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Voltage-induced conversion of helical to uniform nuclear spin polarization in a quantum wire
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We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains
electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically
polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here
on nonequilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically
polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is
established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform
nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a
thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear
spin helix polarization in semiconducting quantum wires.
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I. INTRODUCTION

Magnetic structures are promising platforms for many
modern devices, e.g. memory [1], sensors [2], and quantum
computation hardware [3]. The opportunities to get an ordered
magnetic phase in the bulk and low-dimensional systems due
to Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [4–7]
were studied in a number of theoretical and experimental
works [8–13]. The prominent feature of RKKY interaction
in one-dimensional (1D) systems is the ordering of localized
spins into a helix [14,15].

When the current is driven through the system of electrons
and nuclei, the spin polarization can be swapped between
the two subsystems through the hyperfine interaction, lead-
ing to dynamic nuclear polarization effects [16–21]. If the
polarization of current-carrying electrons and localized spins
differ, the spin-transfer torque arises [22,23], important for
dynamics of domain walls [24,25] and enhancing the tilting
of the spiral structure in helimagnets [26]. Closely related
is the dynamic nuclear polarization, arising, e.g., in helical
edge states of topological insulator. The backscattering of
helical electrons can be of different origins, such as assisted
by phonons [27], magnetic impurities [28], or absence of
axial spin symmetry [29]. It was shown that nuclear-assisted
backscattering of electrons due to hyperfine interaction induces
nuclear polarization when the current is driven through the
edge states of topological insulator [30,31].

The main motivation for our work comes from the recent
experiment by Scheller et al. [32], where the conductance of a
cleaved edge overgrowth GaAs quantum wire was measured.
The measurements showed that the conductance of the first
mode becomes e2/h at low temperatures instead of the naively
expected 2e2/h. This suggests the lifting of electron spin de-
generacy. The possible explanation is the presence of a helical
nuclear spin polarization that gaps out one subband and thus
provides an electron spin selection. Further ways to confirm the
presence of the nuclear spin helix were suggested theoretically,
by means of nuclear magnetic resonance [33], nuclear spin
relaxation [34], and quantum Hall effect anisotropies [35].

In this work, we propose and study a complementary
method to detect nuclear spin helical polarization in the wire.

It is based on the effect of bias voltage applied to the wire
and therefore straightforward to perform experimentally. We
investigate how the bias voltage applied to the wire affects
its nuclear spin polarization. We assume that at zero bias and
finite temperature, nuclear spins are partially polarized into a
helix due to the RKKY interaction. We find that an applied
voltage induces a uniform nuclear polarization from both
helical and nonpolarized nuclear spins available for nuclear
spin flips via electrons. Therefore, upon increasing the voltage
the helical nuclear polarization drops, while the uniform
polarization grows, and the total polarization grows too.
For small voltages and increasing temperature, the uniform
polarization grows because of thermal activation of electrons,
while the helical polarization dramatically drops in magnitude.
Once a macroscopic uniform polarization has developed, the
remaining nuclear spin helix rotates as a whole around the axis
along the uniform polarization. Since the helical polarization
affects the conductance of such systems [14,15,32,35], these
predicted features are expected to show up in the voltage
and temperature dependence of the transport current and thus
they can be tested experimentally. Recently, cantilever-based
magnetic sensing techniques have been reported which enable
nuclear spin magnetometry of nanoscale objects such as the
nanowires considered here [36,37]. Such powerful techniques
offer promising perspectives for direct experimental tests of
the results obtained in this work.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian of our model. In Sec. III, we describe the
properties of the electron bath. The derivation of the Bloch
equation for the total nuclear spin in the wire is discussed
in Sec. IV. The resulting nuclear spin polarization and its
dependence on the parameters of the system are presented
and discussed in Sec. V. Our conclusions follow in Sec. VI.
Additional information about our calculation is given in the
Appendix.

