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Antiferromagnetic nuclear spin helix and topological superconductivity in 13C nanotubes
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We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from the hyperfine coupling
between localized nuclear spins and conduction electrons in interacting 13C carbon nanotubes. Using the
Luttinger liquid formalism, we show that the RKKY interaction is sublattice dependent, consistent with the
spin susceptibility calculation in noninteracting carbon nanotubes, and it leads to an antiferromagnetic nuclear
spin helix in finite-size systems. The transition temperature reaches up to tens of mK, due to a strong boost by
a positive feedback through the Overhauser field from ordered nuclear spins. Similar to GaAs nanowires, the
formation of the helical nuclear spin order gaps out half of the conduction electrons, and is therefore observable
as a reduction of conductance by a factor of 2 in a transport experiment. The nuclear spin helix leads to a density
wave combining spin and charge degrees of freedom in the electron subsystem, resulting in synthetic spin-orbit
interaction, which induces nontrivial topological phases. As a result, topological superconductivity with Majorana
fermion bound states can be realized in the system in the presence of proximity-induced superconductivity without
the need of fine tuning the chemical potential. We present the phase diagram as a function of system parameters,
including the pairing gaps, the gap due to the nuclear spin helix, and the Zeeman field perpendicular to the helical
plane.

DOI: 10.1103/PhysRevB.92.235435 PACS number(s): 71.10.Pm, 74.20.−z, 75.70.Tj, 75.75.−c

I. INTRODUCTION

The search for topological superconductivity and exotic
quasiparticles supported by it, such as Majorana fermions
(MFs), remains an ongoing challenge. MFs, being their own
antiparticles, exhibit non-Abelian statistics and are promising
candidates for realization of quantum computation [1,2].
Despite intensive experimental [3–8] and theoretical [9–13]
efforts, the observation of MFs still remains inconclusive. It
is therefore important to propose experimentally achievable
devices for the realization of such particles and even more
exotic parafermions [14–19]. In this respect, carbon nanotubes
(CNTs) seem promising due to advantages such as the
availability of high-quality samples, high tunability, and strong
electron-electron interactions due to the spatial confinement
[20–23], which is crucial for fractional statistics.

In a nanowire with free carriers (electrons) and localized
spins, such as spins of atomic nuclei, these two subsystems are
coupled by the hyperfine interaction [24–26]. With parameters
typical for semiconducting nanowires, this interaction is weak
on the scale of the electronic Fermi energy. It can then
be recast as the Ruderman-Kittel-Kasuya-Yosida (RKKY)
exchange interaction [27–30], the electron mediated pairwise
interaction between localized spins (see also Ref. [31] for
systems beyond the RKKY picture). The strength of this
pairwise interaction is given by the many-body state of the
electron subsystem, and reflects its properties. For example,
the RKKY coupling as a function of distance is modulated
at the electron Fermi wavelength [32], while the spin-orbit
interaction of electrons results in spin anisotropies [33,34] or
suppression [35] of the RKKY coupling. In low dimensional
systems, the effect of electron-electron interactions becomes
striking [36–38]. Namely, the RKKY interaction is strongly
enhanced, formally seen as the renormalization of the exponent
describing the power-law decay of correlators calculated in

the Luttinger-liquid formalism [39]. The stronger the electron-
electron interactions, the more pronounced is this enhancement
around the electronic Fermi momentum, which leads to a
sharp resonant peak in the RKKY coupling in one-dimensional
systems. At low enough temperature, this peak results in the
ordering of the localized spins into a helix, which corresponds
to an effective rotating magnetic field (Overhauser field) seen
by the electrons. This macroscopic field changes the electronic
state by opening a partial gap at the Fermi energy. While
this further boosts the RKKY coupling strength, it is also
interesting on its own. Because a rotating field has a definite
helicity, the partial gap opens in a spin selective way [40,41]
and the electronic subsystem also becomes helical. It has been
theoretically suggested to exploit such helical Overhauser
fields for, e.g., dynamical nuclear spin polarization [42],
stabilization of fractionalized fermions [43], or production
of tune-free topological matter [44–46]. Signatures of such
a partial gap opening have been observed in GaAs quantum
wires in transport experiments at sub-K temperature [47].
Subsequent density matrix renormalization-group analysis
[48] also supported the formation of the RKKY-induced
magnetic order discussed in Refs. [37,38].

In this paper we revisit the above picture considering
metallic CNTs enriched by 13C, the atomic isotope with
nuclear spin 1

2 [49–52]. While Refs. [37,38] also considered
CNTs, the presence of sublattices was omitted. On the other
hand, the results for the spin susceptibility calculated in
the noninteracting limit [34,53–57] suggest that the RKKY
interaction is locally (between nearest neighbors) antiferro-
magnetic, unlike in, e.g., GaAs where it is ferromagnetic.
The question therefore arises whether in the presence of
strong electron-electron interactions the RKKY interaction
retains its locally antiferromagnetic character, and whether
a macroscopic Overhauser field can still arise, which is
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necessary to push the transition temperature of the nuclear
order to experimentally achievable values, and to offer 13C
enriched CNT as a self-tuned topological matter platform.

To this end, we derive here the RKKY interaction taking
into account sublattices explicitly in a CNT with interacting
electrons. We find that the RKKY interaction is sublattice
dependent, consistent with Refs. [34,53–57], and it leads to
a locally antiferromagnetic nuclear spin helix.1 However,
despite a lack of macroscopic spin polarization, the helix
transition temperature is still strongly enhanced, and reaches
several tens of mK. We also confirm that the nuclear spin
helix combining charge and spin degrees of freedom generates
synthetic spin-orbit interaction for electrons, suitable to induce
nontrivial topology [9,10,44] supporting MFs [59,60] without
involving intrinsic spin-orbit interactions that happen to be
still weak in CNTs [61–63]. Therefore, we suggest to pursue
experimentally the possibility to establish the RKKY induced
nuclear spin order at low temperatures in CNTs highly enriched
by 13C.

This paper is organized as follows. In Sec. II we obtain the
RKKY interaction within the Luttinger-liquid formalism. In
Sec. II A, we first establish the RKKY Hamiltonian in terms
of the spin susceptibility of the conduction electrons, which
are described as Luttinger liquid in Sec. II B; the bosoniza-
tion of the electron spin operators, which enter the spin
susceptibility, are discussed in Sec. II C; finally, using the
results of Secs. II A–II C, we obtain the RKKY interaction
in Sec. II D. The resulting Hamiltonian then represents a
spin model for the nuclear spins, allowing us to investigate
the nuclear spin order in Sec. III. We take the ansatz for
antiferromagnetic nuclear spin helix in Sec. III A, and compute
the magnon (spin wave) spectrum; in Sec. III B, the transition
temperature of the nuclear spin helix (without the feedback)
is estimated. In Sec. IV, we examine the feedback effect due
to the nuclear Overhauser field. In Sec. IV A, we show that
the intervalley backscattering terms in the spin susceptibility
are suppressed by the feedback; in Sec. IV B, we analyze the
renormalized Overhauser field; in Sec. IV C, we estimate the
transition temperature in the presence of the feedback, which
is enhanced by more than four orders of magnitude. In Sec. V
we investigate how the proximity-induced superconductivity
affects the RKKY interaction. In Sec. V A, we compute the
spin susceptibility in the presence of the pairing gap; in
Sec. V B, we show that the reduced transition temperature
may still be within experimentally accessible regimes. In
Sec. VI we focus on the topological properties: in Sec. VI A,
a refermionized Hamiltonian is established, which allows us
to find MF solutions straightforwardly; the topological phase
diagram is presented in Sec. VI B. Finally, we give a discussion
on the nuclear spin helix and MFs in CNTs in Sec. VII.
The details of the calculations on the spin susceptibility in
the presence of the pairing gap and solving the Schrödinger

1A different (ferromagnetic) helical order was found in Ref. [58],
which considered semiconducting noninteracting 13C CNTs, unlike
metallic ones which we study here. The difference is expected, since
in the former case the spin susceptibility depends weakly on the
sublattices and is dominantly ferromagnetic, as discussed in Ref. [34].

equation for MF solutions are given in Appendixes A and B,
respectively.

II. RKKY INTERACTION

A. Hyperfine and RKKY Hamiltonians

Nuclear spins of 13C atoms embedded within CNTs couple
to conduction electrons via the hyperfine exchange interaction.
We consider a single-wall armchair-edged nanotube2 with the
Hamiltonian

H = Hel + Hhf . (1)

Here Hel, discussed in Sec. II B, describes the interacting
conduction electrons, and Hhf is the hyperfine coupling
between the conduction electrons and localized nuclear spins.
The dipolar interaction between the localized spins is much
smaller than these two terms and hence neglected [64] (for
systems where this is not the case, the combined effect of
direct and RKKY interactions may lead to, e.g., a canted spin
state [65]).

Assuming the electrons are in the lowest transverse mode
due to a large transverse level spacing of the order of eV, we
obtain an effective one-dimensional hyperfine interaction,

Hhf =
∑
α,j

A0

N⊥
Sα(rj ) · Ĩα(rj ), (2)

where α = A,B denotes the sublattice index, j = 1, . . . ,N

is the site index of cross sections along the tube axis, and
A0 is the hyperfine coupling constant. There is a discrepancy
between the measured hyperfine coupling constant and the
theoretical prediction. The observed value in an isotopically
enriched (∼99% 13C) nanotube quantum dot [51,52] was
two orders larger than the theoretical calculation employing
a noninteracting system calculation [24–26]. Whereas the
measured value was extracted through theories developed for
other materials without valley degrees of freedom [66], such
as GaAs, and needs to be further confirmed [67], we take
A0 = 6.0 μeV, which is in the order between the observed
and theoretical values, for the purpose of estimation. We also
note that subsequent measurements in CNTs with natural abun-
dance (∼1% 13C) [68,69] corroborate the hyperfine coupling
constant reported in Refs. [51,52].

We split the nanotube into small cylinders of height a,
the length of the atomic scale, and get N⊥ = πRanI as the
number of the atoms on each sublattice in such a cylinder,
with nI the atomic area density of a graphene sheet. We
group the nuclear spins within one cylinder into an effective
composite spin, Ĩα(rj ) ≡∑j⊥ Iα(rj,j⊥ ), which we refer to as
a spin of a cross section. Because N⊥ � 1, the effective spins
are large, with maximal magnitude N⊥I , and thus can be
treated semiclassically. We choose a to be the lattice constant
of the CNT (the carbon-carbon bond length is a/

√
3), which

for (6,6) CNTs gives N⊥ = 12 and the radius R ≈ 4.1 Å.
The choice of (6,6) CNTs is partially motivated by the
experiment in Ref. [23], which reports that defect-free CNTs

2Our calculation applies to any conducting CNTs. Here we focus
on armchair-edged CNTs for the ease of notation.
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with definite chiral index have been made possible. We also
denote the nuclear spin of 13C as I = 1

2 . Further, the effective
one-dimensional electron-spin-density operator is

Sα(r) = N⊥
nI

|ψ⊥,α|2
∑

i

δ(r − ri)σ i , (3)

where r denotes the coordinate along the tube, ri the position
operator of the ith electron, σ i is a vector with components
formed by the Pauli matrices in spin space of the ith electron,
and ψ⊥,α is the transverse part of the electron wave function
(assumed to be the same for all electrons). We will assume ψ⊥,α

spreads uniformly over the circumference, so that |ψ⊥,α|2 =
1/(2πR).

Since A0 � εF , we use the Schrieffer-Wolff transformation
to integrate out the electron degrees of freedom [36,70,71],
which results in an effective RKKY interaction between two
localized spins,

HRKKY = 1

N2
⊥

∑
i,j,α,β

∑
μν

J
μν
αβ (ri − rj )Ĩ μ

α (ri)Ĩ
ν
β (rj ), (4)

where μ,ν = x,y,z are coordinates in spin space and the
effective RKKY exchange coupling,

J
μν
αβ (ri − rj ) = A2

0a
2

2
χ

μν
αβ (ri − rj ). (5)

The static spin susceptibility is defined as

χ
μν
αβ (ri − rj ) = − i

a2

∫ ∞

0
dt e−ηt

〈[
Sμ

α (ri,t),S
ν
β(rj ,0)

]〉
, (6)

with an infinitesimal positive η and 〈. . .〉 being the aver-
age corresponding to the one-dimensional effective electron
Hamiltonian Hel. For the continuum description, we will
replace Sμ

α (ri,t)/a with the operators Sμ
α (r,t).

