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4Department of Optics, Palacký University, 17 Listopadu 1192/12, 77146 Olomouc, Czech Republic

5Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
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We address the question of finding the most unbalanced convex decompositions into boundary elements
(so-called boundariness) for sets of quantum states, observables, and channels. We show that in general convex
sets the boundariness essentially coincides with the question of the most distinguishable element, thus providing
an operational meaning for this concept. Unexpectedly, we discovered that for any interior point of the set of
channels the most unbalanced decomposition necessarily contains a unitary channel. In other words, for any
given channel the most distinguishable one is some unitary channel. Further, we prove that boundariness is
submultiplicative under the composition of systems and explicitly evaluate its maximal value that is attained only
for the most mixed elements of the considered sets.
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I. INTRODUCTION

Convexity, rooted in the very concept of probability, is one
of unavoidable mathematical features of our description of
physical systems. Operationally, it originates in our ability
to switch randomly between different physical devices of the
same type. As a result, all elementary mathematical structures
of quantum theory and most of the quantum properties can be
considered convex. In particular, the sets of states, observables,
and processes are all convex [1] and we will refer to them
as quantum convex sets. It is of foundational interest to
understand the similarities and identify the differences of their
convex structures. For example, suitable convex subsets of
quantum convex sets can be used to define a measure of
entanglement [2] or incompatibility [3].

For any convex set, we may introduce the concept of an
interior point in a natural way, as a point that can be connected
to any other point by a line segment containing it in its
interior [4]. We will use this concept to define mixedness
and boundariness [5] as measures evaluating how much the
element is not extremal or how much the element is not
a boundary point, respectively. More precisely, mixedness
will be determined via the highest weight occurring in
decompositions into extremal points and boundariness will be
determined via the highest weight occurring in decompositions
into boundary points. In both cases, these numbers tell us
how much randomness is needed to create the given element.
In this paper we focus on quantum convex sets describing
finite-dimensional quantum systems. Thus, we will work in a
finite-dimensional setting. Note that similar definitions can be
introduced also in infinite dimensions, although some of the
facts used below are no longer true.

If the given convex set is also compact, it can be viewed as a
base of a closed pointed convex cone and we may consider the
corresponding base norm in the generated vector space (see,
e.g., [4]). Note that the related distance between points of the
base can be determined solely from the convex structure of
the base (see, for instance, Ref. [6]). As it is well known for

quantum states [1,7] and as has been recently proved for other
quantum convex sets [8], this distance is closely related to
the minimum-error discrimination problem. In particular, for
quantum channels the base norm coincides with the diamond
norm [9].

It was proved in Ref. [5] that for the sets of quantum states
and observables, boundariness and the base norm distance are
closely related. More precisely, the largest distance of a given
interior point y from another point of the base is given in terms
of the boundariness of y. In the present paper we show that this
is true for any base of the positive cone in a finite-dimensional
ordered vector space. In particular, for quantum convex sets,
this property singles out a subset of extremal elements that
are best distinguishable from interior points. Exploiting these
results, we will point out an interesting difference between
the convex sets of states and channels and also provide an
unexpected operational characterization of unitary channels.

This paper is organized as follows. In Sec. II we will
provide readers with basic elements of convex analysis and
quantum theory relevant for the rest of the paper. The concept
of boundariness will be introduced in Sec. III, where various
equivalent definitions will be stated and also its operational
meaning will be discussed. In Sec. IV we will investigate the
boundariness for the case of quantum channels. In particular,
we will prove a conjecture stated in Ref. [5]. In Sec. V we will
address the question of boundariness for the composition of
systems and Sec. VI is devoted to identification of elements for
which boundariness achieves its maximal value. Section VII
summarizes our results.

II. QUANTUM CONVEX CONES

Suppose V is a real finite-dimensional vector space and
C ⊂ V is a closed convex cone. We assume that C is pointed,
i.e., C ∩ −C = {0}, and generating, i.e., V = C − C. Then
(V,C) becomes a partially ordered vector space, with C the
cone of positive elements. Let V ∗ be the dual space with duality
〈·,·〉; then we may introduce a partial order in V ∗ as well, with
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the dual cone of positive functionals C∗ = {f ∈ V ∗,〈f,z〉 �
0 ∀z ∈ C}. Note that C∗ is again pointed and generating and
C∗∗ = C.

