
PHYSICAL REVIEW A 92, 042315 (2015)

Process estimation in the presence of time-invariant memory effects
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Any repeated use of a fixed experimental instrument is subject to memory effects. We design an estimation
method uncovering the details of the underlying interaction between the system and the internal memory without
having any experimental access to memory degrees of freedom. In such case, by definition, any memoryless
quantum process tomography (QPT) fails because the observed data sequences do not satisfy the elementary
condition of statistical independence. However, we show that the randomness implemented in certain QPT
schemes is sufficient to guarantee the emergence of observable “statistical” patterns containing complete
information on the memory channels. We demonstrate the algorithm in detail for the case of qubit memory
channels with two-dimensional memory. Interestingly, we find that for the arbitrary estimation method, the
memory channels generated by controlled unitary interactions are indistinguishable from memoryless unitary
channels.
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I. INTRODUCTION

Repeatability of experiments is one of the main conceptual
paradigms of modern science, although its meaning has
evolved over time. In particular, the quantum experiments
are not repeatable in a strict sense of individual observations
(e.g., no one knows whether or not a given photon passes the
polarizer); however, the repeated runs of such experiments
exhibit repeatable statistical patterns (e.g., the fraction of
photons passing the polarizer is fixed). In other words,
quantum theory does not give a clear conceptual meaning (in
the sense of repeatability) to individual outcomes, but rather
to numbers represented by averages and probabilities.

Therefore, the interpretation of quantum experiments is
intimately related to our understanding of probabilities, espe-
cially with the question of whether the observed frequencies
are really the probabilities occurring in theoretical models of
the experiments. In any case, the repeatability of statistical
features assumes that individual runs of the experiment are
independent. In theory, this means that each run of the
experiment is performed with “fresh” apparatuses (under
exactly the same conditions); however, in practice, we do not
really employ a new apparatus every time the experiment is
run. Instead, it is implicitly assumed that the internal relaxation
processes are sufficiently fast to refresh the whole experimental
setup. But is such assumption justified?

Consider an experiment in which a quantum particle is sent
through a quantum channel. While the particle is transferred, it
interacts with the degrees of freedom of the channel. According
to quantum theory, these interactions are described by the
Schrödinger equation and result in a unitary transformation
of the joint particle-channel system. As a result, both the
particle and the channel are disturbed by this interaction
and the disturbances depend on their original characteristics.
Consequently, the repeated use of the same channel device
is not independent of the previous uses; thus, the induced
particle transformation will be typically different. If this
is the case, we say the channel exhibits memory effects.
Let us stress that all of the relaxation processes can be

incorporated into this unitary model by extending the size
of the memory.

Indeed, suppose the channel is just “delaying” the transfer
of the particles, i.e., its nth output equals the (n − 1)th input
(first output is set to be in some fixed state). In this case, the
uses are clearly not independent. This can be demonstrated if
one’s goal is to estimate the parameters of the quantum process
assuming the channel devices are memoryless. Then different
(equivalent in the memoryless case) estimation procedures
could lead to different conclusions. In particular, if the channel
action is tested in an “ordered” fashion, i.e., we first analyze
how the state �1 is transformed to �′

1, then �2 to �′
2, etc.,

then any delay vanishes in the statistical analysis and we must
conclude the transformation is noiseless, i.e., � �→ �′ = �.
However, if the channel is tested in a “random” fashion, i.e., in
each run a random test state is used, then for each fixed input
�, the output state �′ is a fixed state �0 being the average input
test state; thus, the channel is recognized as the maximal noise
and therefore not very useful for the transfer per se.

In the described case, the action of the memory is quite
simple and, when cleverly used, this memory device can be
used to transfer information in a noiseless way [1]. But how
can one find out the action if the interaction is not known
in advance? How can one proceed in order to detect such
memory behavior and, finally, exploit the memory for our
purposes? Exactly these questions will be addressed in this
work. It is organized as follows. We start with introducing
all of the necessary concepts and tools in Secs. II and III.
In Sec. IV, we state the problem. In Sec. V, we solve this
problem in the special case of control unitary interactions, and
in Sec. VI we formulate theorems allowing us to design the
estimation algorithm. Finally, in Sec. VII, we illustrate in detail
the algorithm for the simplest possible case of qubit channels
with a two-dimensional memory.