B. Electron Hamiltonian and bosonization

In this section, we discuss the one-dimensional effective
electron Hamiltonian and its bosonized form. We start with
the Hamiltonian of an interacting electronic system,

Hel = H0 + Hint, (7)

where H0 and Hint describe the kinetic-energy and interaction
terms, respectively.

The Hamiltonian H0 is defined by a tight-binding model
of a carbon lattice, including the nearest-neighbor hopping
terms with the hopping parameter t . We neglect the longer-
range hopping, nanotube curvature, and spin-orbit interactions,
which results in a Hamiltonian conserving the total spin.
The spin susceptibility can then be written as χ

μν
αβ (ri − rj ) =

δμνχ
μ
αβ(ri − rj ) [34]. We Fourier transform H0 and expand

it around the Dirac points, Kγ = γ kvẑ + 2π√
3a

t̂ with kv ≡ 2π
3a

(ẑ and t̂ being the unit vectors along the tube axis and
circumference, respectively).3 With the assumption that the
conduction electrons are confined into the lowest transverse

3Our definition for kv differs from the one in Refs. [37,38] by a
reciprocal-lattice vector.

K +K−

FIG. 1. (Color online) Backscattering processes on the Fermi
surface. Kγ indicates the two Dirac points with the valley index γ =
±. The red (green) arrows correspond to the intravalley backscattering
ψ

†
�,γ,σ ψ�̄,γ,σ ′ (intervalley backscattering ψ

†
�,γ,σ ψ�̄,γ̄ ,σ ′ ) processes. The

arrows are mutually independent and the spins are not shown.

mode due to the spatial confinement, the tight-binding model
results in [72]

H0 =
∑
q,γ,σ

(c†A,γ,σ (q) c
†
B,γ,σ (q))

×
(

0 −γ �vF q

−γ �vF q 0

)(
cA,γ,σ (q)
cB,γ,σ (q)

)
, (8)

where c†α,γ,σ (q) is the creation operator with the sublattice
index α = A,B (α = ±1), valley index γ = ±, spin σ = ↑,↓,
the z component of the momentum q = qz is measured from
the Dirac point Kγ , and vF =

√
3ta

2�
is the Fermi velocity.

Equation (8) can be diagonalized by symmetric (δ = +) and
antisymmetric (δ = −) combinations,

ψδ,γ,σ (q) = 1√
2

[cA,γ,σ (q) + δcB,γ,σ (q)], (9)

corresponding to the eigenvalues, Eδγ = −δγ �vF q. There-
fore, the energy spectrum of Eq. (8) exhibits linear dispersions
close to the Dirac points, leading to two copies of Luttinger-
liquid spectrum located at kz = ±kv (see Fig. 1).

To proceed, we describe the system in terms of the right
(R ≡ +1) and left (L ≡ −1) moving particles, ψ�,γ,σ (q),
where for � = R and L we have

ψR,γ,σ (q) ≡ ψδ,γ,σ (q)|δ=−γ , (10a)

ψL,γ,σ (q) ≡ ψδ,γ,σ (q)|δ=γ , (10b)

respectively. Combining Eqs. (9) and (10), we find the relation
between the original electron operators and the right/left
movers,

cα,γ,σ (q) = 1√
2

[ψ�,γ,σ (q)|�=−γ + αψ�,γ,σ (q)|�=γ ]. (11)

One may bosonize ψ�,γ,σ in terms of the bosonic fields θγσ

and φγσ [73,74]. In real space, we have

ψ�,γ,σ (r) = U�,γ,σ√
2πa

ei(�kF +γ kv )re−i[�φγσ (r)−θγσ (r)], (12)

where kF is the Fermi wave number, the lattice constant a

sets the smallest length scale of the system, U�,γ,σ is the Klein
factor removing a (�,γ,σ ) particle from the system, and the
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TABLE I. The indices defined in Sec. II, the corresponding
degrees of freedom, and the possible values of the indices.

Index Degree of freedom Possible values

α sublattice A (≡ +1), B (≡ −1)
γ valley +, −
σ spin ↑ (≡ +1), ↓ (≡ −1)
δ symmetric/antisymmetric +, −

combination of α = A,B

� right/left mover R (≡ +1), L (≡ −1)
ν charge/spin sector c (≡ +1), s (≡ −1)
P symmetric/antisymmetric S (≡ +1), A (≡ −1)

combination of γ = ±

bosonic fields satisfy the following relations [73]:

[φγσ (r1),θγ ′σ ′(r2)] = i
π

2
sign(r2 − r1)δγ γ ′δσσ ′, (13)

�φγσ (r) = −π [ρR,γ,σ (r) + ρL,γ,σ (r)], (14)

�θγσ (r) = π [ρR,γ,σ (r) − ρL,γ,σ (r)], (15)

with the real-space density operator ρ�,γ,σ (r) =
ψ

†
�,γ,σ (r)ψ�,γ,σ (r). One can see that the field �θγσ (r)/π is

canonically conjugate to φγσ (r),[
φγσ (r1),

�θγ ′σ ′(r2)

π

]
= iδ(r2 − r1)δγ γ ′δσσ ′ . (16)

Including the electron-electron interaction, the electron
Hamiltonian Hel can then be bosonized [75–77],

Hel =
∑
ν,P

∫
�dr

2π

{
uνP KνP [�θνP (r)]2 + uνP

KνP

[�φνP (r)]2

}
,

(17)

where ν ∈ {c ≡ +,s ≡ −} refers to the charge/spin sectors,
and P ∈ {S ≡ +,A ≡ −} the symmetric/antisymmetric com-
bination of the bosonic fields between the γ = ± valleys,
namely,

θνP ≡ 1
2 [θ+,↑ + νθ+,↓ + P (θ−,↑ + νθ−,↓)], (18)

φνP ≡ 1
2 [φ+,↑ + νφ+,↓ + P (φ−,↑ + νφ−,↓)]. (19)

The velocities for the (ν,P ) channels are uνP = vF /KνP . The
indices defined in this section are summarized in Table I
for reference. The noninteracting case corresponds to the
Luttinger-liquid parameters KcS = KcA = KsS = KsA = 1,
and the repulsive electron-electron interaction leads to KcS <

1. The parameter KcS depends on the radius of CNTs through
the relation KcS = [1 + (8e2)/(π�vF ) ln (Rs/R)]

−1/2
, where

e is the electron charge and Rs ≈ 1000 Å is the screening
length [75]. Therefore, for CNTs with smaller radius, the
electron-electron interaction has stronger effects due to the
stronger spatial confinement, as expected. However, this radius
dependence is relatively weak because of its logarithmic form.
For R = 4.1−100 Å, KcS ≈ 0.16−0.24. In this work, we take
KcS ≈ 0.2 and KcA ≈ KsS ≈ KsA ≈ 1 [75,77–79].

With Eqs. (12), (18), and (19), we can write the single-
particle spin operator Sμ

α (r) in terms of the bosonic fields to
compute the correlation functions in Eq. (6). Since the electron
Hamiltonian (17) is a free bosonic system, the correlation
functions can be computed straightforwardly within the
Luttinger-liquid formalism [73].

C. Spin operator in terms of the bosonic fields

To examine the sublattice dependence, we first write the
spin operator in terms of the original electron operators with
the explicit sublattice index α,

Sμ
α (rj ) ≡ 1

2

∑
σ,σ ′

∑
γ,γ ′

σ
μ

σσ ′c
†
α,γ,σ (rj )cα,γ ′,σ ′(rj ), (20)

which, according to Eq. (11), can be written as Sμ
α (rj ) =

S
μ

f,α(rj ) + S
μ

b,α(rj ), where

S
μ

f,α(rj ) ≡ 1

4

∑
σ,σ ′

σ
μ

σσ ′
∑
�,γ

[ψ†
�,γ,σ (rj )ψ�,γ,σ ′ (rj )

+αψ
†
�,γ,σ (rj )ψ�,γ̄ ,σ ′(rj )] (21)

arises from the forward scattering (q ∼ 0 or q ∼ 2kv)
and

S
μ

b,α(rj ) ≡ 1

4

∑
σ,σ ′

σ
μ

σσ ′
∑
�,γ

[αψ
†
�,γ,σ (rj )ψ�̄,γ,σ ′ (rj )

+ψ
†
�,γ,σ (rj )ψ�̄,γ̄ ,σ ′(rj )] (22)

corresponds to the backscattering [q ∼ 2kF or q ∼ 2(kv ±
kF )]. Here σ

μ

σσ ′ are the Pauli matrices in spin space, �̄ ≡ −�,
γ̄ ≡ −γ , and the inverse Fourier transform of ψ�,γ,σ (q) is
given by

ψ�,γ,σ (rj ) = 1√
N

∑
q

eiqrj ψ�,γ,σ (q), (23)

with ψ�,γ,σ (q) defined in Eq. (10).
Since we consider the temperature T much lower than the

Fermi energy εF , the states below εF are filled, allowing us to
keep only the scattering processes that take place on the Fermi
surface. In contrast to the backscattering term, the scaling
dimension of the forward scattering term does not depend on
KcS , which is the only Luttinger parameter modified by the
electron-electron interaction, so the forward scattering term
produces only local extrema (peaks) in the RKKY interaction
[37,38,73]. Since the nuclear spin order is determined by the
global extrema of the RKKY interaction, in what follows we
may neglect S

μ

f,α(rj ), and focus on the backscattering term,
S

μ

b,α(rj ). Each term of Eq. (22) corresponds to a scattering
process, as illustrated in Fig. 1.

Taking the continuum limit, we obtain

S
μ

b,α(r) = S
μ

b,intra,α(r) + S
μ

b,inter,α(r), (24)

S
μ

b,intra,α(r) ≡ α

4

∑
σ,σ ′

σ
μ

σσ ′
∑
γ,�

[ψ†
�,γ,σ (r)ψ�̄,γ,σ ′ (r)], (25)

S
μ

b,inter,α(r) ≡ 1

4

∑
σ,σ ′

σ
μ

σσ ′
∑
γ,�

[ψ†
�,γ,σ (r)ψ�̄,γ̄ ,σ ′(r)]. (26)
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TABLE II. The scattering processes in Sμ
α , their corresponding

operators, and the locations and types of the corresponding extrema
in the RKKY interaction in the absence of the feedback.

Scattering process Operator Location Type

Intravalley, forward ψ
†
�,γ,σ ψ�,γ,σ ′ q ∼ 0 local

Intervalley, forward ψ
†
�,γ,σ ψ�,γ̄ ,σ ′ q ∼ 2kv local

Intravalley, back ψ
†
�,γ,σ ψ�̄,γ,σ ′ q ∼ 2kF global

Intervalley, back ψ
†
�,γ,σ ψ�̄,γ̄ ,σ ′ q ∼ 2(kv ± kF ) local

From Eq. (25) we see that the intravalley backscattering term,
S

μ

b,intra,α , is opposite for the two sublattices. We will see below
that this term gives rise to the q = 2kF RKKY peak in the spin
susceptibility. The intervalley backscattering terms in S

μ

b,inter,α ,
on the other hand, do not depend on the sublattice index and
give rise to q = 2(kF − γ kv) peaks. The spin susceptibility
in the absence of the feedback thus contains two parts,
the sublattice-dependent q = 2kF intravalley backscattering,
and q = 2(kF − γ kv) intervalley backscattering, which is
independent of sublattice, as in Refs. [34,53–57]. However,
the latter will be suppressed when taking into account the
feedback (Overhauser field due to ordered nuclear spins), as
will be discussed in Sec. IV. As a result, in spite of its presence
in the spin susceptibility, the intervalley backscattering will
not influence the nuclear spin order established by the
intravalley backscattering. For clarity, we list the scattering
processes in Sμ

α , their operators, and the locations and types
of the corresponding extrema in the RKKY interaction in
Table II.