Interior points z ∈ int(C) of the cone C are characterized
by the property that for each v ∈ V there is some t > 0 such
that tz − v ∈ C, that is, the interior points of C are precisely
the order units in (V,C). Alternatively, the following lemma
gives a well-known characterization of boundary points of C

as elements contained in some supporting hyperplane of C

(see Ref. [4], Sec. 11 for more details).
Lemma 1. An element z ∈ C is a boundary point z ∈ ∂C if

and only if there exists a nonzero element f ∈ C∗ such that
〈f,z〉 = 0. Clearly, then also f ∈ ∂C∗.

A base of C is a compact convex subset B ⊂ C such that for
every nonzero z ∈ C there is a unique constant t > 0 and an
element b ∈ B such that z = tb. The relative interior relint(B)
is defined as the interior of B with respect to the relative
topology in the smallest affine subspace containing B. Note
that we have relint(B) = B ∩ int(C), so the boundary points
z ∈ ∂B = B \ relint(B) can be characterized as in the previous
lemma.

There is a one-to-one correspondence between bases B ⊂
C and order units in the dual space e ∈ int(C∗) such that B =
{z ∈ C,〈e,z〉 = 1} is a base of C if and only if e is an order unit.
The order unit e determines the order unit norm in (V ∗,C∗) as

‖f ‖e = inf{λ > 0,λe ± f ∈ C∗}, f ∈ V ∗.

Its dual is the base norm ‖ · ‖B in (V,C). In particular, we
obtain the following expression for the corresponding distance
of elements of B:

‖x − y‖B = 2 sup
g,e−g∈C∗

〈g,x − y〉, x,y ∈ B. (1)

We will now describe the basic convex sets (see Ref. [10])
of quantum states, channels, and measurements (observables).
Let us stress that each of these sets is a compact convex subset
in a finite-dimensional vector space and as such forms a base
of the positive cone of some partially ordered vector space, so
these sets fit into the framework introduced above.

Let us denote by Hd the d-dimensional Hilbert space
associated with the studied physical system. Then S(Hd )
stands for the set of all density operators (positive linear
operators of unit trace) representing the set of quantum states.

The statistical aspects of measurements are fully described
by observables [11] that are identified with positive-operator-
valued measures being determined by a collection of effects
E1, . . . ,Em (O � Ej � I ) normalized as

∑
j Ej = I . Each

effect Ej defines a different measurement outcome. In partic-
ular, if the system is prepared in a state �, then pj = tr[�Ej ]
is the probability of the registration of the j th outcome.

Quantum channels are modeled by completely positive
trace-preserving linear maps, i.e., by transformations � 
→∑

l Al�A
†
l for any collection of operators {Al}l satisfying the

normalization
∑

l A
†
l Al = I . Define the one-dimensional pro-

jection operator �+ = 1
d

∑
j,k |jj 〉〈kk| on Hd ⊗ Hd , where

the vectors |j 〉 form a complete orthonormal basis on Hd .
Due to the Choi-Jamiołkowski isomorphism [12,13], the set
of quantum channels of a finite-dimensional quantum system is
mathematically closely related to the set of density operators

(states) of a composite system. In particular, a channel E is
associated with a density operator

JE = (E ⊗ I)[�+] ∈ S(Hd ⊗ Hd )

and the normalization condition tr1JE = 1
d
I is the only

difference between the mathematical representations of states
and channels. In other words, only a special (convex) subset of
density operators on Hd ⊗ Hd can be identified with quantum
channels on d-dimensional quantum systems.

III. BOUNDARINESS

For any element of a compact convex subset B ⊂ V (not
necessarily a base) with boundary ∂B and a set of extremal
elements ext(B) we may introduce the concepts of mixedness
and boundariness evaluating the “distance” of the element
from extremal and boundary points, respectively. For any
convex decomposition y = ∑

j πjxj , where 0 � πj � 1 and∑
j πj = 1, we define its maximal weight wy({πj ,xj }j ) =

maxj πj . Using this quantity, we may express the mixedness
of y ∈ B as

m(y) = 1 − sup
xj ∈ ext(B)

wy({πj ,xj }j ),

where the supremum is taken over all convex decompositions
of y into extremal elements. In a similar way we may define
the boundariness [5] of y as

b(y) = 1 − sup
xj ∈∂B

wy({πj ,xj }j ), (2)

where the supremum is taken over all decompositions into
boundary elements. By definition m(y) � b(y), since the
convex decompositions in (2) are less restrictive.

Let us prove that the above formula is equivalent to the
original definition [5] of boundariness. We recall that for any
element y ∈ B, the weight function ty : B → [0,1] assigns for
every x ∈ B the supremum of possible weights of the point x

in convex decompositions of y, i.e.,

ty(x) = sup

{
0 � t < 1

∣∣∣∣z = y − tx

1 − t
∈ B

}
.