II. PRELIMINARIES

States � of quantum systems are identified with the set of
density operators S(H) being positive linear operators on a
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Hilbert space H of a unit trace. Measurement apparatuses M

are described by positive operator valued measures (POVM)
being a set of positive operators E1, . . . ,Em such that O �
Ej � I (called effects) and

∑
j Ej = I . Each measurement

outcome is associated with exactly one effect and we write
Ek ∈ M if Ek is an effect associated with one of the outcomes
M. Quantum channels E describing the memoryless processes
are identified with completely positive trace-preserving linear
maps defined on the set of trace-class operators T (H).
In particular, E : S(H) → S(H). If E(�) = U�U † for some
unitary operator U , then we say the channel is unitary and
we denote it by U . Due to the Stinespring theorem, any
channel can be understood as a result of a unitary interaction
between the system and some (initially factorized) memory,
i.e., E(�) = trM[U(ξ ⊗ �)], where ξ is the initial state of the
memory andU : S(M ⊗ H) → S(H ⊗ M) (for more details,
see, for instance, Ref. [2]).

When modeling (see Refs. [1,3]) the experiment with the
memory process device (used repeatedly), we will assume
that its action is described by a fixed unitary channel and
includes all of the relaxation processes of the memory. Also
we assume that we do not have any access to memory degrees
of freedom; thus, when we want to learn something about
the underlying process U , we can only manipulate the system,
eventually employing some ancillary systems and devices. The
experiment gives rise to a sequence of channels E1, . . . ,En for
n uses of the device, defined as follows:

Ej (�j ) = trM[U j (ξ ⊗ �j )],

where U j = Uj · · ·U1 is the j -fold concatenation of Uk and �j

is the joint input state describing first j uses of the memory
device. The unitary channel Uk acts as U on the memory and
the kth system, and trivially elsewhere.

Let us stress that by construction, the sequence of processes
E1, . . . ,En is causal (j th output does not depend on kth input
for k > j ), and thus, Ej (�j ) = trj+1[Ej+1(�j+1)]. Indeed, due
to the seminal paper by Kretschmann and Werner [1], every
causal memory process can be represented as a concatenation
of unitary channels describing the sequence of interactions
between the memory and the processed systems. In our case,
the memory channel is also time invariant (see Fig. 1), i.e., the
unitary channels applied in concatenations coincide.

FIG. 1. Repeated uses of the time-invariant memory process iden-
tified with the unitary channel U describing the interaction between
the device inputs �j and experimentally inaccessible memory degrees
of freedom initially in an unknown state ξ .

III. QUANTUM PROCESS TOMOGRAPHY

Quantum process tomography (QPT) is any processing of
experimental data uniquely identifying an unknown memory-
less quantum channel [4,5]. It is known to be a complex task;
however, under certain assumptions, it can also be efficiently
applied to large systems [6–10] and even the accuracy can
be assessed [11–14]. QPT deals with a scenario where an
experimenter is given an unknown input-output black box
E . In each run of the experiment, he prepares some test
state � and performs a measurement M; thus, he chooses
the setting x = (�,M) and records the outcome Ek , where
Ek ∈ M . Let us denote by X = {(�x,Mx)}x the set of all
possible settings. The measurement Mx is described by effects
Exk , and Nx labels the total number of times the setting x

was chosen, i.e.,
∑

x Nx = n. In each run of the experiment,
we observe an event xk = (�x,Exk) indicating that the setting
x = (�x,Mx) is used and the outcome Exk is recorded. The
conditional probability of observing the event xk is given
by the formula p(xk|E) = qx trExkE[�x], where qx = Nx/n

describes the frequency of the setting x. For suitable choice of
X, this probability distribution p(xk|E) enables us to reveal the
identity of the channel E . Conceptually, the simplest example
consists of a linearly independent collection of test states {�x}x
and a fixed state tomography measurement M (the same for
each x).