From now on we shall proceed with the intravalley
backscattering term, S

μ

b,intra,α , and will come back to the
intervalley backscattering term when discussing the feedback
in Sec. IV A. Now the spin operator is expressed in terms of the
operators ψ�,γ,σ (r), which can be bosonized through Eqs. (12),
(18), and (19). To this end, we define the spin-density-wave
operators [73]

O
μ

SDW,γ (r) ≡
∑
σ,σ ′

σ
μ

σσ ′ψ
†
R,γ,σ (r)ψL,γ,σ ′(r), (27)

such that

S
μ

b,intra,α(r) = α

4

∑
γ

(
O

μ

SDW,γ (r) + [Oμ

SDW,γ (r)
]†)

, (28)

which can be written in terms of the bosonic operators, θνP

and φνP ,

[
Ox

SDW,γ (r)
]† = 1

2πa
e2ikF r{e−i[φcS (r)+γφcA(r)+θsS (r)+γ θsA(r)]

+ e−i[φcS (r)+γφcA(r)−θsS (r)−γ θsA(r)]}, (29)

[
O

y

SDW,γ (r)
]† = −i

2πa
e2ikF r{e−i[φcS (r)+γφcA(r)+θsS (r)+γ θsA(r)]

− e−i[φcS (r)+γφcA(r)−θsS (r)−γ θsA(r)]}, (30)

[
Oz

SDW,γ (r)
]† = 1

2πa
e2ikF r{e−i[φcS (r)+γφcA(r)+φsS (r)+γφsA(r)]

− e−i[φcS (r)+γφcA(r)−φsS (r)−γφsA(r)]}, (31)

where the Klein factors U�,γ,σ are omitted because they have
no influence.

D. Spin susceptibility and RKKY interaction

With Eqs. (28)–(31), the spin susceptibility can be ex-
pressed in terms of the bosonic fields, and calculated within
the Luttinger-liquid formalism. First, let

χ
>,μ
αβ (r,t) ≡ −i

〈
S

μ

b,intra,α(r,t)Sμ

b,intra,β(0)
〉
, (32)

where 〈· · · 〉 denotes the time-ordered average corresponding
to the electron Hamiltonian, Eq. (17), and the time argument
appears due to the interaction representation adopted for the
operators. In the continuum limit we have [73]

χ
μ
αβ(r) = −2i

∫ ∞

0
dt e−ηt �(t) Im

[
iχ

>,μ
αβ (r,t)

]
. (33)

Since Eq. (17) is a free bosonic Hamiltonian, the calculation of
the correlation functions is rather straightforward [73]. Upon
the Fourier transform, χ

μ
αβ(q) = ∫ dre−iqrχ

μ
αβ(r),4 the static

spin susceptibility in momentum space reads

χ
μ

AA(q) = −χ
μ

AB(q)

= − sin(πgμ)

(4π )2�vF

(
λT

2πa

)2−2gμ

×
∑
κ=±

∣∣∣∣∣�(1 − gμ)�
( gμ

2 − i λT

4π
(q − 2κkF )

)
�
( 2−gμ

2 − i λT

4π
(q − 2κkF )

)
∣∣∣∣∣
2

,

(34)

where we have defined the thermal length λT = �vF

kBT
, and �(x)

is the � function. The spin susceptibility strongly depends on
the exponents,

gx = gy = 1

4

(
KcS + KcA + 1

KsS

+ 1

KsA

)
, (35)

gz = 1

4
(KcS + KcA + KsS + KsA). (36)

For the systems with the spin rotational symmetry, we
have KsS = KsA = 1, which leads to gx = gy = gz and thus
isotropic spin susceptibility, as expected.

In Eq. (34) we obtained the opposite sign for χ
μ

AB(q)
explicitly. The antiferromagnetic correlation between spins on
different sublattice sites provides a consistent picture with the
noninteracting calculation [34,53–57]. Our results thus consis-
tently reconcile Refs. [37,38] and [34,53–57], which obtained
the interaction-induced boost for the transition temperature,
and the locally antiferromagnetic coupling, separately.

Since the RKKY coupling is related to the spin susceptibil-
ity by

J
μ
αβ(q) = A2

0a

2
χ

μ
αβ(q), (37)

4Here we adopt the definition of χμ(q) in Ref. [38], where χμ(q) has
a different dimension than χμ(r), whereas both J μ(q) and J μ(r) have
the dimension of energy. Therefore, the form of Eq. (5) is different
from Eq. (37) by a factor of a.
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2 π
λT kF

kF

JAB
μ

(q=2 )

4 2 2 4

q

JAB q
μ

kF

FIG. 2. (Color online) RKKY interaction from Eq. (37) in mo-
mentum space. The interaction has peaks at q = ±2kF with the
width ∼ 2π

λT kF
. The parameters used here are KcS = 0.2, KcA = KsS =

KsA = 1 [75–80], I = 1
2 , A0 = 6.0 μeV [24–26,51,52,68,69], vF =

8.0 × 105 m/s, kF = 4.0 × 108 m−1, a = 2.46 Å [38], L = 1.0 μm,
and N⊥ = 12 [23]. For the purpose of illustration, we choose an un-
realistically short thermal length, corresponding to an unrealistically
high temperature T = 100 K, to demonstrate the RKKY peaks. For
realistic temperatures, the peaks will be much sharper.

we can use Eq. (34) to evaluate the RKKY coupling. Its
momentum dependence is plotted in Fig. 2. We remind that
Eq. (34) contains only the contribution from the q ∼ 2kF

intravalley backscattering terms, leading to the global extrema.
The contributions from other scattering processes only give
local extrema, and will be suppressed in the presence of
the feedback (see Table II). The peak value of the RKKY
interaction is given by

J
μ

AB(q = 2kF )

≈ A2
0a sin(πgμ)

32π2�vF

(
λT

2πa

)2−2gμ

∣∣∣∣∣�(1 − gμ)�
( gμ

2

)
�
( 2−gμ

2

)
∣∣∣∣∣
2

, (38)

which depends on the temperature through the thermal
length, λT .

III. ANTIFERROMAGNETIC NUCLEAR SPIN HELIX

A. Antiferromagnetic helix and magnon spectrum

We now perform the spin-wave analysis to find spectrum
of the low-energy excitations of the RKKY Hamiltonian in
Eq. (4) [81,82]. Since the RKKY interaction in CNTs is
sublattice dependent, it leads to a different nuclear spin order
from the ferromagnetic helical order in GaAs nanowires. We
first consider only the long-wavelength magnons propagating
along the tube axis, and will include short-wavelength magnon
excitations when estimating the transition temperature in
Sec. III B.

We begin by assuming that in a given cross section (i.e.,
along the transverse direction) the nuclear spins on the same
sublattice sites in the ground state are parallel to each other
and the spins on different sublattice sites point to the opposite
direction, ĨA(rj ) = −ĨB(rj ). A helical order means these spins
rotate within a fixed plane as one moves along the tube, with a
spatial period π/kF . We denote this (helical) plane as xy and

FIG. 3. (Color online) A sketch of the antiferromagnetic nuclear
spin helix in the (a) original (x̂,ŷ,ẑ) and (b) rotated (ê1

j ,ê
2
j ,ê

3
j )

coordinates. The black and red arrows indicate the spins on the
sublattice sites A and B, respectively. For simplicity, we do not plot
the actual honeycomb lattice here.

the axis perpendicular to it as z. The confinement of the nuclear
spins to the xy plane will be justified in Sec. IV, where we will
show the modified RKKY interaction due to the feedback to
be anisotropic: |J̃ x

αβ(q)| = |J̃ y

αβ(q)| > |J̃ z
αβ(q)|.

We adopt the standard helical ansatz, generalized for the
antiferromagnetic correlation between the two sublattices [42],

Ĩα(rj ) = αN⊥I [cos(2kF rj )x̂ + sin(2kF rj )ŷ]. (39)

As demonstrated below, this order forms the Néel order in
a rotated basis. Although in a conventional antiferromagnet
(i.e., Heisenberg antiferromagnet) the Néel order is not the true
ground state, it provides a consistent basis for the spin-wave
analysis [82]. We will make sure this is a legitimate choice
here by checking the stability of the magnon Hamiltonian.
With the order in Eq. (39), the nuclear spins are antiferro-
magnetically aligned on the atomic length scale, whereas they
slowly rotate around the helical axis (z direction) on the length
scale of π/kF , as sketched in Fig. 3.

To derive the magnon spectrum of the antiferromagnetic
helix, we rotate the spin axes [36–38] such that in the local
basis (ê1

j ,ê
2
j ,ê

3
j ) the nuclear spin model is mapped onto the

Heisenberg antiferromagnet. We write

Ĩα(rj ) = Ĩ x
α (rj )x̂ + Ĩ y

α (rj )ŷ + Ĩ z
α(rj )ẑ

= Ĩ 1
α (rj )ê1

j + Ĩ 2
α (rj )ê2

j + Ĩ 3
α (rj )ê3

j , (40)

where the unit vectors in the original and new basis are related
by a rotation around the helical axis,⎛
⎜⎝

ê1
j

ê2
j

ê3
j

⎞
⎟⎠ =

⎛
⎝cos(2kF rj ) − sin(2kF rj ) 0

sin(2kF rj ) cos(2kF rj ) 0
0 0 1

⎞
⎠
⎛
⎝x̂

ŷ

ẑ

⎞
⎠. (41)

In the rotated basis, the Néel order forms the staggered spin
orientation along the ê1

j direction, i.e., Ĩα(rj ) = αN⊥I ê1
j , as

sketched in Fig. 3.
The RKKY Hamiltonian, Eq. (4), becomes

HRKKY = 1

N2
⊥

∑
i,j,α,β

∑
μ̃ν̃

Ĩ μ̃
α (ri)J̃

μ̃ν̃
αβ (ri − rj )Ĩ ν̃

β (rj ), (42)
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where μ̃,ν̃ = 1,2,3 in spin space and the nonzero components
of J̃

μ̃ν̃
αβ (ri − rj ) are

J̃ 11
αβ (ri − rj ) = J̃ 22

αβ (ri − rj )

= J x
αβ(ri − rj ) cos[2kF (ri − rj )], (43a)

J̃ 12
αβ (ri − rj ) = −J̃ 21

αβ (ri − rj )

= J x
αβ(ri − rj ) sin[2kF (ri − rj )], (43b)

J̃ 33
αβ (ri − rj ) = J z

αβ(ri − rj ). (43c)

We now introduce the Holstein-Primakoff transformation
for the antiferromagnet [82],

Ĩ 1
A(rj ) = N⊥I − a

†
j aj , (44a)

Ĩ 2
A(rj ) =

√
N⊥I

2
(a†

j + aj ), (44b)

Ĩ 3
A(rj ) =

√
N⊥I

2

1

i
(−a

†
j + aj ), (44c)

Ĩ 1
B(rj ) = −N⊥I + b

†
j bj , (44d)

Ĩ 2
B(rj ) =

√
N⊥I

2
(b†j + bj ), (44e)

Ĩ 3
B(rj ) =

√
N⊥I

2

1

i
(b†j − bj ), (44f)

where the higher-order terms in O( 1
N⊥I

) have been neglected.
Using Eqs. (43) and (44) in Eq. (42) and performing the

Fourier transform,

aq = 1√
N

∑
j

e−iqrj aj , (45a)

bq = 1√
N

∑
j

eiqrj bj , (45b)

we obtain the magnon Hamiltonian in momentum space,

Hmagnon = I

2N⊥

∑
q

�†
magnon(q)D(q)�magnon(q), (46)

where �
†
magnon(q) = (a†

q,a
†
−q,b

†
q,b

†
−q,aq,a−q,bq,b−q). The 8-

by-8 symmetric matrix D(q) is

D(q) ≡
(
A(q) B(q)
B(q) A(q)

)
, (47)

where the 4-by-4 block matrices A(q) and B(q) are defined as

A(q) ≡

⎛
⎜⎝

h3(q) 0 0 h2(q)
0 h3(q) h2(q) 0
0 h2(q) h3(q) 0

h2(q) 0 0 h3(q)

⎞
⎟⎠, (48)

B(q) ≡

⎛
⎜⎝

0 −h2(q) h1(q) 0
−h2(q) 0 0 h1(q)
h1(q) 0 0 −h2(q)

0 h1(q) −h2(q) 0

⎞
⎟⎠, (49)

with

h1(q) ≡ 1
4

[
J x

AB(q − 2kF ) + J x
AB(q + 2kF ) + 2J z

AB(q)
]
,

(50a)

h2(q) ≡ 1
4

[
J x

AB(q − 2kF ) + J x
AB(q + 2kF ) − 2J z

AB(q)
]
,

(50b)

h3(q) ≡ 2J x
AB(2kF ) − h1(q). (50c)

One can check that D(q) is positive definite, which ensures
the stability of the nuclear spin order and justifies our ansatz
for the antiferromagnetic helix [83].

