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Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is
analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector
that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between
the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog
of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group
method. The obtained phase diagram consists of four different phases, which are separated by five transition
lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is
observed.
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I. INTRODUCTION

Symmetry breaking is one of the fundamental concepts in
the field theoretical analyses. Phase transitions in statistical
models are known as the typical realizations of the symmetry
breaking, where the feature of transitions is dependent on
symmetries in local degrees of freedom. For example, the
classical Heisenberg model has the O(3) symmetry, and there
is ferromagnetic-paramagnetic phase transition of the second
order when the model is on the cubic lattice, and when
the interaction is ferromagnetic. In this case the transition
temperature is of the order of the interaction energy divided
by Boltzmann constant.

The O(3) symmetry group has discrete subgroups, some of
which correspond to polyhedral symmetries that correspond
to Platonic polygons. Discrete counterpart of the classical
Heisenberg model can be defined according to the polyhedral
group symmetries. For example, a ferromagnetic 30-state
discrete vector spin model was introduced by Rapaport, for
the purpose of simplifying Monte Carlo simulation of the
three-dimensional (3D) ferromagnetic Heisenberg model [1].
In this discretization, the middle points of the edges of the
icosahedron, which has 12 vertices and 30 edges, are allowed
to be the local spin degrees of freedom. It was shown that the
calculated phase transition temperature coincides well with
that of the 3D Heisenberg model. Margaritis et al. considered
a 12-state discrete vector model, which corresponds to the
icosahedral symmetry, and also the 20-state one with the
dodecahedral symmetry [2]. On the cubic lattice, it was
shown that the 12-state model already well represent the
phase transition of the 3D Heisenberg model. Thus, in
three dimensions, the effect of such discretization introduced
in the 12-, 20-, and 30-state vector models is irrelevant, as long
as the universality of the phase transition is concerned.

In two dimensions (2D), the situation is somewhat different.
The continuous symmetry of the Heisenberg model prohibits
the phase transition at finite temperature when the model
is defined on 2D lattices [3]. Thus, if a discrete symmetry is
introduced, it could be a relevant perturbation. It is instructive
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to recall that the q-state clock model, the discrete analog of the
classical XY model, shows a Bereziskii-Kosterlitz-Thouless
(BKT) phase transition [4–6] when q � 5. In the case of
the ferromagnetic tetrahedral model on the square lattice,
where only four states are allowed, there is a phase transition
subject to the four-state Potts universality class [7]. Nienhuis
et al. showed that the cubic anisotropy is relevant to the
O(3) symmetry on 2D lattice, and a nontrivial phase diagram
was reported for the ferromagnetic case [8]. Margaritis et al.
confirmed the presence of the order-disorder phase transition
in the discrete vector spin models with 12, 20, and 30 degrees
of freedom on the square lattice and showed that the transition
temperature is strongly dependent on the number of the local
spin states [2]. Patrascioiu and Seiler performed a scaling
analysis for the case of the icosahedral discretization and
estimated the critical exponents assuming that the transition is
of the second order [9]. A perturbative analysis of the critical
behavior has been performed by Caracciolo et al., and critical
indices for the tetrahedral, cubic, and octahedral cases were
estimated [10,11]. Surungan revisited the icosahedral and the
dodecahedral cases and obtained transition temperature and
critical exponents, that agree with the previous studies [12].