II. MODEL

We consider a one-dimensional electron gas and localized
spins in a semiconductor nanowire. We will refer to these
localized spins as nuclear spins in the following, however,
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they can be also of other origins, such as, e.g., magnetic
impurities, etc. The electrons and nuclei interact via the
hyperfine interaction described by the Hamiltonian

Hhyp = 1
2Aρ−1

0 |ψ⊥(R⊥)|2δ(r − R)σ · I, (1)

where A is a hyperfine constant of the material, ρ0 is the
nuclear spin density, ψ⊥ is the transverse part of electron
wave function, r denotes the electron position along the wire,
(R,R⊥) is the position of the nucleus along the wire and in
the transverse direction, respectively, σ is an electron spin
operator, and I is a nuclear spin operator (in units of �) with
the magnitude I . We assume that the transverse part of the
electron wave function ψ⊥(R⊥) is constant in the wire cross
section, |ψ⊥(R⊥)|2 = 1/C, where C is the wire cross-section
area. We parametrize it alternatively by the number of nuclear
spins in the cross section N⊥ = Caρ0, with a being the lattice
constant. In GaAs, ρ0 = 8/a3, a = 0.565 nm, A = 90 μeV,
I = 3

2 , and N⊥ is typically of the order of 103. Finally, we
introduce N = L/a with L the wire length (typically of order
microns), which gives NN⊥ as the total number of nuclear
spins in the wire.

We note that in the case where the “wire” is not physically
separated from the surrounding medium, the extent of the
electronic wave function (confined, e.g., electrostatically) in
the transverse direction sets the diameter of the wire in our
model. In such a case, we assume that the localized spins, if
present outside the wire volume, are not ordered, meaning the
surrounding medium is a paramagnet. Such an environment
would provide an additional dissipation channel, but would
not change the wire spin order, and thus our conclusions, in
any qualitative way.

The total Hamiltonian reads as

Htot = − �
2

2m
∂2
r + Hhyp, (2)

where m is electron effective mass and � is the Planck constant.
If the hyperfine interaction [Eq. (1)] is weak on the energy
scale of the electrons, its effects can be treated perturbatively.
The condition is quantified by A � εF , where εF is the Fermi
energy of the electron system. This condition is well satisfied in
the cases we consider here. A Schrieffer-Wolff transformation
on Htot perturbatively in Hhyp, i.e., in order A/εF , results to
leading order in an effective interaction between the localized
spins, the RKKY interaction [4–7,10,11]

HRKKY =
∑
i,j

I i · Jij I j . (3)

Here, the indexes i,j label the nuclear spins and the RKKY
coupling Jij = J (|Ri − Rj |) is related to the static spin sus-
ceptibility of electrons (see Eq. (C1) and below in Ref. [35]),
giving rise to the spatially dependent RKKY interaction.

Let us rewrite Eq. (3) in the momentum representation, de-
fined through the Fourier transforms Jq = ∑

Ri
exp[−iq(Ri −

Rj )]Jij , with Ri ∈ a,2a, . . . ,Na, and Iq = ∑
i exp(iqRi)I i ,

with i ∈ 1, . . . ,NN⊥, and in both cases q ∈ (2π/N ) ×
{0,1, . . . ,N − 1}. We get

HRKKY = 1

N

∑
q

Iq · Jq I−q . (4)

FIG. 1. (Color online) A sketch of a conducting wire (yellow
cylinder) with itinerant electrons (not shown) that couple to localized
nuclear spins (red arrows) via hyperfine interaction. As a result, a
helical nuclear polarization emerges below a critical temperature.
The blue spiral is a guide to the eye showing the direction of the
helical polarization. The helical plane is chosen to be perpendicular
to the wire axis (which need not be the case in general).

In one dimension, the RKKY coupling Jq has a sharp minimum
at momentum q = ±2kF , with kF = √

2mεF /� the electron
Fermi wave vector [14,15]. Consider an approximation in
which we neglect all values of Jq with respect to the large
(negative) value at this minimum,

HRKKY � 1

N
J2kF

(
I2kF

· I−2kF
+ I−2kF

· I2kF

)
. (5)

To understand the spectrum of this Hamiltonian, we introduce
linearly transformed spin operators

I i = Ru,2kF Ri
Î i , (6)

with Ru,φ the matrix corresponding to a rotation by angle φ

around a unit vector u. Inserting Eq. (6) into Eq. (5) we get

HRKKY � 1

N
J2kF

( Î⊥
q=0 · Î⊥

q=0 + B/2), (7)

where we define the vector components along u as Î u = Î · u,
and perpendicular to it as Î⊥ = Î − Î uu, and we separated the
terms bilinear in the spin operators at finite momenta

B =
∑

q=±2kF

[
2Î u

q Î u
−q+ Î⊥

2q · Î⊥
−2q + i sgn(q)( Î⊥

2q × Î⊥
−2q) · u

]
.