The excitation spectrum of Eq. (46) is given by twice the
positive eigenvalues of the matrix(

A(q) B(q)
−B(q) −A(q)

)
. (51)

Diagonalization gives two magnon bands [83],

�ω(1)
q = I

N⊥

√
2J x

AB(2kF )

×√2J x
AB(2kF ) − J x

AB(q − 2kF ) − J x
AB(q + 2kF ),

(52)

�ω(2)
q = 2I

N⊥

√
J x

AB(2kF )
[
J x

AB(2kF ) − J z
AB(q)

]
, (53)

which are shown in Fig. 4.
In Fig. 4, one can see that there are zero-energy excitations

at q = 0, ± 2kF . These Goldstone modes are protected by the
symmetries in the system; namely, the rotational symmetry
of the nuclear spins around the helical axis and the rotation
of the helical axis itself [44,84]. Around these nodes, the
low-energy magnon spectrum exhibits linear dispersions. In
the (nonhelical) Heisenberg model, the low-energy dispersion

2π
λT

4 2 2 4

q

ωq
i

kF

kF

FIG. 4. (Color online) Magnon spectrum of the antiferromag-
netic helix. The parameters used here are the same as in Fig. 2.
The blue solid and red dashed lines correspond to the ω(1)

q and ω(2)
q

energy bands, respectively. As in Fig. 2, here we use an unrealistically
high temperature to illustrate the dips in the spectrum. The region of
the linear dispersion is given by the width of the RKKY peaks ∼ 2π

λT kF
,

which is much narrower for realistic temperatures.
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of the magnons is quadratic in the ferromagnetic case, whereas
it becomes linear in the antiferromagnetic case [82,85]. Inter-
estingly we find that for one-dimensional helical systems, both
locally ferromagnetic [37,38] and antiferromagnetic orders
contain low-energy magnons with linear dispersions, but
differences in scaling coefficients, as discussed in Sec. III B.

B. Transition temperature of the nuclear spin order
without the feedback

We now estimate the transition temperature by considering
the fluctuations due to the magnons, which reduce the sublat-
tice magnetization. From the magnon spectrum one can see that
the long-wavelength magnons (q ≈ 0) and their two replicas at
q ≈ ±2kF have the smallest energy, with linear dispersion. In
an infinite system, such excitations destroy order at any finite
temperature. Namely, whereas the original Mermin-Wagner
theorem [86] and its extension [87] for oscillatory exchange
interaction in free electron gas do not apply to this system,
an extension of the theorem for a more generic Hamiltonian,
including the electron-electron interaction, rules out any spon-
taneous orders at finite temperatures in the thermodynamic
limit [88]. However, in a finite system with length L, the lowest
allowed momentum is given by q1 = π

L
and the values of the

excitation momenta are discrete (not continuous), so that an
order may be established in principle. This finite-size-induced
finite energy of long-wavelength excitations corresponds to a
gap of the zero-energy Goldstone modes.

In addition, here the peak in the susceptibility is so
sharp that the region where magnons can be considered
long-wavelength (that is, having linear dispersion) is extremely
narrow. In fact, from the analysis in Ref. [84] it follows
that for sample sizes realistic for nanowires and nanotubes,
the long-wavelength magnons are completely negligible and
the transition temperature can be obtained by considering
only the contribution from the short-wavelength magnons.
If q1 > π

λT
(equivalently kBT < �vF

L
, which in our case is

satisfied for any realistic length), then these magnons have
approximately a momentum-independent energy, �ωm, of
order |J x

αβ(q = 2kF )|, a property which makes the transition
temperature calculation analytically tractable. Namely, the
temperature dependence of the magnon occupation can be
computed by

N⊥ ×
∑
i=1,2

∑
q

′ 1

e�ωm/kBT − 1
, (54)

where the summation over i = 1,2 includes both magnon
bands, and the prime on the summation denotes that the
Goldstone modes are excluded. Finally, the prefactor N⊥ is
required to reflect the N⊥ possibilities to flip a spin within a
cross section for a short-wavelength magnon [84].

The order parameter, defined as the q = 2kF component of
the normalized staggered magnetization, i.e., the normalized
sublattice magnetization, can then be expressed as

m2kF
(T ) = 1 − 1

NI

∑
i=1,2

∑
q

′ 1

e�ωm/kBT − 1
, (55)

which equals unity for the fully ordered nuclear spin state, and
vanishes for completely disordered phase.

The constant magnon energies, �ωm = 2IJ x
AB(2kF ,T )/N⊥,

lead to a generalized Bloch law [38],

m2kF
(T ) = 1 −

(
T

T0

)3−2gx

(56)

with a nonuniversal exponent (3 − 2gx) modified by the
electron-electron interaction. We also define

kBT0 ≈
[
I 2A2

0

N⊥
(�a)1−2gx C(gx)

]1/(3−2gx )

, (57)

where �a ≡ �vF /a is the bandwidth, and

C(g) ≡ 1

8
sin(πg)(2π )2g−4

∣∣∣∣∣�(1 − g)�
(

g

2

)
�
( 2−g

2

)
∣∣∣∣∣
2

. (58)

We note that even for the noninteracting limit gx → 1, the
exponent in Eq. (56) is still different from the T 3/2 law
for Heisenberg ferromagnets [82,85,89] or the T 2 law for
Heisenberg antiferromagnets [90,91]. The nanotube radius R

has two effects on T0: first, as mentioned in Sec. II B, larger R

results in less prominent electron-electron interaction, and thus
a larger exponent gx . Second, larger R, which is proportional
to N⊥ that enters Eq. (57), weakens the finite-size effect, so
the magnon occupation increases, as indicated in Eq. (54).
As a result of both of these effects, CNTs with larger R are
expected to have a lower transition temperature. In addition,
we also note that for CNTs not purely made of 13C, say with
the 13C concentration of p, Eq. (56) is valid upon replacement
A0 → pA0 in Eq. (57), so that the transition temperature will
be reduced as T0 ∝ p2/(3−2gx ).

Using Eq. (57) we evaluate T0 ≈ 1.9 μK, which is too small
for dilution fridge experiments. However, so far we have not
included the Overhauser field due to the nuclear spins, which
acts back on the conduction electrons and further stabilizes the
order. In the next section, we take into account this feedback
and estimate how it modifies the transition temperature.

As a self-consistency check, we examine that the energy
scale of the RKKY interaction, Eq. (4), does not excess the one
set by the original hyperfine Hamiltonian, Eq. (2). The former
energy scale is dominated by the q = 2kF peak, Eq. (38).
Thus, after Fourier transforming Eq. (4) into momentum space
through Ĩ μ

α (q) =∑j e−iqrj Ĩ μ
α (rj ), we obtain

ERKKY ≈ 1

NN2
⊥

∣∣J x
AB(q = 2kF )Ĩ x

A(2kF )Ĩ x
B(−2kF )

∣∣
≈ NJ

μ

AB(q = 2kF )I 2, (59)

where we keep only the dominant q = 2kF component, and
Ĩ x
α (q = ±2kF ) is replaced by its maximal value, NN⊥I . The

energy scale of the hyperfine Hamiltonian, on the other hand,
can be obtained by considering all electrons are polarized such
that their spins locally align with the nuclear spins [38]. This
gives

Ehf ≈
∑
j,α

A0

2

nel

nI

|Ĩα(rj )|

≈ NA0I
kF a

π
, (60)
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where nel = (2kF /π )|ψ⊥,α|2 = kF /(π2R) is the area electron
density, and the electron spin is included through the factor of
1
2 . Here nI = N⊥/(πRa) is the area nuclei density, introduced
in Sec. II A. In the second line we replace Ĩ μ

α (rj ) by its length,
N⊥I , and the summation gives a factor of 2N . Combining
Eqs. (59) and (60), we obtain the self-consistency condition,

J
μ

AB(q = 2kF ) � A0
2kF a

π
, (61)

where J
μ

AB(q = 2kF ) is temperature dependent. The above
condition is fulfilled for T = T0.

IV. FEEDBACK EFFECTS

A. Overhauser field from the nuclear spin order

Since A0 � εF , the characteristic time scales of the slow
nuclear and fast electron dynamics can be considered to be
decoupled. Therefore, we can treat the nuclear spin order
as a static order, which induces a static spatially oscillating
Overhauser field that acts back on the electrons. Including the
antiferromagnetic helix in the hyperfine coupling terms, we
obtain

Hfb = A0

N⊥

∑
α,j

Sα(rj ) · 〈Ĩα(rj )〉. (62)

The antiferromagnetic helix with q = 2kF gives

〈Ĩα(rj )〉 = αN⊥Im2kF
[cos(2kF rj )x̂ + sin(2kF rj )ŷ]. (63)

In the continuum limit we then have

Hfb =
∑

α

∫
dr BOv,α(r) · Sα(r), (64)

where the nuclear Overhauser field is defined as

BOv,α(r) = αBOv[cos (2kF r)x̂ + sin (2kF r)ŷ] (65)

with BOv ≡ A0Im2kF
. The summation over α eliminates

the intervalley backscattering terms, Eq. (26), so only the
intravalley backscattering terms, Eq. (25), enter Hfb.

With Eqs. (28)–(31), the feedback Hamiltonian can be
written as

Hfb = BOv

2πa

∑
γ

∫
dr[cos (φcS + γφcA + θsS + γ θsA)

+cos (φcS + γφcA − θsS − γ θsA − 4kF r)], (66)

where we neglected the forward-scattering part because it has
no influence [37,38]. The cosine in the second term oscillates
except for the commensurate case, 2kF a = 2π × integer. The
commensurate case corresponds to an unrealistic gate tuning,
so we assume the system is incommensurate and drop the
second cosine term [37,38]. Consequently we have the sine-
Gordon term

Hfb ≈ BOv

2πa

∑
γ

∫
dr[cos (φcS + γφcA + θsS + γ θsA)],

(67)

which is renormalization-group (RG) relevant in the inter-
acting system as discussed in Sec. IV B. Therefore, it will
gap out the (φcS + γφcA + θsS + γ θsA) modes, but leave

(φcS + γφcA − θsS − γ θsA) modes gapless, which can still
effectively mediate the RKKY interaction.

Before analyzing the Overhauser field due to the an-
tiferromagnetic nuclear spin helix, let us come back to
the intervalley backscattering terms of the spin operator,
Eq. (26), which would have led to a sublattice-independent
ferromagnetic coupling J

μ

AA(q) = J
μ

AB(q) < 0, and hence a
locally ferromagnetic helical order with q = 2(kF − γ kv),

〈Ĩfm,α(rj )〉 = αN⊥Im2(kF −γ kv ){cos[2(kF − γ kv)rj ]x̂

+ sin[2(kF − γ kv)rj ]ŷ}. (68)

The corresponding feedback Hamiltonian is

Hfb,inter = A0

N⊥

∑
α,j

Sb,inter,α(rj ) · 〈Ĩfm,α(rj )〉

≈ B ′
Ov

2πa

∑
γ

∫
dr[cos (φcS − γφsA − θsS + γ θcA)],

(69)

where B ′
Ov ≡ A0Im2(kF −γ kv ), and the oscillating terms are

omitted again. Here the cosine terms will gap out the (φcS −
γφsA − θsS + γ θcA) modes, but leave the (φcS + γφsA +
θsS + γ θcA) modes gapless. However, while both of the
(φcS + γφsA + θsS + γ θcA) modes for γ = ± may mediate
the ferromagnetic RKKY interaction, they generate different
extrema at q = 2(kF ∓ kv), respectively. On the other hand,
for the intravalley backscattering, both γ = ± valleys produce
the same extremum at q = 2kF , so the absolute value of the
magnitude of the RKKY interaction at q = 2kF will be twice
larger than the ones at q = 2(kF − γ kv).

Comparing the two scenarios, the energy gains by forming
these two nuclear spin orders are different because of the
different peak heights, even though both the intervalley
and intravalley backscattering terms lead to peaks in the
RKKY interaction. Consequently, the ground state favors the
antiferromagnetic helix with q = 2kF to minimize the energy.
In addition, the gapping of half of the conduction electron
modes reduces the conductance by a factor of 2, as predicted in
Refs. [37,38] for materials with no valley degrees of freedom,
which may have been observed in GaAs nanowires [47].