Due to the compactness of B, the supremum is really attained
and there exists some z ∈ B such that y = tx + (1 − t)z,
where t = ty(x). Note that we must have z ∈ ∂B and in fact
for an interior point y, t = ty(x) is equivalent to z ∈ ∂B. Let
us consider a convex decomposition y = ∑

j πjxj , xj ∈ ∂B

and denote by k the index for which πk = maxj πj 
= 1 [the
case maxj πj = 1 is trivial and b(y) = 0 in both definitions].
If we define xk = ∑

j 
=k

πj

1−πk
xj then y = πkxk + (1 − πk)xk ,

where xk ∈ B. Either xk ∈ ∂B and we managed to rewrite
y as a two-term convex combination of elements from
boundary or xk ∈ B \ ∂B, which implies πk < ty(xk) and there
exists w ∈ ∂B such that a better two-term decomposition
y = txk + (1 − t)w with t > πk exists. This shows that the
definition (2) is equivalent to

b(y) = 1 − sup
x,z∈∂B

{s|y = (1 − s)x + sz}

= inf
x∈∂B

ty(x).
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Finally, we obtain the original definition [5]

b(y) = inf
x∈B

ty(x) (3)

because the infimum is always determined by elements x ∈
ext(B) as we discussed in Ref. [5], Proposition 1.

Having established the cone picture of quantum convex
sets (forming the bases, i.e., in what follows B is a base), it
is useful to see how boundariness can be defined using this
language.

Lemma 2. Let f ∈ C∗. If ‖f ‖e = 1, then e − f ∈ ∂C∗.
Proof. Suppose ‖f ‖e = 1; then e − f ∈ C∗. If e − f ∈

int(C∗), then there is some t > 0 such that e − f ± tf ∈ C∗.
However, then (1 + t)−1e − f ∈ C∗, so

‖f ‖e � (1 + t)−1 < 1. �
We now find an equivalent expression for boundariness.
Proposition 1. Boundariness of y is equal to b(y) =

min{〈f,y〉,f ∈ C∗,‖f ‖e = 1}.
Proof. Let us denote the minimum on the right-hand side by

b̃(y). Let x ∈ B and y = tx + (1 − t)z, with t = ty(x). Then
z ∈ ∂B, so there is some nonzero f ∈ C∗ such that 〈f,z〉 = 0.
If we set f̃ = ‖f ‖−1

e f , then f̃ ∈ C∗ and ‖f̃ ‖e = 1 and we
have

b̃(y) � 〈f̃ ,y〉 = ty(x)〈f̃ ,x〉 � ty(x).

Since this holds for all x ∈ B, we obtain b̃(y) � b(y).
For the converse, let f ∈ C∗ and ‖f ‖e = 1; then e − f ∈

∂C∗. Hence there is some element x ∈ B such that 〈e − f,x〉 =
0. If we set s = ty(x), then y = sx + (1 − s)z for some z ∈
∂B. We have

〈f,y〉 = 1 − 〈e − f,y〉 = 1 − (1 − s)〈e − f,z〉 � s

= ty(x) � b(y),

hence b̃(y) � b(y). �
Let x,y ∈ B and take z ∈ ∂B such that y = sx + (1 − s)z,

where s = ty(x). Then

‖x − y‖B = ‖x − sx − (1 − s)z‖B

= (1 − s)‖x − z‖B � 2[1 − b(y)] (4)

constitutes the upper bound derived in [5].
Proposition 2. Let y ∈ relint(B) and let x ∈ B. The follow-

ing are equivalent.
(i) ‖y − x‖B = 2[1 − b(y)].
(ii) ty(x) = b(y).
(iii) There is some f ∈ C∗, with ‖f ‖e = 1 and 〈f,y〉 =

b(y), such that 〈f,x〉 = 1.
Proof. Suppose (i) and let y = sx + (1 − s)z with s =

ty(x). Then

2[1 − b(y)] = ‖x − y‖B = (1 − s)‖x − z‖B.

Since both (1 − s) � 1 − b(y) and ‖x − z‖B � 2, the equality
implies that ty(x) = s = b(y).

If we suppose (ii), then y = b(y)x + [1 − b(y)]z for some
z ∈ ∂B. There is some nonzero f ∈ C∗ such that 〈f,z〉 = 0
and we may clearly suppose that ‖f ‖e = 1. By Proposition 1,
b(y) � 〈f,y〉 = b(y)〈f,x〉 � b(y). Since y is an interior point,
b(y) > 0, so we must have 〈f,y〉 = b(y) and 〈f,x〉 = 1.