Clearly, the ordering of the events x1, . . . ,xn is irrelevant
for QPT and only their fraction is needed. However, this is true
only if the condition of memoryless channel is met, i.e., when
a fresh copy of the channel is used each time the experiment
is made. Otherwise, the QPT procedure may lead to wrong
conclusions. Suppose we have tested a communication channel
(the delaying channel from Sec. I) using the well-ordered
sequence of settings and find out the transfer is just perfect;
thus, we use it to built a noiseless worldwide communication
network. However, the communication itself is quite far from
a well-ordered sequence of symbols. It is much closer to a
random one and, for such, the considered communication
device does not work at all; hence, the seemingly “perfect”
network fails dramatically. On the other side, the usage of
a random sequence of settings leads to a conclusion that
the communication device is of no use. But this is also not
true because shifting the outputs by one results in perfect
transmission.

IV. FORMULATION OF THE PROBLEM

Our task is to capture the dynamics underlying the memory
process, i.e., the interaction U and the memory state ξ .
However, as we have only a single copy of the state ξ ,
learning any nontrivial information on ξ is forbidden by the
no-cloning theorem [15]. Moreover, not all of the parameters
of U are accessible within our model. In particular, the
output of the memory channel given by (U ,ξ ) is the same
as that of [(I ⊗ VM )U(V−1

M ⊗ I),VMξV−1
M ], for some unitary

VM : M �→ M. In conclusion, our goal is to estimate U
modulo this freedom under the condition that the initial state
of the memory is unknown and the memory is experimentally
inaccessible.
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Before we proceed, let us stress that (just like in the
memoryless case) we are able to predict probabilities, however,
by construction, our experiments cannot be repeated in the
statistical sense; hence, the standard tools and methods of
statistical analysis are simply inapplicable. In full generality
of the problem, we are free to choose the input state for a
given number n of uses of the device, we can choose the
output measurements, and we may also employ some ancillary
systems.

V. CONTROLLED UNITARY INTERACTIONS

In this example, we will show a family of memory channels
for which the freedom in the estimation of the interaction U is
much larger. We say the interaction is controlled unitary if it
can be written in the following form [16]:U ctrl = ∑

l |l〉M〈l| ⊗
Vl , where Vl are arbitrary unitary channels defined on the
system and vectors |l〉 form an orthonormal basis of the
memory Hilbert space.

Theorem 1. The memory device induced by a controlled
unitary interactionU ctrl is indistinguishable from a memoryless
unitary device.

Proof. Suppose �n is the joint state of n inputs and let ξM
be the initial state of the memory. Then, �n)′ = ∑

l qlV⊗n
l (�n)

with ql = 〈l|ξ |l〉. Suppose E is an effect on n outputs such
that pE(U ctrl) = tr[EU ctrl

n (�n)] > 0. Then, for the same input
state �n, also pE(Vl) = tr[EV⊗n

l (�n)] > 0 for some l, and
thus for any test state the observation of the individual
outcome E cannot be used to distinguish U ctrl from Vl (for a
suitable l). �

In other words, any estimation procedure for this class of
channels results randomly (with probability ql) in one of the
unitaries Vl .

VI. ESTIMATION ALGORITHM

The algorithm we are going to explain is based on the
QPT method with randomly chosen settings (see Fig. 2).
In particular, in each run of the experiment, the setting
x = (�x,Mx) is selected independently with the probability
qx . Let us remind the reader that among n uses of the channel,
approximately Nx ≈ qxn times the setting x is selected.
Denote by Nxk the number of occurrences of the event (�x,Exk)
(with Exk being the effect observed in the measurement Mx)
and define a number p̃(k|x) = Nxk/Nx (playing the role of

FIG. 2. Schematic illustration of the estimation method. Setting
x is chosen at random and outcome Exk is observed. Collecting
this data and performing process tomography (QPT) yields a family
of channels En on n subsequent inputs. From these channels, the
interaction U is determined up to local unitary rotation of the memory
system.

conditional probabilities in the case of QPT). The following
theorem provides the basis for the statistical interpretation of
this number.