(8)

The first term in the bracket of Eq. (7) describes the energy of
ferromagnetically coupled spins Î i : a configuration in which
all these spins are collinear, along a vector perpendicular to u,
gives a minimal possible energy, of value NN2

⊥J2kF
I 2. This

configuration corresponds to a classical ground state of Eq. (4)
as well, as it saturates the energy lower bound obtained using∑

q |Iq |2 = NN⊥
∑

i |I i |2, the Parseval’s identity.
Going back to the laboratory frame according to Eq. (6),

the ground state corresponds to a helical configuration where
the nuclear spins are oriented parallel to each other in the wire
cross section, along a direction which rotates in a fixed plane
as one moves along the wire with the spatial period equal to a
half of the electron Fermi wavelength π/kF (for illustration,
see Fig. 1). We shall refer to this plane as the helical plane,
with u being its normal unit vector. A unit vector h ⊥ u gives
the direction of the polarization within this plane at position
R = 0.
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Equation (7) has full spin rotation symmetry, as it is just
Eq. (5) rewritten in a different reference frame. However,
through the choice of the definite helicity and the vector u,
the first term in Eq. (7) breaks this symmetry. To restore it, the
finite momenta components, Eq. (8), necessarily appear. To
understand these terms in more detail, we note that choosing
a frame with helicity opposite to the ground-state helicity
would lead to a swap of the roles of Î⊥

q=0 and Î⊥
±4kF

. Second,
configurations where both helicities are populated lead to a
lower energy gain. For example, choosing both with the same
weight gives in the laboratory frame a spin-density wave, i.e.,
a cos-like oscillation along a fixed vector I i = h cos (2kF Ri),
which gives only half of the energy gain of a helical order. Such
oscillating, rather than rotating, configuration corresponds to
the first term in Eq. (8). We therefore conclude that up to the
spin rotational symmetry, which allows for arbitrary directions
of u, and Î⊥, the ground state with ferromagnetically aligned
Î i (helically ordered I i) is unique.

If the order is established, the expectation value of Î⊥
q=0 is

macroscopic, and we parametrize it by a polarization ph,

〈 Î⊥
q=0〉 = NN⊥Iphh, (9)

so that ph = 1 corresponds to a completely ordered state. With
this, we reduce Eq. (5) by the mean field approximation to a
Hamiltonian describing a set of noninteracting spins

HRKKY �
∑

i

μN BN
i · I i , (10)

in the presence of the position-dependent internal field

μN BN
i = 2phN⊥IJ2kF

Ru,2kF Ri
h. (11)

This concludes a simplified derivation of the reduction of the
RKKY Hamiltonian [Eq. (3)] into a set of noninteracting spins
[Eq. (10)] in an effective (mean) field [Eq. (11)]. A detailed
analysis of the applicability of such an approximation was
given in Ref. [35], based on the derivation of the spectrum
of the full Hamiltonian Eq. (3), without employing a mean
field ansatz. There it was found that this approximation,
in essence neglecting the long-wavelength magnons, is well
justified for sub-Kelvin temperatures and wire lengths relevant
for mesoscopic experiments.

As we consider the limit A � εF , we adopt the Bohr-
Oppenheimer approximation, assuming that electrons react
instantaneously to the changes in nuclear spin subsystem.
Consequently, we can consider the effect of the nuclear
polarization on electrons as an Overhauser field [15]

μe BOv = Aa

2N⊥

∑
j

δ(r − Rj )〈I j 〉, (12)

where μe is an electron magnetic moment. Thus, the electron
Hamiltonian is

Hel = − �
2

2m
∂2
r + μe BOv · σ . (13)

In Eq. (13) we do not include electron-electron interactions
explicitly. In the following, to evaluate the internal field BN

i

we use Eqs. (C4), and (C5) from Ref. [35]. In these equations
electron-electron interaction is significant (for example, for the
critical temperature of the helical polarization [14,15,33,35])
and therefore is included.

To describe the nuclear polarization in the wire when a bias
voltage is applied, we will first investigate the behavior of one
nuclear spin placed in an effective field of all others [Eq. (10)]
and interacting with the bath of electrons described by
Eq. (13).