Finally, if we suppose (iii), then using inequalities (1)
and (4),

2[1 − b(y)] � ‖x − y‖B � 2〈e − f,y − x〉 = 2〈e − f,y〉
= 2[1 − b(y)]. �

We now resolve the conjecture of the tightness of the upper
bound (4) by showing that it can be always saturated.

Theorem 1. For any y ∈ B, there exists some x0 ∈ ext(B)
such that

‖y − x0‖B = sup
x∈B

‖y − x‖B = 2[1 − b(y)].

Proof. Note first that since x 
→ ‖y − x‖B is a convex
function, the supremum over B is attained at some x0 ∈ ext(B).
It is therefore enough to prove that the equality in (4) holds
for some x ∈ B. If y is an interior point, then by Proposition
2, the equality is attained for any x such that ty(x) = b(y) and
we know from the results in [5] that this is achieved in B. If
y ∈ ∂B, then there exists some f ∈ C∗ and ‖f ‖e = 1 such
that 〈f,y〉 = 0 and since e − f ∈ ∂C∗, there is some x ∈ B

such that 〈e − f,x〉 = 0. Then

2 � ‖y − x‖B � 2〈e − f,y − x〉 = 2 = 2[1 − b(y)]. �

IV. BOUNDARINESS FOR QUANTUM CHANNELS

In Ref. [5] it was shown that the inequality (4) is saturated
for states and observables, however, the case of channels
remained open. Theorem 1 shows that this saturation holds
also in this remaining case. In particular, for any interior point
Y ∈ Q, where Q is either the set of quantum states, channels,
or observables, the identity

||X − Y ||B = 2[1 − b(Y )]

holds for a suitable X ∈ ext(Q). In what follows we will make
a bit stronger and surprising observation that in the case of
channels, X needs to be a unitary channel. We will prove a
theorem indicating that unitary channels are somehow special
from the perspective of boundariness and minimum-error dis-
crimination. Moreover, the value of boundariness, in this case,
is a function of maximally entangled numerical radius [14] of
the inverse of the corresponding Choi-Jamiołkowski state.

Lemma 3. Let D be a positive operator on Hd ⊗ Hd and
define

R =
{
|y〉 ∈ Hd ⊗ Hd : tr1|y〉〈y| � 1

d
I

}
. (5)

Denote by |yD〉 ∈ R a vector that maximizes the overlap with
D, i.e., 〈yD|D|yD〉 = max|y〉∈R〈y|D|y〉. Then |yD〉 is a unit
vector, hence it is maximally entangled.

Proof. Let us note that |y〉 ∈ R is normalized to one
if and only if |y〉 is maximally entangled, i.e., tr1|y〉〈y| =
1
d
I . Suppose |yD〉 has the Schmidt decomposition |yD〉 =∑
j

√
μj |ej 〉|fj 〉 and assume that for some k we have

μk < 1/d, thus it is not normalized. Then

〈yD|D|yD〉 = μk〈ekfk|D|ekfk〉 +
∑
j,l 
=k

√
μjμl〈ejfj |D|elfl〉

+ 2
√

μk

∑
j 
=k

√
μj Re〈ekfk|D|ejfj 〉.
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In what follows we will construct a vector from R that has
a greater overlap with D. First, we introduce a vector |ẽk〉 that
differs from |ek〉 only by a sign

|ẽk〉 = sgn+

⎛
⎝∑

j 
=k

√
μj Re〈ekfk|D|ejfj 〉

⎞
⎠|ek〉, (6)

where sgn+(x) equals 1 for non-negative x and −1 for negative
x. Using this vector we write

μk〈ekfk|D|ekfk〉 + 2
√

μk

d∑
j=1,j 
=k

√
μj Re〈ekfk|D|ejfj 〉

� μk〈ekfk|D|ekfk〉

+ 2
√

μk

∣∣∣∣∣∣
d∑

j=1,j 
=k

√
μj Re〈ekfk|D|ejfj 〉

∣∣∣∣∣∣
= μk〈ẽkfk|D|ẽkfk〉

+ 2
√

μk

d∑
j=1,j 
=k

√
μj Re〈ẽkfk|D|ejfj 〉. (7)

In the last line above, μk is multiplied by strictly positive
factor (D is a positive matrix) and