Theorem 2. If QPT is implemented with randomly chosen
settings, then for all settings x there exists a state of the memory
ξ ∈ S(M) such that

lim
n→∞ p̃(k|x) = p(xk|x) ≡ tr[U(ξ ⊗ ρx)(Exk ⊗ IM)].

Consequently, we may treat p(xk|x) as the conditional prob-
ability p(xk|E) for some average channel E(�) = trM[U(ξ ⊗
�)] induced by the state ξ ; hence, QPT reconstruction results
in the memoryless channel E .

Proof. Let us denote by ξj the state of the memory before
the j th run of the experiment leading to observation of
some effect Exj k . During the algorithm, the memory system
undergoes a sequence of transformations,

ξ ≡ ξ1 �→ ξ2 �→ · · · �→ ξn. (1)

Denote by S the set of all states {ξj }j occurring in the
sequence and by Sx a subset of S for which the setting x was
used. Consider a partitioning of S(M) into mutually exclu-
sive subsets {Xμ}μ, i.e., Xμ ∩ Xν = ∅ and S(M) = ⋃

μ Xμ.
Define p(Xμ) = |S ∩ Xμ|/n and px(Xμ) = |Sx ∩ Xμ|/|Sx |
determining the frequency of the memory state being from
the subset Xμ and the frequency being from Xμ conditioned
on the settings x, respectively. As the choice of the setting
x is random, the states ξj ∈ Xμ are distributed between the
sets Sx at random with probability qx ; hence, the subset Sx

is a random sample of S. Formally, |Sx ∩ Xμ| ≈ qx |S ∩ Xμ|
for large n. Consequently, for all x, we obtain the relation
px(Xμ) ≈ p(Xμ), i.e., for any partitioning the conditional
distribution px(Xμ) is (in the limit of large n) independent
of the initial settings x. In other words, whatever initial
setting is used, the average memory state ξx is fixed and
ξx = ξ . Therefore, for each x, the observed transformation is
�x �→ �′

x = (1/n)
∑

Sx
trMU(ξl ⊗ �x) ≡ E(�x) with E(�x) =

trM[U(ξ ⊗ �x)]. �
Note that a trivial implication of this result is that the

average channel on n subsequent inputs reads En(ρn) =
trM[Un(ξ ⊗ ρn)] and corresponds to the probabilities of n

joint events. This theorem enables us to interpret the result
of any QPT method with randomly chosen settings; however,
it does not tell us what the generating state ξ is. When the
channel E is reconstructed, we know that the interaction U is
one of its dilations. The following theorem characterizes the
average state ξ .

Theorem 3. The average state ξ is a fixed point of the
so-called (average) concurrent channel C(ξ ) = trH[U(ξ ⊗ �)],
where � = ∑

x qx�x is the average test state, i.e., C(ξ ) = ξ .
Proof. Let f be the measure on S(M) characterizing

the distribution of states in the set S for large n, i.e.,∫
Xμ

df (ξ ) ≈ |Xμ| and ξ ≈ ∫
S(M) df (ξ )ξ . Given that state ξ

enters a collision with state ρx and the measured output is Exk ,
the exiting state of memory is ξout = Ixk[ξ ]/tr(Ixk[ξ ]) where
Ixk[ξ ] = trH[U(ξ ⊗ ρx)(Exk ⊗ IM)]. The probability of the
event (ρx,Exk) is qx tr(Ixk[ξ ]), where qx is the probability of
setting (ρx,Mx). The average over S can be expressed as
the average over exiting states ξout (for inputs ξ distributed
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according to μ), and thus,

ξ =
∑
xk

∫
S(M)

df (ξ )
qx tr(Ixk[ξ ])Ixk[ξ ]

tr(Ixk[ξ ])
= C(ξ ).

