTMRG method on the exactly solved sym-
metric eight-vertex model with vertex weights (4), c = d.
Baxter’s critical exponents are given by eqs. (6) and (7).
We parametrize the vertex weights in such a way that on
the critical hypersurface (5) one has

ac = 1 (εa = 0), cc =
1− bc

2
. (23)

The value of the critical temperature is fixed to Tc = 1.
For four values of the critical vertex weight bc =

0.1, 0.2, 0.3 and 0.5, the numerical results for the effec-
tive critical index νeff as a function of the system size L
are pictured in fig. 3; hereinafter, the L-dependence of an
effective critical index will be set in the logarithmic scale.
It is seen that as L increases νeff tends to the Baxter’s
exact value of ν (horizontal dotted line).

The effective exponent βeff is first plotted as a function
of the distance from the critical temperature ΔT ≡ Tc −
T for one fixed value of the critical vertex weight bc =
0.3 in fig. 4. As the dimension of the truncated space of
the density matrix D increases from 50 up to 200, the
maximum of the βeff(ΔT ) plot approaches systematically
to the Baxter exact result for β, represented by solid lines.

For the fixed truncation order D = 200 and four values
of the critical vertex weight bc = 0.1, 0.2, 0.3, 0.5, the effec-
tive exponent βeff as a function of ΔT is plotted in fig. 5.
The maxima of the βeff(ΔT ) plots are close to the Baxter
exact results for β, represented by dotted lines. The inset

0 0.0005 0.001 0.0015 0.002
ΔT

0.08

0.085

0.09

0.095

β ef
f

D=50
D=100
D=150
D=200
Baxter

Fig. 4: The symmetric eight-vertex model with the critical
vertex weight bc = 0.3: the dependence of the effective crit-
ical index βeff on the distance from the critical temperature
ΔT ≡ Tc − T , for four values of the truncation parameter
D = 50, 100, 150 and 200. The exact Baxter result is repre-
sented by solid lines.

0 0.005 0.01 0.015 0.02
ΔT

0.06

0.08

0.1

0.12

0.14

0.16
β ef

f

0.1 0.2 0.3 0.4 0.5
b

c

0.124

0.125

0.126

∧
β

b
c
 = 0.1

b
c
 = 0.2

b
c
 = 0.3

b
c
 = 0.5

Fig. 5: The symmetric eight-vertex model: the effective critical
exponent βeff as a function of ΔT , for four values of the critical
vertex weight bc = 0.1, 0.2, 0.3, 0.5 and the truncation order
D = 200. The maxima of the plots are close to the Baxter exact
results for β, represented by horizontal dotted lines. The inset
shows an almost constant dependence of the rescaled critical
index β̂ ∼ 1/8 on bc.

of fig. 5 shows the dependence of the rescaled critical in-
dex β̂ ≡ β/ν on bc. We see that β̂ varies slightly between
0.124 and 0.126, i.e. the numerical results indicate with
a high accuracy that β̂ is a constant, close to the exact
Baxter value 1/8. The major source of numerical errors in
our calculations is the dimension of the truncated space
D. We see that there is a dispersion of the results for
different values of the parameter bc, even though they are
calculated with the same value of D. The dispersion orig-
inates from the fact, that each set of vertex parameters
represents a different system with different rate of conver-
gence. We can expect a comparable dispersion of values
of the exponent β̂ for the eight-vertex model with fields.

For the symmetric eight-vertex model with bc = 0.3,
the solid curve in fig. 6 shows the size L-dependence of
the effective critical exponent ηeff. The curve converges

56001-p4



Critical properties of the eight-vertex model in a field

10 100 1000
L
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0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

η ef
f

1

2

i

ii

Fig. 6: The effective critical exponent ηeff as a function of the
system size L. The solid curve corresponds to the symmetric
eight-vertex model with bc = 0.3, the dashed lines 1 and 2
to the partially symmetric cases (26) and (27), respectively,
the dash-dotted lines i and ii to the non-symmetric cases (29)
and (30), respectively. In all cases, as L increases ηeff goes
asymptotically to η = 1/4. D = 1000.

10 100 1000
L

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c ef
f

1

2

i

ii

Fig. 7: The effective central charge ceff as a function of the sys-
tem size L. Notation of curves as in fig. 6. As L increases, the
symmetric and partially symmetric eight-vertex models tend
to c = 1, the non-symmetric models to the Ising c = 1/2.
D = 1000.

to the Ising value η = 1/4 as it should be. The effective
central charge ceff as a function of L is pictured in fig. 7
by a solid line. For large L, ceff goes to c = 1 which
is the central charge of the weakly universal symmetric
eight-vertex model.

The eight-vertex model in a field. – For the eight-
vertex model in a field, we distinguish between two cases.

In the partially symmetric case, we keep the symmetry
of either a’s or b’s vertex weights:

a1 = a2 = a, b1 �= b2, (24)

or
a1 �= a2, b1 = b2 = b. (25)

As follows from the representation (1), the eight-
vertex model (24) corresponds to non-zero external fields

10 100 1000
L

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

ν ef
f 1

2

i

ii

Fig. 8: The effective critical exponent νeff as a function of the
system size L. Notation of lines as in fig. 6. D = 1000.

E = −E′ and the one (25) to E = E′. For simplicity,
we shall concentrate on the version (24) and consider two
specific choices of vertex weights, denoted as 1 and 2.

– The choice 1 is characterized by Tc = 0.512195 and

ac = 0.4828,
b1c = 0.0546, b2c = 0.1193,
cc = 0.1974.

(26)

– The choice 2 is characterized by Tc = 0.987774 and

ac = 1,
b1c = 0.3230, b2c = 0.4843,
cc = 0.2956.