III. HELICAL ELECTRONS AND FINITE VOLTAGE

To find how a nuclear spin is affected by the electrons when
the bias voltage is applied, we first consider the properties
of the electron bath in the wire. As already mentioned in Sec. II,
the electrons are moving in the Overhauser field produced by
the nuclear spins [see Eqs. (12) and (13)]. As the nuclear
spins form a helix in equilibrium, this particular Overhauser
field, denoted by Bh, is also helical. Consequently, the electron
spectrum is

ε± = �
2
(
k2 + k2

F

)
2m

± 1

m

√
m2μ2

eB
2
h + �4k2k2

F , (14)

where k is the electron wave vector, and ε− and ε+ denote the
lower and upper subbands, respectively. They are split by the
gap 2μeBh at k = 0. The corresponding wave functions are

	k,−(r) = eikr

√
L

[
e−ikF r cos

θk

2
|↑〉 + eikF r sin

θk

2
|↓〉

]
, (15)

	k,+(r) = eikr

√
L

[
eikF r cos

θk

2
|↓〉 − e−ikF r sin

θk

2
|↑〉

]
, (16)

where cos θk = �
2kkF√

(�2kkF )2+(mμeBh)2
and sin θk =

−mμeBh√
(�2kkF )2+(mμeBh)2

, and |↑〉, |↓〉 denote the spin states

with spin up and spin down, respectively, where u sets the
quantization axis. These expressions of the wave functions can
be simplified since typically the ratio � ≡ μeBmax/εF � 1,
where Bmax is the maximum Overhauser field when all nuclei
are fully polarized along a given direction. For example, for a
GaAs quantum wire μeBmax � 68 μeV, while εF � 10 meV,
which gives � � 0.0068. Consequently, we can use � as a
small parameter.

We expand Eq. (15) in leading order of �, and for the states
within the partial gap we get

	k,−(r) ≈ 1√
L

{
−ei(k−kF )r |ξR〉 , k > 0

ei(k+kF )r |ξL〉 , k < 0
(17)

where for right-moving electrons (k > 0) the spinor is |ξR〉 =
|↑〉, and for left-moving electrons (k < 0) it is |ξL〉 = |↓〉.
Therefore, within our approximation the electronic states in
the partial gap are helical: the spin is determined by the
propagation direction, and is opposite for left- and right-
moving electrons.

Next, we consider the voltage applied to the wire and
define it as the difference between the chemical potentials
for the left- and right-moving electrons (see Fig. 2). Assuming
a ballistic wire, the chemical potential of a given branch is
constant in space. With the polarity as assumed in Fig. 2,

195423-3



KORNICH, STANO, ZYUZIN, AND LOSS PHYSICAL REVIEW B 91, 195423 (2015)

ε

k

εF
μR

μL

u

h0

FIG. 2. (Color online) Sketch of the energy spectrum given in
Eq. (18) and the direction of the electron spins in the presence of
the helical Overhauser field Bh and the uniform Overhauser field Bu

perpendicular to the plane of the helix. Red arrows denote the spin
directions of the electrons in the lower subband, and the blue arrows
label the spin directions for the upper subband. The coordinate system
for the spins is formed by h and u shown in the right lower corner. The
chemical potentials for left and right movers are denoted as μL and
μR , respectively. The voltage applied to the wire is eVRL = μR − μL.

the applied voltage depletes the left (L) branch and increases
the population of the right (R) branch. This imbalance in
population opens up an additional phase space for the electrons
to backscatter, predominantly from R to L. Because of the
helical character of the states, such backscattering is accom-
panied by an electron spin flip (from |↑〉 to |↓〉). This, in turn,
is enabled by the total spin-conserving hyperfine interaction
[Eq. (1)], so that each electron spin flip is compensated by
a nuclear spin flip in the opposite direction. In this way, a
uniform nuclear polarization along the u direction is built up.
We denote Bu as the Overhauser field corresponding to this
uniform polarization.

From Fig. 2 one can see that this scattering-induced spin
polarization works only for the electronic states within the
partial gap. Aiming at the helical order detection, applying
voltage larger than the partial gap is therefore disadvantageous:
it will not increase the spin pumping rate, but it will
decrease all polarizations through heating, similarly as high
temperature. We can therefore restrict our theory to small
voltage, i.e., eV < 2μeBh, where −e is the electron charge,
and small temperatures T , i.e., kBT < 2μeBh. We can then
adopt two approximations. First, we neglect the influence
from electron states which are not in the partial gap (the
upper (+) subband is neglected completely), because their
contribution to transport is exponentially small, proportional
to exp[(−μeBh + eV/2)/kBT ]. Second, we use Eq. (17) for
the electron wave functions, which means that we consider
Eq. (15) in leading order of kBT /εF , eV/εF , and �. Therefore,
for a description of the electron system in terms of a heat bath
that causes the relaxation of the nuclear spins, we take into
account two branches: left- and right-moving electrons with
spins |↓〉 and |↑〉, respectively.