�
It follows that in order to identify the memory process,

it remains to characterize the mapping C, in particular, its
fixed points. Moreover, if the fixed point ξ0 is unique, then
ξ = ξ0 (for large n) and the reconstruction procedure is
clear. However, in general, we do not know how to test the
uniqueness of a fixed point. The proposed estimation procedure
identifies jointly both the memory process U and the state ξ .
In what follows, we will illustrate in detail the essence of the
proposed memory estimation procedure.

To set up our experiment, let us select a set of linearly
independent test states {ρx}rx=1 and measurements {Mx}rx=1 oc-
curring with probabilities {qx}rx=1, respectively. By performing
the QPT with inputs randomly selected according to probabil-
ities qx , we obtain a sequence of events xn = {(ρxj

,Exj kj
)}nj=1.

Let us denote by N (ym) the number of occurrences (counting
overlaps) of a subsequence of events ym = {(ρyj

,Eyj lj )}mj=1 of
a given length m. Assuming m � n and n → ∞, Theorem 2
(see the implication below) guarantees the existence of ξ such
that

N (ym)

n − m + 1
≈ p(ym), (2)

where

p(ym) ≡ tr
[
Em

(
Ym

ρ

)
Ym

E

]
p
(
Ym

ρ

)
(3)

with

Em
(
Ym

ρ

) = trM
[
Um

(
ξ ⊗ Ym

ρ

)]
, (4)

and Ym
ρ = ⊗m

j=1 ρyj
is the concatenation of inputs in the

subsequence ym. Similarly, Ym
E = ⊗m

j=1 Eyj lj is the con-
catenation of observed effects in the subsequence ym and
p(Ym

ρ ) = ∏m
j=1 qyj

is the probability of Ym
ρ to occur.

A family of subsequences {ym1
1 , . . . ,y

ml

2 } is called tomo-
graphically complete if the observed family of probability dis-
tributions {p(ym1

1 ), . . . ,p(yml

l )} faithfully identifies a unique
memory process (associated with U ). Any tomographically
complete family {ym1

1 , . . . ,y
ml

2 } constitutes a valid estimation
procedure. Clearly, for practical purposes, it is better to keep
the maximal length m = max{m1, . . . ,ml} as small as possible
and the question on minimal value of m is of interest. Also let
us stress that in general, it is an open problem how to verify
whether a given family of subsequences is tomographically
complete.

Further, we will consider a special class of random QPT
methods for which we can make an “educated guess” for ξ . In
particular, suppose that QPT consist of test states �x satisfying
� = ∑

x qx�x = 1
d
I and of a fixed informationally complete

measurement (i.e., Mx = M for all x). In such case, the map
C(ξ ) = 1

d
trH[U(ξ ⊗ I )] is unital [C(I ) = I ]. It follows that

for any QPT with the average input state being the complete
mixture, the state ξ = 1

d
I is a fixed point of C. It remains

to analyze whether there are some other fixed states. If it is
unique, then the QPT reconstruction is straightforward. In the
following section, we will explicitly exploit this class of QPT

FIG. 3. (Color online) Estimation algorithm for the qubit case.

methods and design an estimation procedure for the case of
qubit memory channels with two-dimensional memory.

VII. QUBIT MEMORY CHANNEL WITH
TWO-DIMENSIONAL MEMORY

In this section, we will illustrate an example of an estimation
procedure for the simplest case of a single-qubit memory
process with a two-dimensional memory. Luckily, this case
can be treated analytically (see Fig. 3 for a schematic view
of the algorithm). As we said before, we will consider test
states {ρx}rx=1 such that � = 1

2I . The most general unitary
operator U in the considered qubit-qubit case is parametrized
as follows [17]:

U = (W2 ⊗ V2)D(�α)(W1 ⊗ V1) , (5)

where V1,V2,W1,W2 are single-qubit unitaries and

D(�α) = exp
1

2

∑
j

αjσj ⊗ σj , (6)

where σj are Pauli operators and 0 � |αz| � αy � αx � π/2.
Note that remark [16] also applies here. Taking into account the
equivalence class of unitaries due to the unitary conjugation
on the memory system, it follows that memory channels can
be parametrized as