(27)

In the non-symmetric case, both vertex weights a’s and
b’s are unequal:

a1 �= a2, b1 �= b2. (28)

The non-symmetric eight-vertex model corresponds to
non-zero external fields E and E′, such that E �= ±E′.
We consider two choices of vertex weights, denoted as i
and ii.

– The choice i is characterized by Tc = 0.740096 and

a1c = 0.6916, a2c = 0.5278,
b1c = 0.1530, b2c = 0.2005,
cc = 0.3253.

(29)

– The choice ii is characterized by Tc = 1.172793 and

a1c = 1.0890, a2c = 0.9183,
b1c = 0.4204, b2c = 0.49856,
cc = 0.3582.

(30)

The numerical results for the effective critical index νeff
as a function of the system size L are presented in fig. 8.
It is seen that for the symmetric eight-vertex model with
bc = 0.3 (solid curve) as well as for the partially symmetric
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0 0.0005 0.001 0.0015
ΔT/Tc

0.08

0.09
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β ef
f

sym 1 2
0.124

0.1245

0.125

0.1255

0.126

∧
β

1
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i

ii

Fig. 9: The effective critical exponent βeff as a function of
ΔT/Tc. Notation of curves as in fig. 6. The inset documents
that the rescaled critical index β̂ ∼ 1/8 for the symmetric and
partially symmetric cases 1 and 2, confirming in this way their
weak universality. D = 200 for the main figure and D = 300
for the inset; the critical index ν is calculated with D = 1500.

50 100 150 200 250 300
D

0.122

0.123

0.124

0.125

∧ β

sym
1
2

Fig. 10: The rescaled critical index β̂ = β/ν as a function of
the dimension of the truncated space D, for the symmetric (•)
and partially symmetric cases 1 (�) and 2 (�). The critical
index ν is calculated with D = 1500.

cases (26) and (27) (dashed lines 1 and 2, respectively), as
L increases νeff tend to parameter’s dependent values of ν.
On the other hand, for both non-symmetric cases (29)
and (30) represented by the dash-dotted lines i and ii,
respectively, νeff approaches to the Ising value of ν = 1.

The dependence of the effective critical index βeff on the
size L is presented in fig. 9. As before, for the partially
symmetric cases 1 and 2, as L increases the maxima of
βeff indicate parameter’s dependent values of β. We show
in the inset that the rescaled critical index β̂ ∼ 1/8 for
these partially symmetric cases, confirming in this way
their weak universality. We have chosen the range of
β̂-axis between 0.124 and 0.126, which is the anticipated
dispersion of the weak-universality results based on the nu-
merical treatment of the exactly solvable symmetric case
(see fig. 5). For both non-symmetric cases i and ii, βeff is
consistent with the fixed Ising value of β = 1/8.

In fig. 10, for the symmetric and partially symmetric 1
and 2 cases, we present the convergence of the rescaled
exponent β̂ ≡ β/ν as a function of the dimension of the

density-matrix truncated space D used for determining
the exponent β; the dimension D for the exponent ν is
constant, D = 1500. As D increases, the values of β̂
approach the expected 1/8. Tiny deviations from 1/8 are
caused by the error in the determination of the exponent ν.

As concerns the effective critical exponent ηeff, all curves
in fig. 6 converge as L→∞ to the same η = 1/4.

The effective central charge ceff is presented as a func-
tion of size L in fig. 7. For the partially symmetric cases
1 and 2, as L increases ceff goes to c = 1 which is the
central charge of the weakly universal symmetric eight-
vertex model. For both non-symmetric cases i and ii, ceff
tends for large L to c = 1/2 which corresponds to the Ising
universality class.

Conclusion. – In this letter, we have studied the effect
of external fields on critical properties of the eight-vertex
model on the square lattice. The model was studied nu-
merically by using the CTMRG method which represents a
powerful mean to calculate accurately the critical temper-
ature, critical exponents and the central charge c. Within
the magnetic representation of the eight-vertex model, we
have calculated the critical exponents ν and β, which are
sufficient to investigate the phenomenon of weak univer-
sality, and the exponent η, which is anticipated to be the
same for all cases. The exactly solvable symmetric (zero-
field) eight-vertex model exhibits weak universality which
was verified numerically with a high precision, see figs. 3
and 5 with the inset. Kadanoff [26] and Baxter [5] conjec-
tured that the presence of non-zero external fields destroys
weak universality and the system belongs to the Ising uni-
versality class. We have checked numerically this conjec-
ture in a subspace of vertex weights (11) which ensures the
symmetricity of the density matrix ρ. Our conclusion is
that in the presence of fields one has to distinguish between
the partially symmetric case, see eqs. (24) and (25), and
the fully non-symmetric case (28). The non-symmetric
case, represented in figs. 6–9 by dash-dotted curves i and
ii, evidently belongs to the Ising universality class with
critical exponents independent of model’s parameters and
c = 1/2, in agreement with the conjecture. However, the
partially symmetric case with non-zero fields E and E′

such that E = ±E′, represented in figs. 6–9 by dashed
lines 1 and 2, has critical exponents ν and β dependent
on model’s parameters and exhibits weak universality (see
the inset of fig. 9) with c = 1. This contradicts Kadanoff’s
and Baxter’s conjecture.

It would be interesting to extend the present treatment
to the whole space of vertex weights, without restric-
tion (11). This requires to diagonalize a non-symmetric
density matrix which is a non-trivial task. The crucial
question is whether the partially symmetric eight-vertex
model remains to be weakly universal when the c = d
symmetry is broken. Another open question are the val-
ues of “electric” critical exponents associated directly with
the polarization and the arrow correlation function of the
eight-vertex model.
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