The spectrum of electrons moving in the total Overhauser
field Bh + Bu reads as

εu,± = �
2
(
k2 + k2

F

)
2m

±
√

μ2
eB

2
h +

[
�2kkF

m
− μeBu

]2

, (18)

see Fig. 2. The asymmetry of the spectrum is due to the
uniform Overhauser field Bu. The corrections to the wave
functions [Eq. (17)] due to Bu are negligible in leading order
of �. Namely, the presence of the uniform component in the
Overhauser field rotates (cants) the spinors |ξL(R)〉 away from
down (up) direction by a very small angle (for a maximal
possible field Bu = Bmax this angle is for our parameters
smaller than 0.1◦). Even though the canted up and down
spinors are no longer orthogonal to each other, it does not play
any substantial role. Indeed, since the spin flips of electrons
are compensated by nuclei, there is no spin conservation (no
selection rules) within the two subsystems taken individually.

We note that from Eqs. (15) and (16) it follows that
the electron spins become also polarized, thereby producing
a Knight shift acting as an effective magnetic field Be

j

back on the nuclear spins. This Knight shift is defined as
〈Hhyp〉el = μN Be

j · I j , where 〈. . .〉el denotes averaging over
the eigenstates of the Hamiltonian in Eq. (13) with populations
defined by the voltage. In this work, however, we can neglect
Be

j with respect to BN
j produced by the RKKY interaction

[15,35].

IV. BLOCH EQUATION FOR THE TOTAL NUCLEAR
SPIN IN THE WIRE

To investigate the time dynamics of the nuclear spins, we
apply the standard Bloch-Redfield theory to our problem,
which is valid for weak coupling between spin system and
bath degrees of freedom [38,39], as is the case here. First, we
write the Bloch equation for the average 〈I j 〉 of the j th nuclear
spin. By applying Eqs. (7)–(11) from Ref. [38] to our Eqs. (1),
(10), and (13), we get (for more details see Appendix)

∂t 〈I j 〉 = ωj × 〈I j 〉 − �j 〈I j 〉 + ϒj , (19)

where ωj = μN BN
j /� determines the precession, the relax-

ation tensor �j the decay, and the inhomogeneous vector term
ϒj the stationary value of 〈I j 〉. Both �j and ϒj are expressed
in terms of time correlators (see Appendix)

Jnl(ω) = 1

2�2

∫ ∞

0
e−iωt 〈δBn(0)δBl(t)〉eldt, (20)

where t is time, the indexes n, l label the components of
the effective fluctuating internal field δB defined via Hhyp −
〈Hhyp〉el = δB · I j . The time dependence follows from the in-
teraction representation δB(t) = eiHel t/�δBe−iHel t/�. We note
that above equations are valid for a spin 1

2 . However, it is
well known [40] that the relaxation time of a spin into its
stationary value does not depend on the spin length (in Born
approximation). Thus, we will assume that our results apply
for arbitrary spins.

As follows from Secs. II and III, we can define the
expectation value of a nuclear spin at position R = 0 as

〈I0〉/I = phh + puu, (21)
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where 0 � ph,u � 1 denote the polarizations along the two
orthogonal directions h and u, respectively.

We also introduce position-independent tensors �0 and ϒ0

in the rotated frame defined by the rotation matrix R†
u,2kF Rj

,
via

�j = Ru,2kF Rj
�0R†

u,2kF Rj
, (22)

ϒj = Ru,2kF Rj
ϒ0. (23)

Having Eqs. (11), (19), (22), and (23), we can describe the
time evolution of the nuclear spin I j in the rotated frame.