B. Renormalized Overhauser field

Based on the analysis in Sec. IV A, the system will organize
the nuclear spins to maximize the m2kF

component with
antiferromagnetic helix to lower the energy. Therefore, from
now on we drop the intervalley backscattering contribution to
the feedback effects, and consider only the antiferromagnetic
helix due to the intravalley backscattering terms in Eq. (67). In
terms of the right- and left-moving particles, the feedback term
describes the (L,↑) ↔ (R,↓) scattering within each valley,

ψ
†
L,γ,↑ψR,γ,↓ + ψ

†
R,γ,↓ψL,γ,↑, (70)

as illustrated in Fig. 5. Notice that this is a consequence
of the choice of helicity in Eq. (39); if the other helicity
is chosen, namely, [cos(2kF rj )x̂ − sin(2kF rj )ŷ], then the
antiferromagnetic helix will correspond to the (L,↓) ↔ (R,↑)
scattering, which gaps out different spin subbands of conduc-
tion electrons. Even though half of the conduction electrons
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a

KK

ΨR,   ,ΨR,   , ΨL,   ,ΨL,   ,

b

KK

ΨRΨR ΨLΨL

FIG. 5. (Color online) The antiferromagnetic helix corresponds
to the intravalley backscattering processes (a), gapping out half of
conduction electrons (b). The up and down spins are marked in black
and red colors, respectively. The chemical potential is plotted with the
blue dashed lines. The green arrows describe the scattering processes.
The dispersions for up and down spins are slightly shifted for clarity.

are gapped by the nuclear spin order, the feedback strongly
renormalizes the other half of the electrons, leading to stronger
effective electron-electron interaction, as can be seen below.

To proceed we define a new set of bosonic fields,

�±
γ ≡ 1

2 [±(φcS + γφcA) + (θsS + γ θsA)], (71)

�±
γ ≡ 1

2 [(φsS + γφsA) ± (θcS + γ θcA)], (72)

which satisfy the commutation relations [73,74]

[�±
γ (r1),�±

γ (r2)] = i
π

2
sgn(r2 − r1). (73)

In terms of the new fields, the feedback Hamiltonian, Eq. (67),
is

Hfb = BOv

2πa

∑
γ

∫
dr cos(2�+

γ ), (74)

and the electronic Hamiltonian, Eq. (17), becomes

Hel ≈
∑

γ

∫
�dr

2π

{
ũK̃[(��+

γ )2 + (��−
γ )2]

+ ũ

K̃
[(��+

γ )2 + (��−
γ )2]

}
, (75)

where the cross terms, such as (��±
γ )(��±

γ̄ ) and
(��±

γ )(��±
γ̄ ), have been neglected because they are marginal

and less important than the relevant cosine terms [38,92]. Here
the modified velocity and Luttinger-liquid parameter in the
presence of the feedback are given by

ũ ≡ 1

4

[∑
P,P ′

(
ucP KcP + usP

KsP

)(
usP ′KsP ′ + ucP ′

KcP ′

)]1/2

,

K̃ ≡
[ ∑

P

(
ucP KcP + usP

KsP

)
∑

P ′
(
usP ′KsP ′ + ucP ′

KcP ′

)
]1/2

. (76)

For the spin isotropic systems, KsS = KsA = 1, we have ũ =
vF /K̃ . For noninteracting systems, K̃ = 1 and ũ = vF are
recovered. For CNTs, we have K̃ ≈ 0.38 and ũ ≈ 2.6vF .

Equations (74) and (75) state that the (�+
γ ,�+

γ ) and
(�−

γ ,�−
γ ) sectors are decoupled, with the former described

by a sine-Gordon Hamiltonian, and the latter by a free bosonic
one. To analyze the sine-Gordon Hamiltonian, we define a
dimensionless coupling constant, ỹ(l) ≡ BOv(l)/�̃a(l) with
�̃a(l) ≡ �ũ/ξ (l) and correlation length ξ (l) ≡ ael . Then, we
obtain the RG flow equation for ỹ(l) [73],

dỹ(l)

dl
= (2 − K̃)ỹ(l), (77)

where l is the cutoff length scale. In the systems under
consideration, we always have 2 − K̃ > 0, so ỹ(l) grows under
the RG flow as

ỹ(l) = ỹ(0)e(2−K̃)l , (78)

and the cosine term is relevant. The renormalized Overhauser
field is then

B∗
Ov = BOv

(
ξ

a

)(1−K̃)

. (79)

The RG flow will stop when ξ exceeds the system size L,
the thermal length λT , or at a scale l∗, where the coupling
constant becomes of order 1, y(l∗) ≈ 1, which gives

ξ (l∗) ≡ ael∗ = a

(
IA0

�̃a

)−1/(2−K̃)

, (80)

with �̃a ≡ �̃a(l = 0) = �ũ/a. The correlation length is de-
termined by the smallest scale at which any of the above
conditions are reached,

ξ = min

{
L,λ̃T ≡ �ũ

kBT
,ξ (l∗)

}
. (81)

In CNTs, a typical system size is of order L = 1 μm. In
addition, λ̃T (T = 10 mK) ≈ 1.6 mm, and ξ (l∗) ≈ 1.8 μm, so
L � ξ (l∗) � λT and we obtain ξ = L = 1 μm.

The renormalized hyperfine coupling constant, to which the
Overhauser field is proportional, is then

A∗ = A0

(
ξ

a

)(1−K̃)

. (82)

For the noninteracting systems K̃ = 1, and the coupling
is the bare one. For CNTs, we get |A∗| ≈ 180|A0| ≈ 1.1
meV. Importantly, the renormalization is stronger than the
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one obtained within the one-band description (A∗ ≈ 22 μeV)
[37,38] because of the smaller exponent K̃ here. With the
renormalization we still have A∗ � εF ≈ 0.1 eV, so the
Schrieffer-Wolff transformation remains well defined. The gap
due to the antiferromagnetic helix can be obtained from the
RG analysis [73],

�m = �̃a

(
IA0

�̃a

)1/(2−K̃)

, (83)

which leads to a gap of �m ≈ 0.77 meV for our parameters.

C. Transition temperature in the presence of the feedback

In this section, we include the feedback into the Hamil-
tonian, and compute the spin susceptibility in the presence
of the Overhauser field. The modified RKKY interaction is
proportional to the modified static spin susceptibility, which
is now evaluated with the modified electronic Hamiltonian,
Hel + Hfb, where Hel and Hfb are given by Eqs. (75) and (74),
respectively.

The modified correlation functions χ̃
>,μ

AA (r) = −χ̃
>,μ

AB (r)
are

χ̃
>,x
AA (r̃) = χ̃

>,y

AA (r̃) = −i cos(2kF r)

2(4πa)2

∑
γ

{〈ei
√

2�+
γ (r̃)e−i

√
2�+

γ (0)〉 + 〈ei
√

2�−
γ (r̃)e−i

√
2�−

γ (0)〉}, (84)

χ̃
>,z
AA (r̃) = −i cos(2kF r)

2(4πa)2

∑
γ

{〈e(i/
√

2)[�+
γ (r̃)−�−

γ (r̃)+�+
γ (r̃)+�−

γ (r̃)]e−(i/
√

2)[�+
γ (0)−�−

γ (0)+�+
γ (0)+�−

γ (0)]〉

+ 〈e(i/
√

2)[�+
γ (r̃)−�−

γ (r̃)−�+
γ (r̃)−�−

γ (r̃)]e−(i/
√

2)[�+
γ (0)−�−

γ (0)−�+
γ (0)−�−

γ (0)]〉}, (85)

where we used the new bosonic fields, �±
γ and �±

γ , and defined
r̃ ≡ (r,t).

The relevant cosine term in Eq. (74) tends to order the
�+

γ field, which will be locked into one of the minima or
maxima of the cosine, depending on the sign of BOv ∝ A0.
The canonically conjugated �+

γ field, on the other hand, will
be disordered. Consequently, the correlation functions of the
�+

γ field will be constants, and those containing the �+
γ field

will be exponentially suppressed [41,73,84,92]. In addition,
the local extrema of the RKKY interaction (Table II) are also
exponentially suppressed in the presence of the feedback. The
physical picture is that since the (�+

γ ,�+
γ ) sector is gapped

due to the sine-Gordon term, its contribution to the RKKY
interaction is much less than the gapless (�−

γ ,�−
γ ) sector. As

a result, we may calculate the transverse spin susceptibility by
simply neglecting the �+

γ and �+
γ fields [38] and following

the same steps as in Sec. II D. In comparison with Eq. (34),
the velocities are replaced by ũ, and χ̃

>,x
AA acquires an extra

factor of 1
2 because its first term in Eq. (84) contains only

the gapped �+
γ field and is thus suppressed. In addition, the

essential modification, namely the modified exponents, is

g̃x = g̃y = K̃

2
. (86)

As a result, the modified static spin susceptibility for x,y

components is given by

χ̃ x
AA(q) = χ̃

y

AA(q)

= − sin(πg̃x)

32π2�ũ

(
λ̃T

2πa

)2−2g̃x

×
∑
κ=±

∣∣∣∣∣�(1 − g̃x)�
(

g̃x

2 − i λ̃T

4π
(q − 2κkF )

)
�
( 2−g̃x

2 − i λ̃T

4π
(q − 2κkF )

)
∣∣∣∣∣
2

, (87)

where the thermal length now becomes λ̃T = �ũ
kBT

.

On the other hand, the z component of the spin susceptibility
is exponentially suppressed by the helical order gap and is
much smaller than the transverse component. The full expres-
sion for χ̃ z

αβ(q) is difficult to compute because it involves the
gapped (nonfree) bosons [93,94]. However, since the transition
temperature is determined by χ̃ x

αβ(q) instead of χ̃ z
αβ(q), the

full expression for χ̃ z
αβ(q) is not necessary. Nevertheless, to

understand how the RKKY interaction depends on the gap, we
compute the RKKY peak value at zero temperature [84,92],

χ̃ z
AA(q = 2kF ) = − 1

4π�ũ

1

2 − 2g̃z

[(
�̃a

�m

)(2−2g̃z)

− 1

]
,

(88)

with �m being the gap due to the antiferromagnetic helix,
defined in Sec. IV B, and the modified exponent is

g̃z = 1

8

(
K̃ + 1

K̃

)
. (89)

For CNTs, we obtain g̃x ≈ 0.19, and g̃z ≈ 0.38. More details
about the calculation of the RKKY peak in gapped systems
will be given in Sec. V A, where the pairing gap due to the
proximity effect is taken into account. We conclude that the
anisotropic spin susceptibility due to the ordered spins serves
an indirect experimental signature for the nuclear spin order
[92].

The feedback-modified RKKY interaction is given by
J̃

μ
αβ(q) = A2

0aχ̃
μ
αβ(q)/2. The value of the RKKY peak mainly

depends on the exponent, which depends strongly on the
parameter KcS , as demonstrated in Fig. 6. The z component
of the static spin susceptibility is exponentially suppressed
by the helical order gap, what results in a larger RKKY
interaction in the transverse direction |J̃ x

αβ(q)| > |J̃ z
αβ(q)|,

further stabilizing the planar magnetic order. Accordingly, this
easy-plane anisotropy, in contrast to Refs. [37,38], naturally
justifies the ansatz of the planar nuclear spin order. In Fig. 7 we
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FIG. 6. (Color online) Exponents gμ and g̃μ as a function of
the Luttinger-liquid parameter, KcS . The blue solid and red dotted
lines give the modified exponents g̃x = g̃y and g̃z in the presence
of the feedback, respectively. The green dashed curve describes the
exponent gμ without the feedback. The vertical black dashed line
marks the value we use to evaluate, KcS = 0.2. The other parameters
used here are the same as in Fig. 2.

plot the ratio of the RKKY peak value with the feedback to the
one without the feedback as a function of the Luttinger-liquid
parameter, KcS . The RKKY peak is strongly enhanced in the
presence of the feedback, and the ratio increases with smaller
KcS , corresponding to stronger interaction.

We evaluate the magnon spectrum using the modified
RKKY interaction, and estimate the transition temperature,
repeating the procedure described in Sec. III B. The tempera-
ture dependence of the order parameter is the same generalized
Bloch law,

m̃2kF
(T ) = 1 −

(
T

T̃0

)3−2g̃x

, (90)

with a modified exponent, (3 − 2g̃x), and a modified transition
temperature,

kBT̃0 ≈
[
I 2A2

0

2N⊥
(�̃a)1−2g̃x C(g̃x)

]1/(3−2g̃x )

, (91)

which gives T̃0 ≈ 57 mK as shown in Fig. 8. In comparison
with the absence of the feedback, the transition temperature is
enhanced by more than four orders of magnitude.
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104

105

106

107

108

KcS

R
p

FIG. 7. (Color online) Ratio of the RKKY peak values, Rp ≡
|J̃ x

αβ (q = 2kF )/J x
αβ (q = 2kF )| at T = 50 mK as a function of the

Luttinger-liquid parameter, KcS . The other parameters are the same
as in Fig. 2. The black dashed line marks the value KcS = 0.2.