U = (W ⊗ V2)D(�α)(I ⊗ V1), (7)

where W is arbitrary single-qubit unitary operator.
Further, let us analyze fixed points (uniqueness of 1

2I as
a fixed point) of the concurrent map induced by such unitary
interactions. The average concurrent map C(ξ ) = trH[U (ξ ⊗
1
2I )] is independent of V1 and V2 and can be written as a
composition C = WD(�α), where D(�α) = trH[D(�α)(ξ ⊗ 1

2I )].
Clearly, if the state 1

2I is the unique fixed point of D(�α), then
it is also the only fixed point of the concurrent channel C.
Therefore, it is sufficient to start our analysis with fixed points
of D(�α).
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Representing ξ in the basis of Pauli operators I,σx,σy,σz,
i.e., ξ = 1

2 (I + �s · �σ ), the action of D(�α) can be written in the
form [18]

�s �→ D�s + �t, (8)

with

D =
⎛
⎝c2yc2z 0 0

0 c2zc2x 0
0 0 c2xc2y

⎞
⎠, (9)

where, due to unitality, �t = �0. We used a shorthand notation,
cnj = cos(nαj ). Clearly, �s = �0 is always the fixed point of D.
It is not unique if at least two of the parameters c2x,c2y,c2z

are equal to one. For our choice of parametrization, it means
c2z = c2y = 1, and hence, αz = αy = 0. In such case, D =
diag{1,c2x,c2x} and any state of the form ξ = 1

2 (I + xσx) is
preserved. This corresponds to a family of so-called pure-
decoherence channels [19] preserving the diagonal entries of
density operators expressed in the decoherence basis (eigenba-
sis of σx in our case); thus, U is a controlled-unitary interaction
(with the memory playing the role of the control system),
which we have shown in Sec. V to be indistinguishable from
factorized unitary interactions. We made the same conclusion
when c2x = c2y = c2z = 1, and hence, D describes the identity
map. In other words, the interaction U can be concluded to be
factorized whenever the channel C has more fixed points.

Suppose now that at least two of the angles αj (of D)
are nonvanishing; thus, 1

2I is the unique fixed point of the
channel C. From the frequency of single events N (y1), we
can estimate the (unital) channel E1 transforming the initial
state � = 1

2 (I + �r · �σ ) into the state �′ = 1
2 (I + �r ′ · �σ ), with

�r ′ = A�r and

A = R2B(�α)R1 (10)

is the singular value decomposition of A with Rj being
orthogonal rotations induced by unitaries Vj and, due to the
symmetry of U (�α) with respect to change of the system
and memory, the matrix B(�α) = diag{c2yc2z,c2zc2x,c2xc2y}
coincides with D given in Eq. (9). Let us stress that E1 is
independent of W ; thus, the reconstructed channel E1 contains
no information on W . The estimation of W will be treated
later. If the singular values are nondegenerate, then V1,V2

are uniquely determined. However, in the case of degeneracy,
not all parameters of R1,R2 can be accessed and there is an
ambiguity in their specification. In summary, the estimated
transformation A contains complete information on local
unitaries V1,V2 and the singular values forming B(�α) allow
us to specify the angles αx,αy , but only the absolute value of
|αz| (see our choice of parametrization).

In order to determine the sign of |αz| and the unitary W , we
need to reveal some of the properties of E2, i.e., of the action
of the memory process on two inputs. We can reconstruct this
channel from the frequencies of double events N (y2); thus the
action of E2 on arbitrary input is known to us.