√
μk is multiplied by a

non-negative factor, so we will (strictly) increase the value of
the products if we replace μk with 1

d
. Finally we obtain

〈y|D|y〉 < 〈ỹ|D|ỹ〉 (8)

for |ỹ〉 = ∑d
i=1,i 
=k

√
μi |eifi〉 +

√
1
d
|ẽkfk〉. Since |ỹ〉 ∈ R, we

obtained a contradiction. �
Theorem 2. Suppose F is an interior element of the set of

channels Q. Then

b(F) = [
max
U

λ1
(
J−1
F JU

)]−1 = d

maxU 〈〈U |J−1
F |U 〉〉 , (9)

where the optimization runs over all unitary channels U :
ρ 
→ UρU † and |U 〉〉 = (U ⊗ I )

∑
j |jj 〉. Moreover, if F =

b(F)E + [1 − b(F)]G for some E ∈ Q and G ∈ ∂Q, then E
must be a unitary channel.

Proof. Let us denote by JE and JF Choi-Jamiołkowski
operators for channels E and F , respectively. We assume
that F is an interior element, thus JF is invertible. Then
tF (E) = sup{0 � t < 1,JF − tJE � 0}. It follows that for all
|x〉, 〈x|JF |x〉 � t〈x|JE |x〉. Setting |y〉 = √

JF |x〉 we obtain

1

t
� 〈y|√JF

−1
JE

√
JF

−1|y〉
〈y|y〉 . (10)

The maximum value on the right-hand side equals
λ1(

√
JF

−1
JE

√
JF

−1
) = λ1(J−1

F JE ) = λ1(
√

JEJ
−1
F

√
JE ),

where λ1(X) denotes the maximal eigenvalue of X. In
conclusion, tF (E) = 1/λ1(J−1

F JE ) and

b(F) = inf
E

tF (E) = [
max
E

λ1
(
J−1
F JE

)]−1
, (11)

where the optimization runs over all channels.
For any Choi-Jamiołkowski state JE and an arbitrary

unit vector |x〉 ∈ Hd ⊗ Hd we have
√

JE |x〉〈x|√JE � JE .

The complete positivity of the partial trace implies that
tr1(JE − √

JE |x〉〈x|√JE ) � 0 and since tr1JE = 1
d
I it follows

tr1

√
JE |x〉〈x|

√
JE � 1

d
I.

In other words,
√

JE |x〉 ∈ R, defined in Lemma 3.
Consequently, λ1(J−1

F JE ) = max|x〉〈x|√JEJ
−1
F

√
JE |x〉 �

max|y〉∈R〈y|J−1
F |y〉 for every channel E and using Eq. (11) we

obtain

b(F) = [
max
E,|x〉

〈x|
√

JEJ
−1
F

√
JE |x〉]−1 �

[
max
|y〉∈R

〈y|J−1
F |y〉]−1

.

(12)

Since J−1
F is a positive operator Lemma 3 implies that the

maximum over |y〉 is achieved only by unit (hence maximally
entangled) vectors. For every such vector |yF 〉 there exists
a unitary matrix U such that |yF 〉 = 1√

d

∑
j U |j 〉 ⊗ |j 〉.

Moreover, the choice of |x〉 = |yF 〉 and E = U , where JU =
|yF 〉〈yF |, proves that the lower bound (12) is tight. Finally,
the achievability of the maximum on the right-hand side of
Eq. (12) requires by Lemma 3 that the norm of

√
JE |x〉 is one,

which in turn implies that E is a unitary channel. Otherwise
tF (E) > b(F) [see Eq. (11)] and decompositions of the form
F = b(F)E + [1 − b(F)]G (G ∈ ∂Q) cannot exist. �

Corollary 1. Suppose F is an interior element of the set
of channels. Then there exists a unitary channel U such that
||F − U ||B = 2[1 − b(F)]. Moreover, ifE ∈ Q is not a unitary
channel, then ‖F − E‖B < 2[1 − (b(F)].

Proof. Combining Proposition 2 and Theorem 2,
we conclude that the equality ||F − U ||B = 2[1 − b(F)]
holds precisely for unitary channels U such that b(F)

d
=

〈〈U |J−1
F |U 〉〉−1. �

In what follows we will explicitly evaluate the boundariness
formula determined in Eq. (9) for the families of qubit and
erasure channels (on an arbitrary-dimensional system).