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

T mK

m
2

T

10 6 10 5 10 4 0.001 0.01 0.1

0.001

0.01

0.1

1

T K

m
2

T
,

k F
m

2
T

k F
k F

FIG. 8. (Color online) Temperature dependence of the order pa-
rameter. Top: the order parameter in the presence of the feedback,
m̃2kF

(T ), from Eq. (90). Bottom: the order parameter without (red
dashed) and with (blue solid) the feedback from Eqs. (56) and (90),
respectively, in the logarithmic scale. The parameters used here are
the same as in Fig. 2.

The feedback not only modifies the exponents and therefore
strongly enhances the transition temperature, but also gaps out
the (�+

γ ,�+
γ ) modes. This leaves an effective Hamiltonian

for the gapless (�−
γ ,�−

γ ) modes, which mix the charge
and spin sectors of the bosonic fields [see Eqs. (71) and
(72)]. Consequently this produces a density-wave order that
combines charge and spin degrees of freedom and recon-
structs the electronic states [37,38,40]. The combination of
the charge and spin degrees of freedom signifies no spin-
charge separation in this unusual Luttinger liquid, which is
equivalent to introducing a synthetic spin-orbit interaction
[73]. Indeed, it has been shown that, upon a spin-dependent
gauge transformation, a helical magnetic order is equivalent to
spin-orbit interaction combined with Zeeman field [40,46,95].
This can also be seen from the form of the Overhauser field, a
spatially oscillating field which combines the spin and orbital
degrees of freedom. Since the spin-orbit interaction is crucial
for nontrivial topology, we now consider coupling the system
to a superconductor and discuss the realization of MFs in
CNTs.

V. RKKY INTERACTION IN THE PRESENCE OF
SUPERCONDUCTIVITY

A. Spin susceptibility in the presence of the pairing gap

Since the RKKY interaction in metallic phases is mediated
by conduction electrons, it is a bit surprising that even in
gapped phases there can still be nonvanishing RKKY peaks
which give rise to nuclear spin orders [44,45,92]. In this section
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we show that in the presence of the superconductivity the
RKKY interaction can still form q = ±2kF peaks, even though
the strength of the peaks are reduced by the pairing gap.

Here we consider only BCS-type Cooper pairs with zero
momentum. Since there are four Fermi points in metallic
CNTs, Cooper pairs with zero momentum can be formed either
between right movers at the K+ valley and left movers at
the K− valley, denoted as the exterior branches, or between
left movers at the K+ valley and right movers at the K−
valley, denoted as the interior branches. In the presence of
the proximity-induced superconductivity [96–100], the pairing
gaps for the exterior and interior branches are in general
different.5

Similar to Sec. II, we shall first consider the system in
the absence of feedback, and include the feedback afterward.
The Hamiltonian now consists of the interacting conduction
electron terms Hel, given by Eq. (17), and the pairing terms

Hs = gs

∑
γ,σ

∫
dr[ψ†

R,γ,σ (r)ψ†
L,γ̄ ,σ̄ (r) + H.c.]

= gs

πa

∑
γ,σ

∫
dr cos (γφcA + σφsS − θcS − σγ θsA),

(92)

where gs is the coupling of the pairing terms, and in the
second line the pairing terms are expressed in terms of the
bosonic fields. We see that the pairing terms contain the φsS

and θcS fields, whereas the feedback terms contain their
conjugate fields, θsS and φcS [see Eq. (67)]. Therefore, the
antiferromagnetic nuclear spin helix and superconductivity
compete with each other. The repulsive electron-electron
interaction increases the feedback but reduces the pairing gap
[45,59,60]. Nonetheless, we will see in Sec. VI A that the
pairing terms are still RG relevant.

The details of the calculation on the spin susceptibility in
the presence of the superconductivity are given in Appendix A.
The zero-temperature value of the peaks of the static spin

5When a CNT is brought in contact with a superconductor, Cooper
pairs from the superconductor can tunnel into the CNT through two
processes. In one process a Cooper pair tunnels to either one of the
sublattices with the pairing amplitude, �s,d , while in the other process
the pairings are between electrons on different sublattices with the
pairing amplitude, �s,n. The pairing gaps of the exterior and interior
branches are related to �s,d and �s,n by [102]

�(e/i)
s = �s,d ± �s,n

∣∣∣∣∣ �vF k√
α2 + (�vF k)2

∣∣∣∣∣,
where the curvature-induced α = −0.08 meV/R[nm] with R being
the radius of the CNT [62,63]. Strictly speaking the pairing gap
then depends on the wave vector. However, since in this work we
are investigating the topological effect of the synthetic spin-orbit
interaction rather than the intrinsic one, we drop α, and thus neglect
the wave-vector dependence of the pairing gaps. (See also Ref. 98
in Ref. [38].) Therefore, we have �(e/i)

s = �s,d ± �s,n, which are
constants and may be considered as phenomenological parameters.
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FIG. 9. (Color online) RKKY peak value at zero temperature as
a function of the pairing gap in the presence of the feedback. The
parameters used here are the same as in Fig. 2.

susceptibility reads

χ
μ

AA(q = 2kF ) ≈ − 1

4π�vF

1

2 − 2gμ

[(
�a

�s

)(2−2gμ)

− 1

]
.

(93)

For the noninteracting limit, gμ → 1, we have

χ
μ

AA(q = 2kF ) ≈ − 1

4π�vF

ln

(
�a

�s

)
, (94)

which recovers the logarithmic dependence of the RKKY
susceptibility peak in noninteracting systems without valley
degrees of freedom [44].

B. Transition temperature in the presence of the pairing gap

The peak value of the RKKY interaction in the presence of

the pairing gap is given by J
μ

q=2kF
(�s) = A2

0a

2 |χμ

AA(q = 2kF )|.
In the presence of the antiferromagnetic helix, the feedback
essentially modifies the exponents, gμ → g̃μ. Therefore,
following the same procedure, the enhanced RKKY interaction
due to the feedback can be obtained as

J̃ x
q=2kF

(�s) ≈ A2
0

16π�̃a

1

2 − 2g̃x

[(
�̃a

�s

)(2−2g̃x )

− 1

]
,

(95)

where the modified exponent g̃x ≈ 0.19 was obtained in
Sec. IV C. From Eq. (95) and Fig. 9 we can see that the RKKY
interaction depends on the pairing gap, or, more precisely, the
ratio of the pairing gap to the bandwidth, �s/�̃a .

Assuming the induced superconducting gap is �s = 0.2 K,
the peak value of the RKKY interaction is J̃ x

q=2kF
≈ 0.8 K.

This relatively large peak value is due to the small ratio of
the pairing gap to the bandwidth and small exponent g̃x in
CNTs. However, as can be seen in Fig. 9, the RKKY peak
drops quickly with an increasing pairing gap. Using Eq. (55),
�ωm → 2I J̃ x

q=2kF
/N⊥, and Eq. (95), we obtain the transition

temperature of the antiferromagnetic helix,

kBT̃0 ≈ I 2

N⊥
J̃ x

q=2kF
, (96)
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reduced by the induced pairing gap to kBT̃0 ≈ 17 mK. We
note that in contrast to Eq. (91), the transition temperature T̃0

now scales as N−1
⊥ instead of N

−1/(3−2g̃x )
⊥ . We also note that

the transition temperature given in Eq. (96) is overestimated
because the temperature dependence of J̃ x

q=2kF
is not included

in Eq. (95). However, this overestimate is negligible for low
temperature, kBT � �s .

In the previous estimation, we assume the pairing gap of
�s = 0.2 K, somewhat smaller than a typical pairing gap
(∼1 K) of parent superconductors used for the proximity
effect. Such reduction is expected due to the electron-electron
interactions [59,60], and will be further discussed in Sec. VI A.
Alternatively, one may intentionally reduce the induced gap;
for example, inserting a graphene sheet between a CNT and
a superconductor. On the other hand, while a smaller �s is
beneficial to a higher T̃0, it also results in a longer localization
length for Majorana fermions (MFs), as discussed in Sec. VII,
so that a trade-off between the two parameters needs to be
considered.

VI. TOPOLOGICAL SUPERCONDUCTIVITY

A. Refermionization

We now consider the possibility to realize MFs in our
system. In Refs. [59,60] it was shown that MFs may sur-
vive even in the presence of very strong electron-electron
interactions, if the pairing term is RG relevant (in other
words, if the interactions do not eliminate the pairing gap). In
this case, the interacting bosonic Hamiltonian with spin-orbit
interaction, Zeeman field, and pairing terms can be mapped
onto a noninteracting fermion model with a reduced pairing
gap. We therefore first establish that this is the case here, too.

To this end, we write the pairing terms in the (�±
γ ,�±

γ )
basis introduced in Sec. IV B,

Hs = gs

∑
γ,σ

∫
dr[ψ†

R,γ,σ (r)ψ†
L,γ̄ ,σ̄ (r) + H.c.]

= gs

πa

∫
dr[cos(−�−

+ + �−
− + �−

+ + �−
−)

+ cos(�−
+ − �−

− + �−
+ + �−

−)], (97)

which scales as

〈cos(∓�−
+ ± �−

− + �−
+ + �−

−)〉 ∝
(a

r

)(1/2)(K̃+1/K̃)
,

(98)

with K̃ given in Eq. (76). Since the pairing gaps for exterior
and interior branches have the same scaling dimensions, we do
not distinguish them in Eq. (97) to simplify the RG analysis.
Thus, the RG flow equation for the dimensionless coupling
ỹs(l) ≡ gs(l)/�̃a(l) reads [73]

dỹs(l)

dl
=
[

2 − 1

2

(
K̃ + 1

K̃

)]
ỹs(l), (99)

which gives the condition for the pairing term to be RG
relevant,

2 −
√

3 < K̃ < 2 +
√

3. (100)

For our parameters, we have K̃ ≈ 0.38, so the pairing term is
relevant. This also justifies the reduced gap used to determine
the order of magnitudes of the RKKY peak in Sec. V B.

Here we briefly summarize the operators involved in
the procedure. The feedback (Overhauser field), which gaps
out the (L,↑) and (R,↓) particles within each valley, can
be described as cos (2�+

γ ) with the scaling dimension K̃ .
On the other hand, the pairing terms are written in terms
of cos (∓�−

+ ± �−
− + �−

+ + �−
−) with the scaling dimension

(K̃ + 1/K̃)/2. While these two terms compete with each other,
as discussed in Sec. V A, both of them are relevant for the
parameters of CNTs.

We now consider distinct exterior and interior pairing gaps
[101,102], defined as �(e)

s and �(i)
s , respectively. We then

recast the Hamiltonian into a noninteracting fermionic model
through the refermionization procedure. To be explicit, we
define the slowly varying fields Rγ,σ and Lγ,σ such that
ψγ,σ (r) = Rγ,σ eikF r + Lγ,σ e−ikF r , and they are related to the
bosonic fields, φγσ and θγσ , defined in Eq. (12), by

Rγ,σ ≡ 1√
2πa

ei[−φγσ (r)+θγσ (r)], (101a)

Lγ,σ ≡ 1√
2πa

ei[φγσ (r)+θγσ (r)]. (101b)

After the transformation, we obtain

Htop = 1

2

∫
drφ†(r)

[
−i�vF τ3∂r + �m

2
η3(σ1τ1 + σ2τ2)

+�s,+η2δ1σ2τ1 − �s,−η2δ2σ2τ2 + �Zη3σ3

]
φ(r),

(102)

where the 16-component spinor φ†(r) is defined as

φ†(r) ≡ (R†
+,↑,L

†
+,↑,R

†
+,↓,L

†
+,↓,R

†
−,↑,L

†
−,↑,R

†
−,↓,L

†
−,↓,

R+,↑,L+,↑,R+,↓,L+,↓,R−,↑,L−,↑,R−,↓,L−,↓).