A theoretical interest in the 2D polyhedral models is
being focused on cases, where the discrete symmetry group
has subgroups. In such cases, successive transitions from a
phase with a higher symmetry to another phase with a lower
symmetry can be observed; the symmetry is only partially
broken in the intermediate temperature region. Surungan et al.
investigated a discrete counterpart of the Heisenberg model,
the edge-cubic model, in which the local spins can point to one
of the 12 vertices of the cuboctehadron [13]. They detected two
phase transitions: the first one in the low-temperature side of
the three-state Potts universality class, and the second one in
the high-temperature side, which could be explained by the
cubic symmetry. The edge-cubic model belongs to a variety
of truncated Platonic—Archimedean—solid models, which
can also be regarded as discrete counterparts to the classical
Heisenberg model. In this work we investigate another exam-
ple of the truncated models, the truncated tetrahedral model
(TTM), which is defined as a continuous interpolation between
the tetrahedral and the octahedral models. The reason we have
chosen this case of TTM is that the octahedral case with the
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six degrees of freedom is much less studied if compared to
other symmetries, and we intend to analyze the stability of
the critical behavior with respect to perturbations toward the
tetrahedral symmetry.

This article is organized as follows. In the next section we
introduce the TTM, and briefly discuss its property around
the octahedral and the tetrahedral limits. In Sec. III, the phase
diagram in the entire parameter region is determined by means
of the classical analog of the entanglement entropy, which is
calculated from the spectrum of the density matrix obtained
by the corner transfer matrix renormalization group (CTMRG)
method [14,15]. We then classify the nature of the phase
transition lines. The obtained results are summarized in the
last section.

II. TRUNCATED TETRAHEDRAL MODEL

We consider a finite-directional counterpart of the classical
Heisenberg model on the 2D square lattice. Local spin on each
lattice site is represented by a unit vector that can point to one
of the 12 vertices of the truncated tetrahedron shown in Fig. 1,
whose shape is determined by a parameter t from octahedral
limit t = 0 to the tetrahedral one t = 1. We represent the spin
variable on the site that is specified by indices i and j by means
of the unit vector Si,j (t) given by

Si,j (t) =
√

1 + 2t2

2
s[k](t), (1)

where the components of unnormalized vector s[k](t) for
k = 1–12 are listed in Table 1. We assume that ferromagnetic
coupling J > 0 is present between nearest-neighbor sites, and
that the interaction is represented in the form of inner product.
Under these settings, the Hamiltonian of the TTM is written
as

Ht = −J
∑
i, j

[Si,j (t) · Si+1,j (t) + Si,j (t) · Si,j+1(t)]. (2)

As it is shown in Fig. 1, the TTM reduces to the
tetrahedral model in the limit t = 1, apart from the mul-
tiplicity of 3 for each tetrahedron vertices. One can check
the equivalence s[1](1) = s[4](1) = s[10](1) from Table I, and
the same for the groups k = 2,5,8, k = 3,6,11, and k =
7,9,12. The tetrahedral model is essentially equivalent to the
four-state Potts model [7]. In another limit t = 0, the TTM
reduces to the octahedral model; in this case k = 1,2, k =
3,4, k = 5,6, k = 7,8, k = 9,10, and k = 11,12 are the six
directions of the octahedron vertices.

FIG. 1. Truncated tetrahedron (shown in the middle,
parametrized by t = 0.5) is depicted as the interpolation between the
octahedron (on the left for t = 0) and the tetrahedron (on the right
for t = 1).

TABLE I. Directions of the 12 vertices of the truncated tetrahe-
dron represented by means of the unnormalized vector s[k](t).

k s[k](t) k s[k](t)

1
(
t,0,− 1√

2

)
2

(
−t,0,− 1√

2

)

3
(

1−t

2 , 1+t

2 , t√
2

)
4

(
1+t

2 , 1−t

2 ,− t√
2

)

5
(
− 1+t

2 , 1−t

2 ,− t√
2

)
6

(
− 1−t

2 , 1+t

2 , t√
2

)

7
(
− 1−t

2 ,− 1+t

2 , t√
2

)
8

(
− 1+t

2 ,− 1−t

2 ,− t√
2

)

9
(

1−t

2 ,− 1+t

2 , t√
2

)
10

(
1+t

2 ,− 1−t

2 ,− t√
2

)

11
(

0,t, 1√
2

)
12

(
0,−t, 1√

2

)