A. Qubit channels

Theorem 3. Suppose F is an interior element of the set of
qubit channels. Then

b(F) = 2

λ1
(
W †J−1

F W + (W †J−1
F W )T

) , (13)

where W is a unitary matrix (called sometimes a magic
basis) [15]

W = 1√
2

⎛
⎜⎝

0 0 1 i

−1 i 0 0
1 i 0 0
0 0 1 −i

⎞
⎟⎠. (14)

Proof. For any quantum channel F with the Choi-
Jamiołkowski state JF , boundariness b(F) is given by [see
Eq. (9)]

b(F) = 1

maxψ∈SME〈ψ |J−1
F |ψ〉 ≡ 1

rent
(
J−1
F

) , (15)

where SME = {|ψ〉 ∈ Hd ⊗ Hd , tr1|ψ〉〈ψ | = 1
d
I } and rent(A)

is a maximally entangled numerical radius for the matrix A.
We know from the literature [14] that the maximally entangled
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numerical range for the 4 × 4 matrix A is equal to the real
numerical range of the matrix W †AW . From the above we
note that

rent(J−1
F

) = λ1

(
W †J−1

F W + (
W †J−1

F W
)T

2

)
, (16)

which together with Eq. (15) finishes the proof. �
In the case of the qubit channel F we can specify the

unitary channel U , for which ||F − U ||B = 2[1 − b(F)]. It
follows from the reasoning above that the unitary matrix U ,
which defines the channel, can be written as

|U 〉〉 =
√

2W |v〉. (17)

The vector |v〉 above is the leading eigenvector of the real
symmetric matrix W †J−1

F W + (W †J−1
F W )T .

B. Erasure channels

Erasure channels transform any input state ρ onto a fixed
output state Fσ (ρ) = σ . For such a channel Fσ the Choi-
Jamiołkowski state reads

JFσ
= 1

d
σ ⊗ I. (18)

If the state σ belongs to the boundary of the set of states
S(Hd ) then also the channel Fσ belongs to the boundary of the
set of channels and b(Fσ ) = 0. This holds because the Choi-
Jamiołkowski state ofFσ has zero in its spectrum and boundary
elements of compact convex sets have zero boundariness [see
Appendix C, Eq. (C3) in Ref. [5]]. For the remaining case we
provide the following proposition.

Proposition 3. The boundariness of the erasure channel Fσ ,
which maps everything to a fixed interior point σ in the set of
states S(Hd ), is given by

b(Fσ ) = 1

tr[σ−1]
. (19)

Proof. Since σ is an interior element of the set of states,
J−1
Fσ

= d σ−1 ⊗ I is well defined. Using Theorem 2 we obtain

b(Fσ ) = 1

maxU

∑
j,k

〈jj |(U †σ−1U ) ⊗ I |kk〉
= 1

tr[σ−1]
,

where we used UU † = I and the cyclic invariance of the
trace. �

Let us note that in the special case of a qubit erasure channel
Fσ with σ = p|0〉〈0| + (1 − p)|1〉〈1| we find b(Fσ ) = p(1 −
p) in accordance with the results of [5].

V. BOUNDARINESS UNDER COMPOSITION

The composition of quantum systems is intimately related
to the tensor product. The so-called factorized elements
(being tensor products of elements associated with individual
subsystems) have a clear physical interpretation of the inde-
pendent preparation of states of each subsystem, uncorrelated
single-partite measurements, and uncorrelated channels acting
on each subsystem independently. Mathematically, they form
a special nonconvex subset of all elements included in
the larger convex set of bipartite states, observables, and

channels. Therefore, there is no a priori reason to expect any
deeper relation between the bipartite boundariness of these
factorized elements and individual values of boundariness
for subsystems. Knowing that the boundariness is related
to the minimum-error discrimination we may ask what the
best discriminable elements from the factorized elements are;
investigation of the behavior of the boundariness under the
tensor product will help us answer this question.

Suppose E and F are channels on systems described in
Hilbert spaces Hs and Hd , respectively. Denote by b(E)
and b(F) the values of their boundariness. We address the
question of the relation between the boundariness of channel
composition b(E ⊗ F) and the boundariness for individual
channels.

Proposition 4. For channels the boundariness is submulti-
plicative, i.e., b(E ⊗ F) � b(E)b(F).

Proof. Let us consider some decomposition of channels E
and F into boundary elements with the weight equal to their
boundariness:

JE = b(E)JE+ + [1 − b(E)]JE−,

JF = b(F)JF+ + [1 − b(F)]JF−.