(103)

Further, ημ, δμ, σμ, and τμ are Pauli matrices acting on
particle-hole, valley, spin, and right/left degrees of freedom,
respectively. �m is the gap due to the antiferromagnetic helix
defined in Sec. IV B and �s,± are defined as

�s,± ≡ �(e)
s ± �(i)

s

2
. (104)

To find details how �
(e/i)
s evolves with the interaction would

require the full RG analysis. Instead, we guide ourselves by
Refs. [59,60] and estimate that the gap is reduced to one order
smaller than that of the parent superconductor. Since the typical
gap of the parent superconductor used for proximity effect is
of order kelvin, [96–100] �(e)

s = �(i)
s = 0.2 K are taken in the

previous sections for the purpose of estimation. From now on
we shall keep �

(e/i)
s to be unfixed parameters, and hence �s,−

is nonzero in general. Finally, in Eq. (102) we also included the
Zeeman term, �Z , arising from a magnetic field perpendicular
to the helical plane (along the tube). We do this to break
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the time-reversal symmetry,6 which has in general profound
effects on MFs. Even though the magnetic field along the tube
also induces orbital effects [62,63], we have checked, by exact
diagonalization, that adding them does not lead to any new
gapped (topological) regime in the parameter space. Hence,
we do not include such effects in Eq. (102) for simplicity.

In momentum space, the bulk Hamiltonian is characterized
by a matrix,

Htop(k) = �vF k τ3 + �m

2
η3(σ1τ1 + σ2τ2) + �s,+η2δ1σ2τ1

−�s,−η2δ2σ2τ2 + �Zη3σ3, (105)

following from Eq. (102) upon replacing −i∂r → k, which
allows us to inspect the symmetries of the Hamiltonian.7

We note that while Eq. (105) describes a noninteracting
model, it retains the features of Luttinger liquid through the
renormalized gap parameters, �m and �

(e/i)
s .

B. Topological superconductivity and MFs

The Hamiltonian is block diagonal if decomposed into two
pieces, Htop = H(1)

top + H(2)
top, with

H(j )
top = 1

2

∫
dr φ

†
j (r)H (j )

top (r)φj (r), (106)

where the eight-component spinor φ
†
1(r) is formed by the fields

gapped by the nuclear spin helix, and φ
†
2(r) is formed by the

other fields, explicitly,

φ
†
1(r) ≡ (L†

+,↑,R
†
+,↓,L

†
−,↑,R

†
−,↓,L+,↑,R+,↓,L−,↑,R−,↓),

φ
†
2(r) ≡ (R†

+,↑,L
†
+,↓,R

†
−,↑,L

†
−,↓,R+,↑,L+,↓,R−,↑,L−,↓).

(107)

The corresponding 8-by-8 Hamiltonian densities H
(1)
top (r) and

H
(2)
top (r) are obtained from Eq. (102).

6While the physical time-reversal symmetry is broken by the
nuclear spin helix, there exists (pseudo-)time-reversal symmetry,
corresponding to a combination of flipping spins and interchanging
the sublattice sites in the absence of the external magnetic fields.

7To understand the symmetry class of the Hamiltonian, Htop(k), one
usually considers the particle-hole and time-reversal symmetries of
Eq. (105). The particle-hole symmetry is described by [9,111]

�Htop(k)�−1 = −Htop(−k),

where � = UPK with the unitary operator, UP , and the complex
conjugate, K. However, there is ambiguity in the value of �2. For
example, while both the choices of UP = η1 and UP = η2 ⊗ δ3 satisfy
the above equation, they give different values of �2 and therefore
different symmetry classes. In addition, a time-reversal invariant
Hamiltonian satisfies [9,111]

�Htop(k)�−1 = Htop(−k),

with � = UT K. Similarly, there is ambiguity in the value of �2 if
�Z = 0. For instance, the choice of UT = iδ2 ⊗ σ2 ⊗ τ2 gives �2 =
−1 whereas UT = η2 ⊗ δ1 ⊗ σ2 ⊗ τ1 gives �2 = +1. In order to
avoid the ambiguity and investigate the topological properties of the
Hamiltonian, we explicitly solve the problem, as discussed in the
main text.
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FIG. 10. (Color online) Phase diagram on the �m-�Z plane. The
black solid curves are marked as C

(1)
+ , C(1)

− , C(2)
e , and C

(2)
i , whereas the

black dashed curve is marked as C(3). The intercepts of these curves
on the axes are also labeled. The yellow shaded region corresponds
to the MF regime. In the blue region the bulk spectrum is gapless.

To find the MF solutions, we solve the Schrödinger
equation at zero energy while imposing the self-conjugation
and boundary conditions on the wave functions [95]. The
details of the calculation are given in Appendix B. The
results of this procedure are summarized in the phase diagram
shown in Fig. 10. We plot it in the first quadrant of the
�m-�Z plane, where the other three quadrants can be obtained
by inversion symmetry about the �m and �Z axes. The
formulas for the curves, C

(1)
± , C

(2)
e/i , and C(3), are given in

Appendix B. Both C
(1)
+ and C

(1)
− intersect with the �m axis

at �m =
√

�2
s,+ − �2

s,− . C(2)
e and C

(2)
i intersect with the �Z

axis at |�Z| = |�(e)
s | = |�s,+ + �s,−| and |�Z| = |�(i)

s | =
|�s,+ − �s,−|, respectively. The blue region corresponds to
a nontopological gapless state. The yellow shaded region
corresponds to a regime with two MFs at one given end of
the nanotube, and is defined by the inequalities

(�Z ± �s,−)2 + �2
m − �2

s,+ > 0, (108a)

|�Z| − ∣∣�(e)
s

∣∣ < 0, (108b)

|�Z| − ∣∣�(i)
s

∣∣ < 0. (108c)

From Fig. 10 we can see that neither the distinct exterior and
interior pairing gaps nor the Zeeman field is necessary for this
MF regime. We emphasize that the gap parameters, �m and
�

(e/i)
s , are modified by the electron-electron interaction, and

therefore reflect the features of Luttinger liquid in Fig. 10.
The MF wave functions have composite nature and display

multiple decay length scales, resulting in oscillations in
addition to the exponential decay. The localization length, ξloc,
is determined by the largest length scale of the inverses of
κ1,± and κ2,e/i (defined in Appendix B). If the system is deep
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inside the MF regime, then �m is the largest energy scale of
the parameters, and the localization length will be determined
by the smaller of �(e)

s and �(i)
s ; namely,

ξloc =
⎧⎨
⎩

(κ2,e)−1 = �vF√
[�(e)

s ]2−�2
Z

, if
∣∣�(e)

s

∣∣ < ∣∣�(i)
s

∣∣,(
κ2,i

)−1 = �vF√
[�(i)

s ]2−�2
Z

, if
∣∣�(e)

s

∣∣ > ∣∣�(i)
s

∣∣.
(109)

For zero magnetic field, the localization length is the inverse
of the smaller of the pairing gaps.

In addition to the magnetic field along the tube, we have
also examined that adding a magnetic field perpendicular to
the tube, i.e., �Zη3σ1, does not lead to any new gapped regime
in the parameter space and therefore does not generate topo-
logical phases with single MFs, either. Utilizing the MF wave
functions for �Z = �s,− = 0, in which case the analytical
solutions are available, we have checked that the MF pair is not
mixed by a perturbation δH by evaluating the matrix element
〈�MF,1|δH |�MF,2〉. We found it is zero for δH corresponding
to the Zeeman field perpendicular to the tube, the distinct
pairing gaps, the Zeeman field along the tube (including the
orbital effects), and an electrostatic impurity potential. The fact
that the MF pair is not hybridized by any of these terms further
confirms its robustness. It is interesting to note that the MF pair
that we find is not split in spite of the lifted degeneracy in the
bulk spectrum due to the broken time-reversal symmetry by
the external magnetic field. Through the explicit calculation,
we conclude that Eq. (105) supports topological phases with
multiple MFs. It is remarkable that the criterion for the MFs,
Eq. (108), is fulfilled for the parameters of CNTs.

VII. DISCUSSION

In the absence of experimental techniques with atomic
resolution, direct detections of the locally antiferromagnetic
nuclear spin helix are even more challenging than the fer-
romagnetic one, since the magnetization signals [103,104]
average out to zero due to the sign changes of the susceptibility
between different sublattice sites [105]. Indirect experimental
signatures of the nuclear spin order, however, can be searched
for below the transition temperature. As discussed in the
literature, these include (1) the reduction of conductance by a
factor of 2 due to the opening of the partial gap [37,38,47,106];
(2) the anisotropic spin susceptibility χ̃ x

αβ(q) �= χ̃ z
αβ(q) due to

the formation of the nuclear spin order [92]; (3) NMR response
at the frequency set by the RKKY exchange due to the singular
RKKY peak [107]; (4) the unusual temperature dependence
of the nuclear spin relaxation rate due to the Luttinger-liquid
parameters modified by the Overhauser field [108]; (5) the
reentrant behavior in the conductance as a function of gate
voltage due to the nuclear spin induced gap [109]; (6) the
dynamical nuclear polarization at zero external magnetic field
[42].

Furthermore, experimental probes can be implemented to
observe the distinct pairing gaps, �

(e/i)
s . In general, there

should be double-gap features below the superconducting
critical temperature [101], and the gap values should be
reduced by the electron-electron interaction [102]. Similarly,
the helical gap due to the Overhauser field �m can be

observed below the transition temperature T̃0, which decreases
in the presence of the pairing gap. Interestingly, it has been
reported that the NMR measurement of the double-wall CNTs,
consisting of 89% 13C enriched inner walls and natural 1.1%
13C outer walls, revealed the formation of a spin gap at low
temperatures [110]. In addition, since the remaining gapless
modes have definite helicity, CNTs may thus serve as spin
filters, similar to the proposal in Ref. [40].

The localization length of MFs is set by the smaller of
�(e)

s and �(i)
s . For �

(e/i)
s = 0.2–2 K and �Z = 0, we obtain

ξloc ≈ 3–30 μm, so nanotubes with length L � 3 μm are
needed to avoid the overlap between MFs from the two ends.8

While increasing �
(e/i)
s leads to a shorter ξloc, a larger �

(e/i)
s

substantially suppresses the transition temperature for the
nuclear spin order, so there is a trade-off between high T̃0

and short localization length.
Recently, a realization of MFs in armchair CNTs driven

by external electric fields has been proposed [102], where the
electric fields induce the helical modes [62,63], a necessary
prerequisite for MFs. However, those electric-field-induced
MFs require fine tuning of the chemical potential, in contrast
to the RKKY systems in the present work. Here, since
the antiferromagnetic nuclear spin helix, resulting from the
scattering between right-moving down-spin and left-moving
up-spin electrons, always opens a gap at the Fermi surface
(Fig. 5), the RKKY system does not require experimentally
challenging fine tuning the chemical potential. In addition,
with the RKKY mechanism it is unnecessary to apply an
external magnetic field, which is detrimental to the parent
superconductor. Further, our calculation applies to any con-
ducting CNTs, and therefore does not rely on a particular
chirality of CNTs.2 In comparison with the recently proposed
spin-orbit coupled wires [12,13], 13C nanotubes also have
the advantage to explore MFs, owing to the aforementioned
self-tuning properties and the availability of high-quality
samples [22,23]. On the other hand, since a large pairing
gap reduces the RKKY interaction and therefore T̃0, parent
superconductors with suitable pairing gaps are necessary to
obtain both sufficiently high T̃0 and short ξloc.