Define operators Sj = V1σjV
†

1 and Tj = V2σjV
†

2 and let us
parametrize W as

W =
(

z w

−w z

)
, (11)

where z = reiφ , w = √
1 − r2eiψ , and r ∈ [0,1]. Then the

parameters of W and sign of αz can be extracted out of the
following equations:

a = tr[E2(Sz ⊗ I )(I ⊗ Tz)] = 4(2r2 − 1)s2
2xs

2
2y,

b = tr[E2(Sx ⊗ I )(Ty ⊗ Tz)] = 2(1 − 2r2)s2zs2xs4y,

c = tr[E2(Sz ⊗ Sx)(I ⊗ Tz)] = 4r
√

1 − r2s+s4xs
2
2y,

(12)
d = tr[E2(Sz ⊗ Sy)(I ⊗ Tz)] = 4r

√
1 − r2c+s4ys

2
2x,

e = tr[E2(Sz ⊗ I )(Tx ⊗ Tz)] = 4r
√

1 − r2s−s4xs
2
2y,

f = tr[E2(Sz ⊗ I )(Ty ⊗ Tz)] = 4r
√

1 − r2c−s4ys
2
2x,

where s± = sin(ψ ± φ) and c± = cos(ψ ± φ). The left-
hand sides of these equations can be computed from
the data because V1,V2 are known from the analysis of
E1. So far we have silently assumed that the singu-
lar value decomposition was not degenerate in (10). In
the case of degenerate singular values, at least two an-
gles in �α are equal in absolute value. For example, let
αx = αy . Then, D(�α) = (eiβσz ⊗ eiβσz )D(�α)(e−iβσz ⊗ e−iβσz ).
Hence the unitary (W ⊗ V2)D(�α)(I ⊗ V1) is equivalent to
[(eiβσzWe−iβσz ) ⊗ (V2e

−iβσz )]D(�α)[I ⊗ (eiβσzV1)]. Therefore,
we can fix the resulting freedom by choosing some Vi in
Eq. (10) and then the unitary W is computed with respect
to this choice. The only remaining case is when A = 0 in (10).
In this case, the memory is “essentially” induced by the swap
gate (see the Appendix for the detailed analysis of this case).

VIII. SUMMARY

We have proposed an estimation method for estimating the
underlying system-memory interaction U generating the mem-
ory channel assuming that this interaction is time invariant. The
algorithm is based on a random implementation of the arbitrary
memoryless quantum process tomography (QPT) procedure.
We proved that arbitrary memoryless QPT (implemented with
random settings) results in some memoryless channel E with
a dilation being the system-memory interaction U . Moreover,
when the average state of the memory (during QPT) is known,
the correct identification of the interaction (among the unitary
dilations of E) is possible. We proved this happens when the
average testing state is chosen to be the complete mixture
and the average concurrent channel is strictly contractive. In
particular, in this case, the average memory channel is the
complete mixture as well; hence, the reconstructed channelE is
necessarily unital. The reconstruction method is illustrated for
qubit memory channels with two-dimensional memories (see
Fig. 3). The proposed algorithm was successfully implemented
and tested numerically.

The reconstruction procedure can be extended for systems
and memories of arbitrary size; however, it is an open question
as to what size of concatenation En is sufficient for completing
the estimation of U . Let us note at the end that the unitary
evolution is not a requirement; one only needs to assume
linearity. Hence, for that matter, U can be an arbitrary channel
without any change in the arguments made. However, this
enlarges the complexity of the task enormously, even in
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the memoryless case, because of the large number of free
parameters.

The presented estimation method is universal; however, it
is neither the most general one and likely nor the optimal one.
We believe that our abilities to treat the concept of memory
channels in experiments provide us with better understanding
and control of quantum apparatuses and, therefore, they are not
only of a deep foundational interest but have direct application.
Conceptually, this work is challenging our understanding and
interpretation of elementary scientific tools: the repeatability
and the probability. Practically, the problem is intimately
related to a single-copy estimation of matrix product states
and the results may be applied for the characterization of
Hamiltonians [20,21] of a single-copy many-body system. In
particular, our scenario and results cover the case of a sequence
of repeated measurements on the subsystem followed by the
system’s evolution (for a fixed time interval) as considered
in [22,23]. In their case, they develop central limit theorems
for the non–independently-and-identically-distributed distri-
bution of outcomes under the condition that the concurrent
channel C is mixing.
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APPENDIX: DELAYING CHANNEL EXAMPLE