In order to obtain the phase diagram with respect to the
parameter t and the temperature T , we calculate the free energy
of the TTM. Let us consider the finite size system of the size
L by L. The partition function

Zt (T ; L) =
∑
{S(t)}

exp

(
− Ht

kBT

)
(3)

is the configuration sum of Boltzmann factor taken over all
the spins denoted by {S(t)}. Here, kB is Boltzmann constant,
and we use the dimensionless units by setting kB = J = 1.
Once Zt (T ; L) is obtained for a series of system size L, we
can estimate the free energy per site

ft (T ) = lim
L→∞

− 1

L2
kBT ln Zt (T ; L) (4)

in the thermodynamic limit.
As a numerical tool to obtain Zt (T ; L), we use the CTMRG

method, which was developed from Baxter’s corner transfer
matrix (CTM) formalism [16]. The method enables one to
calculate the partition function in the form

Zt (T ; L) = Tr C4 , (5)

where C is the CTM, which corresponds to a quadrant of the
finite system [14,15]. It is convenient to define the normalized
density matrix

ρ(T ; L) = C4

Tr C4
= C4

Zt

, (6)

and the mean value of a local operator O at the center
of the system is given by 〈O〉 = Tr(Oρ). In the CTMRG
calculations, we keep m = 300 representative states at most.
Further details of the free energy analysis by CTMRG can be
found in Ref. [17].

A 2D classical system is related to a 1D quantum system
via the socalled quantum-classical correspondence, which
is justified via the path integral formulation; [18] on the
discrete lattice, the Suzuki-Trotter decomposition provides an
explicit mapping [19–21]. This correspondence enables us to
introduce the notions of quantum information, such as the
concurrence [22,23] and the entanglement entropy [23–25] to
2D classical systems. Let us regard the horizontal direction
of our 2D classical lattice model as the space direction,
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FIG. 2. Temperature dependence of the classical analog of the
entanglement entropy Sv for t = 0.2, t = 0.3, and t = 0.4. The
vertical dotted lines denote phase boundaries, and each phase is
labeled by the Roman number.

and vertical direction as the imaginary time one. The lower-
half lattice is then identified with the past, and the upper
half is the future. In the CTM formalism, both of these
halves are represented as the product C2 of two CTMs, and
therefore the density matrix ρ(T ; L) in Eq. (6) corresponds to
square geometry on the 2D lattice, where there is a cut from the
center of the system toward either left or right boundary with
open boundary condition. The detail of this correspondence is
reported by Tagliacozzo et al. [26].

Based on the quantum-classical correspondence, the clas-
sical analog of the entanglement entropy in the current study
is represented as

Sv(T ; L) = −Tr ρ ln ρ ∼ −
m∑

k=1

λk ln λk, (7)

where λk are the eigenvalues of the density matrix ρ(T ; L)
in Eq. (6). As a consequence of the conformal invariance at
criticality [27], it is known that close to a critical point, the
entanglement entropy scales as Sv(T ; ∞) ∼ c

6 ln ξ , where c

is a central charge and ξ is the correlation length in both
1D-quantum and 2D classical systems [28–31]; note that we
are effectively considering a system with open boundary con-
dition. Thus Sv(T ; ∞) is divergent at the critical point, and can
be used for finding the location of phase boundaries [26]. In the
case of first-order phase transition, Sv(T ; ∞) is discontinuous
at the transition point. As examples, we show Sv(T ; L) when
L = 1000 for the cases t = 0.2, 0.3, and 0.4 with respect to
temperature T in Fig. 2. It should be noted that there is no need
to observe thermodynamic functions and order parameters for
the determination of the phase boundary.

III. PHASE DIAGRAM

Figure 3 shows the phase diagram of the TTM determined
from the singular or discontinuous behavior in Sv as shown
in Fig. 2. There are four phases, which are labeled from I
to IV in the diagram. In the low-temperature side, there is a
ferromagnetic phase I, where the symmetry is totally broken.