Eventually, we are interested in the dynamics of the total
(macroscopic) polarizations, rather than the one of an individ-
ual nuclear spin. We therefore introduce the total nuclear spin
in the rotated frame

∑
j R

†
u,2kF Rj

〈I j 〉 ≡ NN⊥〈I0〉, and write
the equation of motion for it using Eqs. (11), (19), (22), and
(23). We get

∂t 〈I0〉 = −�(〈I0〉 · h)h × u − �0〈I0〉 + ϒ0, (24)

where we denoted � = Ipu|J2kF
|/�. The first term implies

a rotation of the helical direction h, around the axis u
with frequency �. This can be seen by introducing a time-
dependent vector h(t) = Ru,α(t)h, where α(t) = ∫ t

0 �dτ . In
the Born-Oppenheimer approximation, the tensors �j and ϒj

are functions of the instantaneous values of h and u, so we
write

�̃j = Ru,α(t)�jR†
u,α(t), (25)

ϒ̃j = Ru,α(t)ϒj . (26)

With this the time evolution of 〈I0〉 in the rotating frame,
〈 Ĩ0〉 = Ru,α(t)〈I0〉, is described by

∂t 〈 Ĩ0〉 = −�̃0〈 Ĩ0〉 + ϒ̃0. (27)

To evaluate the tensors in this equation, we use the results of
Sec. III and approximate the electronic states within the gap by
Eq. (17) and the spectrum by Eq. (18) with Bh = 0 = Bu. We
can then use Eq. (27) to describe the polarization of the nuclear
spins in the wire as function of temperature and voltage.

V. RESULTING POLARIZATIONS

To find the polarizations ph and pu from Eq. (27), we now
evaluate the tensors �0 and ϒ0 explicitly. For that we first
evaluate the correlator Jnl(ω). Using Eqs. (17) and (18) we
get

Jnl(ω) = A2a2

32�3πv2
F N2

⊥

∑
a,b∈{L,R}

Mab
nl Qab, (28)

Mab
nl = 〈ξa|σn|ξb〉〈ξb|σl|ξa〉, (29)

Qab =
∫

dε f (ε + eVba/2)

× [1 − f (ε + �ω − eVba/2)], (30)

where eVba = μb − μa is the difference between chemical
potentials of branches b and a, with a and b denoting L (left
movers) or R (right movers). Here we also use the Fermi
distribution function f (ε) = {exp [ε/(kBT )] + 1}−1. As was
mentioned in Sec. III, we consider voltages and temperatures
smaller than the partial gap 2μeBh given by the helical
polarization. Therefore, the term f (ε + eVba/2)[1 − f (ε +
�ω − eVba/2)] allows us to consider only the energy window
of ±μeBh around εF because f (ε) decays exponentially
for ε/kBT � 1. Consequently, we approximate the electron
density of states (per spin) by ν(ε) ≈ ν(εF ). Up to first order in
�, we have ν(εF ) = 1/(π�vF ), where vF = εF /(�kF ) is the
Fermi velocity of the electrons.

Having obtained Jnl(ω), it is straightforward to calculate
�0 and ϒ0, using Eqs. (A2)–(A4) and (28)–(30). We can then
solve Eq. (27) for the steady-state polarizations (keeping ω0

as a constant) and obtain

ph = 4�ω0

(�ω0 − eV ) coth
(

�ω0−eV

2kBT

) + (�ω0 + eV ) coth
(

�ω0+eV

2kBT

) + 2�ω0 coth
(

�ω0
2kBT

) , (31)

pu =
4�ω0

(�ω0−eV ) coth
(

�ω0−eV

2kB T

)
−(�ω0+eV ) coth

(
�ω0+eV

2kB T

)
(�ω0−eV ) coth

(
�ω0−eV

2kB T

)
+(�ω0+eV ) coth

(
�ω0+eV

2kB T

)
+2�ω0 coth

(
�ω0
2kB T

) + 4eV

(�ω0 − eV ) coth
(

�ω0−eV

2kBT

) + (�ω0 + eV ) coth
(

�ω0+eV

2kBT

) + 2eV coth
(

eV
2kBT

) . (32)

However, from Eq. (11) it follows that �ω0 =
2phN⊥IJ2kF

h, i.e., ω0 depends on ph. This leads to nonlinear
algebraic equations for two unknowns pu and ph, which
we solve numerically using material parameters for GaAs
(analytical expressions for small deviations of the polarizations
are given in the following). We plot the values obtained in
this way and discuss their behavior as a function of voltage
and temperature, the experimental parameters that are most
directly accessible.