This allows us to write

JE ⊗ JF = b(E) b(F) JE+ ⊗ JF+ + [1 − b(E) b(F) ] JT ,

(20)

where

JT = [1 − b(E)b(F)]−1{b(E)[1 − b(F)]JE+ ⊗ JF−
+ [1 − b(E)]b(F)JE− ⊗ JF+
+ [1 − b(E)][1 − b(F)]JE− ⊗ JF−} (21)

is a Choi-Jamiołkowski state of a channel. Let us recall that
a channel is on the boundary of the set of channels if and
only if its Choi-Jamiołkowski state has a nonempty kernel
(see, e.g., [5]). It is easy to realize that if E+ and F+ are
boundary elements of the respective sets of channels, E+ ⊗ F+
lies on the boundary as well. Similarly, taking vectors |ϕ〉
and |ψ〉 from the kernel of JE− and JF− , respectively, we
can immediately see that |ϕ〉 ⊗ |ψ〉 belongs to the kernel
of JT . This shows that Eq. (20) provides a valid convex
decomposition of a channel E ⊗ F into two boundary elements
and we conclude that tE⊗F (E+ ⊗ F+) = b(E)b(F). Due to
definition of boundariness from Eq. (3) we obtain the upper
bound from the proposition. �

Proposition 5. For states and observables the boundariness
is multiplicative, i.e., b(x ⊗ y) = b(x)b(y), where x,y stands
for any pair of states or observables.

Proof. The equality in Proposition 5 is fulfilled because
for states and observables the boundariness is given by the
smallest eigenvalue and eigenvalues of the tensor products are
products of the eigenvalues. �

We have numerical evidence suggesting that the equality
holds also in the case of channels, but we have no proof of such
a conjecture. Using Eq. (9), this is equivalent to the equality of
maxξ 〈ξ |J−1

E ⊗ J−1
F |ξ 〉 and maxχ 〈χ |J−1

E |χ〉 maxω〈ω|J−1
F |ω〉,

where ξ , χ , and ω are maximally entangled states on the
corresponding systems.
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Below we prove this equality for the case of qubit channels
when one of the channels is the “maximally mixed” channel
F , hence, for this pair of channels, the boundariness is
multiplicative.

Proposition 6. Let E be an arbitrary qubit channel and let
F be the erasure channel mapping any input to 1

d
I . Then

b(E ⊗ F) = b(E)b(F).
Proof. By proposition 4, b(E ⊗ F) � b(E)b(F), so we have

to show the opposite inequality. Let E : B(HA) → B(HB) and
F : B(HA′) → B(HB ′), where HA and HB denote copies of
H2, and HA′ and HB ′ denote copies of Hd . Since J−1

F =
d2IB ′A′ , then by Theorem 2 we want to prove the inequality

max
V ∈U(HBB′ )

〈〈V |J−1
E ⊗ IB ′A′ |V 〉〉 � d max

U∈U(H)
〈〈U |J−1

E |U 〉〉.

For V ∈ U(HBB ′), let XV = trB ′A′ |V 〉〉〈〈V |. Then XV is a
positive operator on HBA and we have

trBXV = trA′ trBB ′ |V 〉〉〈〈V | = dIA.

Similarly, trAXV = dIB . It follows that 1
2d

XV is the Choi-
Jamiołkowski matrix of a unital qubit channel. As it is well
known, any such channel is a random unitary channel, so there
are some unitaries Ui ∈ U(H2) and probabilities pi such that
XV = d

∑
i pi |Ui〉〉〈〈Ui |. It follows that

〈〈V |J−1
E ⊗ IB ′A′ |V 〉〉 = tr

[
J−1
E XV

]
� d max

U∈U(H)
〈〈U |J−1

E |U 〉〉.

�

VI. MAXIMAL VALUE OF BOUNDARINESS

By definition, boundariness takes values between zero and
1
2 , but all values in this interval are not necessarily attainable.
A simple example is the triangle [see Fig. 1(a) and the
Appendix], for which 1

3 is the maximal value. In this section
we will investigate what is the highest achievable value of
boundariness for particular quantum convex sets. In fact,
we will see that the elements maximizing the boundariness
are unique and coincide with the so-called maximally mixed
elements playing the role of white noise.

As for the other questions addressed in this paper, it is
straightforward to evaluate the maximal value for states and
measurements, but the case of channels is more involved.

Proposition 7. The maximal value of boundariness for quan-
tum convex sets is given as follows: For states, bs

max = 1/d is
achieved for a completely mixed state � = 1

d
I ; for observables,

bo
max = 1/n is achieved for an n-outcome (uniformly) trivial

observable {Ej = 1
n
I }nj=1; and for channels, bc

max = 1/d2 is
achieved for a completely depolarizing channel mapping all
states into a completely mixed state 1

d
I .