FIG. 3. Phase diagram of the TTM with respect to the parameter
t and the temperature T . The circles denote the second-order phase
transition. The phase boundaries shown by triangles are identified as
the first-order ones.

The intermediate phase II in the octahedral side has the Z2
symmetry, and if the directions k = 1 and k = 2 according
to Table I are spontaneously chosen, these two directions
appear equally. The intermediate phase III in the tetrahedral
side has the D3 symmetry, and if the directions k = 1, k = 4,
and k = 10 are spontaneously chosen, these three directions
appear equally. The phase IV in the high temperature side is
completely disordered. The phase boundaries shown by the
circles are of the second-order phase transition, and those
shown by the triangles are identified as first-order ones. We
observe the detail of each phase boundary in the following.

Let us observe the phase boundary between the phases I
and II, and also the boundary between the phases I and III.
When the transition is of the second order, its universality
can be determined by means of finite-size corrections in
thermodynamic functions [32,33]. We consider the internal
energy per site

ut (T ; L) = T 2

L2

∂

∂T
{kB ln Zt (T ; L)} (8)

as an example. At the critical temperature Tc, the internal
energy per site satisfies

ut (Tc; L) − ut (Tc; ∞) ≡ �ut (L) ∝ L1/ν−2 , (9)

where ν is the scaling exponent for the correlation length. One
can obtain ν observing the L dependence of the effective value

νeff(L) =
[

2 + ∂ ln �ut (L)

∂ ln L

]−1

, (10)

which is shown in Fig. 4. The results agree with the Ising
universality with ν = 1 for the I–II phase boundary (t = 0.1),
and the three-state Potts universality with ν = 5/6 for the I–III
boundary (t = 0.35).

In order to obtain another scaling exponent, we observe an
appropriate order parameter Ot (T ; L), for which the finite-size
correction satisfies the relation

Ot (Tc; L) ≡ �Ot (L) ∝ L−η/2 (11)
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FIG. 4. Effective exponent νeff (L) in Eq. (10) calculated at the
I–II phase boundary when t = 0.1 (squares), and that at the I–III
boundary when t = 0.35 (circles).

noticing that Ot (Tc; ∞) is zero. In the same manner as we have
considered in Eq. (10), we can obtain η from the effective value

ηeff(L) = −2
∂ ln �Ot (L)

∂ ln L
. (12)

Inside the phase II we choose the order parameter

Ot (L) = p1 + p2 + p3 + p4 − 2p5 − 2p6

+ p7 + p8 − 2p9 − 2p10 + p11 + p12,
(13)

where pk are the probability of the spin at the center of the
system to point to kth direction listed in Table I. Inside the
phase III we choose

Ot (L) = p1 − p2 + p3 − p4 + p5 − p6

+ p7 − p8 + p9 − p10 + p11 − p12.
(14)

Figure 5 shows the system size dependence of ηeff(L). The
behavior at the I–II phase boundary (t = 0.1) agrees with
Ising universality class with η = 1/4. At the I–III boundary,
the convergence with respect to L is rather slow, but ηeff(L)
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4/15

FIG. 5. Effective exponent ηeff (L) in Eq. (12) calculated at the
I–II phase boundary when t = 0.1 (squares), and that at the I–III
boundary when t = 0.35 (circles).
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FIG. 6. Free energy per site ft (T ) with respect to the parameter t

at fixed temperature T = 0.5 under the fixed (triangles) and the free
(circles) boundary conditions.

certainly approaches the value η = 4/15 of the three-state
Potts universality class.

We next observe the II–III phase boundary in the intermedi-
ate temperature region. Figure 6 shows the crossing behavior
in the free energy per site ft (T ) at T = 0.5 with respect to
t , where the crossing point is t = 0.303279. We have chosen
both fixed and free boundary conditions to weakly favor one of
the two phases. Since the Z2 symmetry in the phase II and D3
symmetry in the phase III are not a subgroup with each other,
a direct second-order phase transition between these phases is
prohibited. It should be noted that the II–III boundary is not
vertical in Fig. 3.