The voltage dependence of the polarizations is shown in
Fig. 3. We can see that the polarization pu grows faster with

voltage than ph decays, therefore, the overall polarization of
the nuclei

√
p2

u + p2
h grows with voltage, too. This means that

the nuclear spins are more polarized when a voltage is applied
than when they are in equilibrium at the same temperature.
We also note that having a nonzero component pu means that
nuclear spins have a conical polarization, rather than a helical
one. To plot Fig. 3, we used Eqs. (C4) and (C5) from Ref.
[35] as was mentioned above, where the dependence of �ω0 on
temperature is described in detail. To evaluate �ω0 we used the
characteristic values for GaAs: the Fermi velocity vF = 2.3 ×
105 m/s, and the number of nuclei in the wire cross section
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FIG. 3. (Color online) (a) The voltage dependence of the po-
larization ph along helical direction h (blue), polarization pu in
the direction of u perpendicular to the helix plane (red), and the
overall polarization of nuclei

√
p2

u + p2
h (black). (b) Enlarged from

(a) the voltage dependence of ph and
√

p2
u + p2

h. We use T = 90 mK
and other parameters as given in the text. We recall that our
parametrization is such that pu = 1 corresponds to Bu = Bmax, which
is about 5 T in GaAs, and analogously for Bh.

N⊥ = 1300. For the expression for J2kF
taken from Ref.

[35] we use the electron-electron interaction Luttinger liquid
parameter Kρ = 0.2 and the absolute value of spin I = 3

2 .
For the constants described above and at T = 90 mK and
pu = 0.1 the rotation frequency of the nuclear spin helix is
� ≈ 1.5 × 106 s−1.

It is natural to expect that high temperature destroys the
nuclear helical order [14,15,33,35]. Indeed, Fig. 4 shows that
the helical polarization ph decays with temperature and then
drops in magnitude around T � 109 mK. As our calculation is
valid for eV,kBT < 2μeBh, the smallest value of ph allowed
by self-consistency for our parameters is ph � 0.2. From Fig. 4
it also follows that the polarization pu grows with temperature.
This growth is explained by the fact that due to higher
temperature, the electron states with higher energy become
occupied. This makes the nuclear spin flip more probable. It is
obvious that there is a temperature where the polarization pu

gets destroyed, however, for the range of temperatures given
in Fig. 4, pu does grow, whereas the helical polarization ph

decays significantly. The decay of ph with temperature is rapid,
while the growth of pu is less pronounced. Therefore, the
overall nuclear polarization in the wire strongly decays with
increasing temperature. For the parameters we used for Fig. 4
the effect of temperature on ph is stronger than the one of a
finite voltage. The initial temperature scaling of ph away from
unity (see Fig. 4) can be obtained readily from Eq. (31) by
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h
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FIG. 4. (Color online) Plot of the temperature dependence of the
polarization pu (upper panel, red) and the polarization ph (lower
panel, blue). For these plots the same parameters were used as in
Fig. 3 and the applied voltage is eV = 0.5 μeV. We note that our
calculation is valid for eV,kBT < 2μeBh, therefore the smallest value
of ph we consider here is ph � 0.2.

treating 1 − ph as a small perturbation. This yields

ph ≈ 1 − 2

1 + e
κ

T g

1

1 − κ
2T g sech2

(
κ

2T g

) (33)

≈ 1 − 2e− κ
T g , (34)

where the first equality holds well for the temperature
interval 60 mK < T < 90 mK, while the second one is a
good approximation for 60 mK < T < 80 mK. Here we
denoted g = 3 − 4Kρ√

2(1+K2
ρ )

, and the temperature-independent

parameter κ = 2N⊥I |J2kF
|T g−1/kB depends on the material

and geometrical properties of the sample (see Eq. (11) and
Eqs. (C4) and (C5) of Ref. [35]). For Kρ = 0.2 (chosen for the
plots) we get g = 2.4 (we recall that Kρ = g = 1 corresponds
to vanishing electron-electron interactions).

The initial decrease of ph due to voltage in Fig. 3 for V <

3 μeV scales as

ph ≈ α − γV 2, (35)

where α and γ depend on material and geometrical parameters
of the nanowire and on temperature.

Finally, we mention that recent progress in nuclear spin
magnetometry on nanowires [36,37] has opened the perspec-
tive to measure the nuclear spin polarizations directly and
thus to test the predictions made here. Moreover, due to the
helical nuclear polarization which acts on electrons as an
Overhauser field Bh there is a partial gap in the electron
spectrum [see Eq. (18)]. As a result, the conductance of
a ballistic nanowire is less than 2e2/h for sufficiently low
temperatures and V < 2μeBh [14,15,32,35]. As was shown
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above, the polarization ph, and consequently Bh, decrease
with increasing voltage and temperature. We thus expect
qualitatively that the conductance of the wire will increase
with the decrease of the partial gap 2μeBh ∝ ph [41].