Finally, we remark that the RKKY mechanism discussed
here should also apply to other quasi-one-dimensional bipartite
materials, such as metallic graphene nanoribbons, in which
hyperfine interaction is nonvanishing [24] and the conduction
electrons mediate the RKKY interaction [34]. In addition
to the isotopically enriched materials, the antiferromagnetic
helix can in principle be realized using magnetically doped
systems, where carbon atoms are substituted by magnetic
atoms, or magnetic atoms are deposited on the material.
The substitutional or top-adsorbed magnetic atoms provide

8Throughout the main text we have used a conservative estimate of
A0, which is one order smaller than the measured value [51,52]. If we
instead take the measured value, A0 ≈ 100 μeV for our estimation,
then the transition temperature is greatly enhanced to T̃0 ≈ 110 mK
even with a pairing gap of �s = 2 K, resulting in a much shorter
localization length, ξloc ≈ 3 μm.
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localized spins associated with a single site [57], which can
take the role of the 13C atoms discussed in this work, so
we expect that the RKKY interaction can induce an anti-
ferromagnetic helix in such configurations. For the plaquette
(center adsorbed) or bridge adatoms, on the other hand, the
magnetic adatoms interact with an equal number of different
sublattice sites [57], so the sublattice-dependent oscillating
terms with q = 2kF in the spin susceptibility cancel out,
provided that the couplings between the magnetic adatoms
and the conduction electrons on different sublattice sites are
equal. As a result, we do not expect the antiferromagnetic helix
to be realized in such configurations. However, the remaining
sublattice-independent oscillating terms with q = 2(kv ± kF )
can still lead to a ferromagnetic helical order [37,38], where
the RKKY peaks with different momenta result in a beating
pattern, as in two-subband quantum wire systems [41]. We
also note that in graphene at half filling, it was found that
the plaquette or bridge adatoms lead to a cancellation of the
oscillations in the RKKY interaction [53–55], and therefore
no kind of helical order will be realized in this case.
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APPENDIX A: SPIN SUSCEPTIBILITY IN THE
PRESENCE OF SUPERCONDUCTIVITY

In this appendix we calculate the spin susceptibility in the
presence of the pairing gap. As given in Sec. V A, the pairing

terms take the form

Hs = gs

πa

∑
γ,σ

∫
dr cos (γφcA + σφsS − θcS − σγ θsA).

(A1)

Expanding the sine-Gordon term around its minimum and
keeping only the second-order terms, we obtain [73]

Hs ≈ �2
s

2π�vF

∫
dr
(
φ2

cA + φ2
sS + θ2

cS + θ2
sA

)
, (A2)

where �s ≡ 2
√

gs�a is the proximity-induced pairing gap. In
the presence of distinct exterior and interior pairing gaps, the
pairing gap is replaced with

�s →
√[

�
(e)
s

]2 + [�(i)
s

]2
2

, (A3)

where �(e)
s and �(i)

s are the pairing gaps for the exterior
and interior branches, respectively. However, for simplicity
we shall set �(e)

s = �(i)
s = �s in this appendix. We note that

distinct pairing gaps are considered when investigating MFs
in Sec. VI.

Our goal is to recompute Eq. (6) with

Heff =
∑
ν,P

∫
�dr

2π

{
uνP KνP [�θνP (r)]2 + uνP

KνP

[�φνP (r)]2

}
+ �2

s

�vF

∫
dr

2π

(
φ2

cA + φ2
sS + θ2

cS + θ2
sA

)
. (A4)

Following Refs. [84,92–94], we take the approximation uνP ≈ vF , and find the zero-temperature correlation functions in the

limits of |r̃| ≡
√

r2 + v2
F τ 2 � �vF

�s
and |r̃| � �vF

�s
. In the |r̃| � �vF

�s
limit, we get

χx
AA(r,τ ) = χ

y

AA(r,τ )

= − cos(2kF r)

(2πa)2

[
a√

r2 + (vF |τ | + a)2

](1/2)(KcS+1/KsS )[
�sa

�vF

](1/2)(KcA+1/KsA)

exp

[
−(CcS + CsS)

�s |r̃|
�vF

]
, (A5)

χz
AA(r,τ ) = − cos(2kF r)

(2πa)2

[
a√

r2 + (vF |τ | + a)2

](1/2)(KcS+KsA)[
�sa

�vF

](1/2)(KcA+KsS )

exp

[
−(CcS + CsA)

�s |r̃|
�vF

]
, (A6)

while in the limit of |r̃| � �vF

�s
, we obtain

χx
AA(r,τ ) = χ

y

AA(r,τ )

= − cos(2kF r)

(2πa)2

[
a√

r2 + (vF |τ | + a)2

]2gx

, (A7)

χz
AA(r,τ ) = − cos(2kF r)

(2πa)2

[
a√

r2 + (vF |τ | + a)2

]2gz

, (A8)

where CcS,CsS,CsA are constants of order 1. For large
distance and long time, |r̃| � �vF

�s
, which corresponds to

small momenta and low frequencies, the correlation between
the electrons is cut off by the superconducting gap, and
the correlation functions exhibit an exponential decay. For
small distance and short time, |r̃| � �vF

�s
, in contrast, the

correlation functions retain the gapless form. If the spin
rotational symmetry is preserved, KsS = KsA = 1, then the
RKKY interaction is isotropic as expected.

Fourier transforming into the momentum space and Mat-
subara frequency domain, and taking q = 2kF , iωn → ω + iδ,

235435-17



HSU, STANO, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 92, 235435 (2015)

and ω → 0, we obtain the zero-temperature value of the peaks
of the static spin susceptibility,

χ
μ

AA(q = 2kF ,ω → 0)

≈ − 1

4π�vF

1

2 − 2gμ

[(
�a

�s

)(2−2gμ)

− 1

]
, (A9)

which gives Eq. (93) in Sec. V A.

APPENDIX B: MF SOLUTIONS

In this appendix, we first examine the bulk spectrum of H
(1)
top

and H
(2)
top in Eq. (106), and then solve the Schrödinger equation

for the MF solutions. The bulk spectrum of H
(1)
top , defined as

E(1)(k), is too complicated to reproduce here. Instead, we
express it as the roots of the following two quartic equations:

0 = [E(1)(k)]4 − 2
[
(�vF k)2 + �2

m + �2
s,− + �2

s,+ + �2
Z

]
× [E(1)(k)]2 ± 8�s,−�s,+�ZE(1)(k) + (�vF k)4

+ 2
(
�2

m + �2
s,− + �2

s,+ − �2
Z

)
(�vF k)2

+ [�Z + (�s,− +
√

�2
s,+ − �2

m

)]
× [�Z − (�s,− +

√
�2

s,+ − �2
m

)]
×[�Z + (�s,− −

√
�2

s,+ − �2
m

)]
× [�Z − (�s,− −

√
�2

s,+ − �2
m

)]
, (B1)

which differ by the sign of the term linear in E(1)(k). For
nonzero �s,−�s,+�Z , each equation gives four roots, and in
general there are eight nondegenerate energy bands from the
H

(1)
top block. The bulk spectrum of H

(2)
top is given by ±E

(2)
e,±(k)

and ±E
(2)
i,±(k), where

E
(2)
e,±(k) ≡

√
(�vF k)2 + [�(e)

s

]2 ± �Z, (B2)

E
(2)
i,±(k) ≡

√
(�vF k)2 + [�(i)

s

]2 ± �Z. (B3)

In the absence of the superconductivity and the Zeeman field
(�(e)

s = �(i)
s = �Z = 0), half of the energy bands, E(1)(k),

are gapped by the nuclear spin helix, whereas the other half,
E

(2)
e/i,±(k), remain gapless as discussed in Sec. IV. At finite

�(e)
s �(i)

s �Z , there exists a regime where the bulk spectrum has
band touching points at k = ±k0, where

k0 ≡ 1

�vF

[
�2

Z − �2
m − �2

s,− − �2
s,+

+ 2
√(

�2
m + �2

s,−
)
�2

s,+ − �2
m�2

Z

]1/2
. (B4)

This regime is given by the inequalities

k2
0 > 0, (B5)(

�2
m + �2

s,−
)
�2

s,+ − �2
m�2

Z > 0, (B6)

which are marked in blue color in Fig. 10. In this regime
the system is a nontopological gapless superconductor, and

therefore not of our interest. In other regimes, the system is
fully gapped except for the following curves, where the bulk
gap closes at k = 0,

C
(1)
+ : (�Z + �s,−)2 + �2

m − �2
s,+ = 0, (B7a)

C
(1)
− : (�Z − �s,−)2 + �2

m − �2
s,+ = 0, (B7b)

C(2)
e : |�Z| − |�s,+ + �s,−| = 0, (B7c)

C
(2)
i : |�Z| − ∣∣�s,+ − �s,−

∣∣ = 0. (B7d)

These gap closing curves are marked as C
(1)
+ , C

(1)
− , C(2)

e , and
C

(2)
i , and plotted as black solid curves in Fig. 10.

Having the gap closing boundaries, we now discuss the
topological properties of the Hamiltonian, and investigate
the criterion for topological phases [95]. To this end, we
consider a semi-infinite nanotube with an open left end,
and solve the Schrödinger equation at zero energy with
the boundary condition of the MF wave function being
zero at r = 0. Since the boundary condition is imposed in
the real space, we need to examine it in the basis, φ ≡
(c†A,↑,c

†
A,↓,c

†
B,↑,c

†
B,↓,cA,↑,cA,↓,cB,↑,cB,↓), which is related to

the slowly varying fields Rγ,σ and Lγ,σ by Eqs. (9)–(11).
We first focus on the Hamiltonian density of the first block,

H
(1)
top (r), and solve the Schrödinger equation, H (1)

top (r)�(1)
± (r) =

0. We are looking for the localized states at the left end of the
nanotube, so we use the ansatz

[�(1)
± (r)]T = e−κ1,±r (A1,±,B1,±,C1,±,D1,±,

A∗
1,±,B∗

1,±,C∗
1,±,D∗

1,±), (B8)

which incorporates the self-conjugate property of MFs. This
gives the evanescent wave functions with the exponential decay
determined by the κ1,± values,

κ1,± ≡ 1

�vF

[
�2

m + �2
s,− + �2

s,+ − �2
Z

± 2
√(

�2
m + �2

s,−
)
�2

s,+ − �2
m�2

Z

]1/2
, (B9)

which have positive real parts and thus give normalizable
wave functions when the bulk spectrum is fully gapped. These
κ1,± values can also be obtained by setting E(1)(k) = 0 and
k = iκ1,± in Eq. (B1). After numerically solving the matrix
eigenvalue equation, we find that each of the κ1,± values gives
two eigenvectors of the form in Eq. (B8), which result in four
normalizable wave functions, denoted as �

(1)
+,1(r), �

(1)
+,2(r),

�
(1)
−,1(r), and �

(1)
−,2(r).

Similarly, for the second block, H
(2)
top (r), we find

four zero-energy solutions for the Schrödinger equation,
H

(2)
top (r)�(2)

e/i(r) = 0. These are simpler and can be obtained
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explicitly, as

�
(2)
e,1(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
Fe

1
0
0

F ∗
e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ2,er , �
(2)
e,2(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

0
0

−iFe

−i

0
0

iF ∗
e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ2,er ,

�
(2)
i,1(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
Fi

0
0
1

F ∗
i

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ2,i r , �
(2)
i,2(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
i

−iFi

0
0
−i

iF ∗
i

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ2,i r ,

(B10)

where

Fe/i ≡
−i

√[
�

(e/i)
s

]2 − �2
Z + �Z

�
(e/i)
s

, (B11a)

κ2,e ≡ 1

�vF

√[
�

(e)
s

]2 − �2
Z, (B11b)

κ2,i ≡ 1

�vF

√[
�

(i)
s

]2 − �2
Z. (B11c)

Therefore, {�(1)
±,n=1,2(r),�(2)

e/i,n=1,2(r)}, which satisfy the
Schrödinger equation and self-conjugation, form a set of eight
basis wave functions. Using Eqs. (9)–(11), we obtain the cor-

responding wave functions, B ≡ {�(1)
±,n=1,2(r),�

(2)
e/i,n=1,2(r)},

in the φ basis, and examine the boundary condition at the left
end of the tube (r = 0). For a given set of system parameters,
(�m,�s,+,�s,−,�Z), the number of MFs, NMF, is given as 8
(the number of the column vectors in B) minus the number of
the linearly independent vectors in B.

The results are shown in Fig. 10. The gap closing curves,
C

(1)
± and C

(2)
e/i , correspond to the boundaries where κ1,± and

κ2,e/i vanish, respectively. Moreover, the κ1,± values change
from real or pure imaginary to complex numbers (but do not
vanish) across the black dashed curve, marked as C(3),

C(3) :
(
�2

m + �2
s,−
)
�2

s,+ − �2
m�2

Z = 0. (B12)

The yellow shaded region corresponds to a topological
regime. The MF wave functions are linear superpositions of

�
(1)
±,n=1,2(r) and �

(2)
e/i,n=1,2(r), and thus display multiple decay

length scales, arising from κ1,± and κ2,e/i [95]. As a result,
the localization length ξloc is determined by the largest length
scale of the inverses of κ1,± and κ2,e/i or, equivalently, the
smaller of �(e)

s and �(i)
s .
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A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel,
Nature (London) 512, 61 (2014).

[24] J. Fischer, B. Trauzettel, and D. Loss, Phys. Rev. B 80, 155401
(2009).

[25] O. V. Yazyev, Nano Lett. 8, 1011 (2008).
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