Figure 7 shows the calculated free energy per site ft=0(T )
at the octahedral limit t = 0, which are calculated under the
fixed and the free boundary conditions. Within the shown
temperature region, the lower plots are thermodynamically
stable, and the upper ones are quasistable. These two lines
cross at T0 = 0.908413. This crossing behavior in ft=0(T )
shows that the transition is of the first order. At the transition
temperature T0, the internal energy per site ut (T ; L) in Eq. (8)
is discontinuous in the thermodynamic limit. From the jump in
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FIG. 7. Temperature dependence of the free energy per site ft (T )
in Eq. (4) when t = 0, where the TTM coincides with the octahedral
model. The triangles and the circles correspond to ft (T ) calculated
under fixed and free boundary condition, respectively.
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FIG. 8. Free energy per site ft=0.2(T ) around the II–IV phase
boundary calculated for both fixed and free boundary conditions; the
inset shows their difference.

ut (T ; L) when L is sufficiently large, we obtain the latent heat
Q = 0.073. Figure 8 shows ft=0(T ) when t = 0.2. Again we
observe the crossing behavior in ft (T ), where the lines cross
at T0 = 0.808574. The latent heat is estimated as Q = 0.028.
These results support the presence of a weak first-order phase
transition along the II–IV phase boundary.

Since the TTM coincides with the tetrahedral model in
the limit t = 1, the critical temperature Tc in this limit can
be calculated exactly as Tc = 4J/(3 ln 3) ≈ 1.21365J , and
the transition belongs to the four-state Potts universality class.
In this case, numerical confirmation is not straightforward,
because of the nature of BKT transition [4–6]. Along the III–IV
phase boundary, we observed a very slow convergence in free
energy with respect to the system size L, which suggests the
presence of BKT transition in the whole part of the III–IV
boundary. We leave the confirmation of this conjecture for a
future study.

IV. DISCUSSION AND CONCLUSIONS

We have investigated the phase diagram and the thermody-
namic properties of the truncated tetrahedral model by means
of the CTMRG method. It is shown that the classical analog
of the entanglement entropy, which can be calculated from the

eigenvalue spectrum of the corner transfer matrix, is efficient
for the detection of the phase boundaries. Since the free energy
per site is directly obtained by the CTMRG method, first-order
phase transition can be directly detected as a crossing of the
value.

As a result of the numerical calculation, four phases are
detected. There is the ferromagnetic “phase I” in the low
temperature side. In the intermediate temperature region, there
are the “phase II” with Z2 symmetry and the “phase III” with
D3 one; the boundary between these intermediate phases is of
the first order. The phase transition between the completely
disordered high-temperature phase, the “phase IV,” to the
phase II is of the first order, where the calculated latent heat is
very small. Thus in both octahedral and tetrahedral limits, the
effect of the truncation is perturbative in the sense that phases
II and III occupy finite area in the phase diagram, and that
the phases I and IV do not touch directly. The BKT transition
between the phases III and IV could be further analyzed by
means of the modern finite size scaling method by Hsieh
et al. [34].

The presence of the weak first-order transition on
the II-IV phase boundary including the octahedral limit
t → 0 draws attention to revisiting both the icosahedral and
the dodecahedral models, which have larger local degrees
of freedom than the truncated tetrahedron model we have
considered. It should be noted that the two-dimensional q-state
Potts model shows first-order phase transition when q � 5;
similar first-order nature could be expected also in polyhedron
models, when the site degrees of freedom is relatively large.
To perform the numerical CTMRG calculation in a stable
manner under icosahedral or dodecahedral symmetry is a kind
of computational challenge, since the requirements on the
computational memory are huge compared with the currently
available computational resources.
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