VI. CONCLUSIONS

We have shown that due to the hyperfine interaction
between electrons and nuclei in the wire the applied voltage
changes the form of the nuclear polarization and its amplitude.
Assuming that in equilibrium there is a helical nuclear
polarization ph present in the wire due to RKKY interaction, a
bias voltage induces a uniform polarization pu perpendicular
to the helix plane. Due to this polarization, the nuclear spin
helix starts to rotate around the axis perpendicular to the helical
plane. When a nonzero polarization pu builds up, the nuclear
polarization changes from helical to conical.

We have also presented the voltage dependence of pu and ph

and seen that pu increases with voltage, whereas ph decreases.
Following from these two effects the overall nuclear polariza-
tion in the wire grows with voltage. Remarkably, pu grows
with temperature in the considered range of temperatures. This
is because the nuclear spin flip becomes more probable as
electrons occupy higher energy states. This thermal activation
effect is noticeable for the considered regime �ω0 > eV . The
growth of the overall polarization

√
p2

u + p2
h with voltage

and the growth of pu with temperature are intriguing and a
priori nonobvious effects. The polarization effects predicted
here might be observed in transport experiments [32] or more
directly via cantilever-based nanoscale magnetometry [36,37].

Finally, we note that the current-induced dynamical effects
we found are not restricted to nuclear helimagnets. Among
other systems, they are expected to appear in a wire with
magnetic impurities, such as Mn-doped GaAs, once the helical
order in the impurities is RKKY-induced. Even for moderate
dopings, in such a system the coupling constant A/ρ0, which
is central to the energy scales in question, is more than
1000 times larger than for nuclear spins. Even though the
critical temperature can not be directly estimated from this
ratio, as it is strongly influenced also by the electron-electron
interactions, it is still expected to be larger by several orders
of magnitudes compared to the sub-Kelvin range typical for
nuclear spins. Although this was not our focus here, we note
that, correspondingly, the partial gap and the resulting upper
bound on the applied voltage will move to mV scale, more
realistic for possible spintronics device applications.
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APPENDIX: BLOCH EQUATION FOR ONE
NUCLEAR SPIN

To write the Bloch equation for the total nuclear spin in the
wire, we use Eqs. (7)– (11) from Ref. [38]. Here we present
them adopted to our case of a nuclear spin interacting with the
bath of electrons and placed into the effective field produced
by all other nuclear spins in the wire.

The Bloch equation for the nth nuclear spin reads as

∂t 〈In〉 = ωn × 〈In〉 − �n〈In〉 + ϒn. (A1)

To express tensors �n and ϒn we introduce a unit vector l
along ωn, i.e., ωn = ωnl . The tensor �n consists of a dephasing
part �d

n which comes from energy-conserving processes and
a pure relaxation part �r

n, which comes from the energy
exchange with the bath [38,42] (played here by the electron
system)

�d
n,ij = δij lplqJ +

pq(0) − li lpJ +
pj (0), (A2)

�r
n,ij = δij (δpq − lplq)J +

pq(ωn) − (δip − li lp)J +
pj (ωn)

− δij εkpq lkI−
pq(ωn) + εipq lpI−

qj (ωn). (A3)

Here, the indexes i, j denote components of tensors, and we
use the Einstein convention of summation over repeated in-
dexes. Further, εpqk is the Levi-Civita symbol and δij the Kro-
necker delta, while lk denotes the kth component of vector l .
The inhomogeneous part of the Bloch equation ϒn reads as
[38,42]

ϒn,i = 1
2 {ljJ −

ij (ωn) − liJ −
jj (ωn) + εipqI+

pq(ωn)

+ εiqklklp[I+
pq(ωn) − I+

pq(0)]}, (A4)

where i denotes the component of ϒn. The terms J ±
ij (ω),

I±
ij (ω) are defined as

J ±
ij (ω) = Re[Jij (ω) ± Jij (−ω)], (A5)

I±
ij (ω) = Im[Jij (ω) ± Jij (−ω)]. (A6)

The term Jij (ω) is the Laplace transformation of the correlator
of the fluctuating fields δB at different times

Jij (ω) = 1

2�2

∫ ∞

0
e−iωt 〈δBi(0)δBj (t)〉eldt, (A7)

where δB(t) = eiHel t/�δBe−iHel t/�. Using Eq. (A1), we ex-
pressed the Bloch equation for the total nuclear spin in the
wire resulting in Eq. (24).
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