Proof. For states and measurements [5] the highest bound-
ariness means the highest value of the lowest eigenvalue, which
leads to a maximally mixed state ρ = 1

d
I and a (uniform)

trivial observable {Ei = 1
N

I }Ni=1, respectively. The case of
channels is more subtle. From the formula (9) giving the
boundariness of a channel it is clear that we search for a channel
F such that maxU 〈〈U |J−1

F |U 〉〉 is minimized. We construct a
simple lower bound using an orthonormal basis {|vi〉}d2

i=1 of

FIG. 1. (Color online) Illustration of (a) and (c) boundariness and
(b) and (d) mixedness for simple convex sets. In general, mixedness
and boundariness differ; exceptions are sets like an ellipse or sphere.

maximally entangled states

tr
[
J−1
F

] =
d2∑
i=1

〈vi |J−1
F |vi〉 � d max

U
〈〈U |J−1

F |U 〉〉. (22)

Such a basis {|vpq〉 = (ZpWq ⊗ I ) 1√
d

∑
j |jj 〉} can be

constructed using shift and multiply unitary operators
Z = ∑

j |j ⊕ 1〉〈j | and W = ∑
j ωj |j 〉〈j |, where ω =

e2πi/d . On the other hand, from spectral decomposition
JF = ∑

i λi |ai〉〈ai |, where
∑

i λi = 1, we have tr[J−1
F ] =∑

i
1
λi

� d4. Combining this with Eq. (22), we get d3 �
maxU 〈〈U |J−1

F |U 〉〉. Inserting this into Eq. (9), we finally obtain
b(F) � 1

d2 . It is easy to see that the inequalities can be made
tight only by a single channel, which maps everything to a
complete mixture. �

VII. SUMMARY

This paper completes and extends previous work [5] in
which the concept of boundariness was introduced. We proved
that for compact convex sets evaluation of boundariness of y

coincides with the question of the best distinguishable element
from y, i.e.,

2[1 − b(y)] = max
x

||x − y||,
where || · || denotes the so-called base norm (being the trace
norm for states and the completely bounded norm, also known
as the diamond norm, for channels and observables). This
identity was formulated in Ref. [5] as an open conjecture for
the case of quantum channels and is confirmed by our results
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presented in this paper. In fact, we have discovered that the
optimum is attained only for unitary channels. This surprising
result provides quite unexpected operational characterization
of unitary channels and exhibits their specific role among
boundary elements and in minimum-error discrimination
questions. The unique role of unitary channels is noticeable
also in the explicit formula that we derived for the evaluation
of boundariness of channels. We note that these results hold
also for channels, for which their inputs are less dimensional
than their outputs. It can be checked that in such a case the
role of unitary channels is played by isometries, which is in
accordance with the intuition. However, if the dimension of
the input is larger than the dimension of the output system, the
generalization is not that straightforward and is left for future
research.

Further, we investigated how the boundariness behaves
under the tensor product. We have shown that boundariness is
a multiplicative quantity for states and observables, however,
for channels we proved only the submultiplicativity

b(E ⊗ F) � b(E)b(F).

However, our numerical analysis suggests that the boundari-
ness is multiplicative also for the case of channels.

Exploiting the relation between the boundariness and the
discrimination, the multiplicativity implies that the most
distinguishable element from x ⊗ y is still a factorized element
x0 ⊗ y0, where x0 and y0 stand for the most distinguishable ele-
ments from x and y, respectively. For channels this would mean
that factorized unitaries are the most distant ones for all factor-
ized channels. However, whether this is the case is left open.

In the remaining part of the paper we evaluated explicitly the
maximal value of boundariness. We found that this maximum
is achieved intuitively for the maximally mixed elements, i.e.,
for a completely mixed state, uniformly trivial observables, and
channel contracting state space to the completely mixed state.
In particular, for d-dimensional quantum systems we found
for states bs

max = 1/d, for observables bo
max = 1/n, which is

independent of the dimension (only the number of outcomes n

matters), and for channels bc
max = 1/d2. Let us stress that these

numbers also determine the optimal values of error probability
for related discrimination problems.
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APPENDIX: BOUNDARINESS OF A SQUARE
AND A TRIANGLE

If we consider a centroid of a square, then any line going
through this point gives us a two-term decomposition of the
central point into two boundary points with both weights
being 1

2 . Thus, the most unbalanced decomposition into two
boundary points has the smaller weight equal to 1

2 , which is
the highest achievable value of boundariness by definition.

In contrast, for the centroid of a triangle the most un-
balanced two-term decompositions into boundary points are
formed by lines passing through the edges of the triangle.
However, the lower weight is in this case only 1

3 , because the
ratio between the distance from the centroid to the side and
to the edge is κ = 1

2 and this can be converted to a mixing
coefficient by t = κ

κ+1 = 1
3 .
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