In this section, we are going to thoroughly examine a
memory channel generated by a special kind of unitary—the
swap operation S(a ⊗ b) = b ⊗ a; see Fig. 4. In this case, the
ith output is the (i − 1)th input. To analyze this channel, we
are going to use a finite set of test states ρ(x), x ∈ {1, . . . ,k},
and a single informationally complete POVM with effects Ey ,
y ∈ 1, . . . ,l. We use the notation ρi to refer to the time ordering
of the inputs. The state of the ith input could, in principle,
depend on time; hence, ρi = ρ(xi). Due to the delaying nature
of the channel, the probability of observing outcome y at
the ith turn is p[y|ρ(xi)] = tr[Eyρ(xi−1)] and is completely
independent of ρi . In this notation, we understand that ρ0 = ξ

FIG. 4. The interaction S swaps the memory with the input,
effectively making the ith output the (i − 1)th input. Therefore, this
memory channel is also called the delaying channel.

is the initial state of the memory. Let us first analyze the effect
of ordering on the result of the estimation procedure.

1. Sequential ordering

Let xi = 1 for 1 � i � N , xi = 2 for N + 1 � i � 2N ,
and so on, for some fixed integer N . Thus, for the first N

uses, we input ρ(1) into the channel; then, for the next N uses,
we input ρ(2), and so on. Then the probability of observing
outcome Ey when ρ(x) is present at the input is

p[y|ρ(x)] = tr{[ρ(x − 1) + (N − 1)ρ(x)]Ey}
N

≈ tr[ρ(x)Ey] for N � 1. (A1)

Since the output of the channel is identical to the input most
of the time, for large N the experimenter has to conclude that
he has an ideal channel E1(ρ) = ρ for all ρ ∈ S(H). Similarly,
if the experimenter looked on the concatenation of two uses of
the channel, he would find that E2(ρ1 ⊗ ρ2) = ρ1 ⊗ ρ2.

2. Random ordering

Let xi be randomly drawn according to discrete probability
distribution qi . Then the average output when ρ(x) is at the
input is the average input ρ = ∑k

x=1 qxρ(x). Hence,

p[y|ρ(x)] ≈ tr

[
k∑

x=1

qxρ(x)Ey

]
for N � 1,

= tr[ρEy]. (A2)

Thus, the experimenter concludes that E1(ρ) = ρ for all ρ ∈
S(H). However, if the experimenter looks at the concatenation
of two uses, he will find that E2(ρ1 ⊗ ρ2) = ρ ⊗ ρ1 for all
ρ1,ρ2 ∈ S(H).

Note that as a result of this work, when using randomly
ordered inputs, the estimated transformation is going to
converge towards a channel. For sequential ordering, this is
not true, even if in this particular example the result was
indeed a channel. However, one can find examples already
in the 2 × 2-qubit example, where the sequential ordering will
converge towards a non-cp map.

3. Estimation

The unitary for swap S can be expressed using (7) as
S = D(π/4,π/4,π/4). Therefore, one can directly see that
the singular value decomposition in (10) will be A = 0.
However, from observing A = 0, we can only conclude that
αx = αy = π/4 and we cannot determine αz or the Vi or W .

In order to see whether we deal with the swap interaction
or its modified version, we will thus look on the vector
representation of the delayed channel from the first input to
the second input E1→2,

E1→2(ρ) = trH1 [E2(ρ ⊗ 1/2I)], (A3)

where we take the partial trace over the first input. Let us recall
that for the swap interaction, this would lead to the identity
channel, i.e., E1→2 = I.
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In general, the vector representation can be written as

A1→2 = R2SRWSR1, (A4)

where Ri are rotations due toVi , RW is the rotation correspond-
ing to W , and S = diag(s2z,s2z,1). Further, we can expand RW
using the parametrization from (11),

RW = Z(φ + ψ)Y (r)Z(φ − ψ), (A5)

where

Z(θ ) =
⎛
⎝ cos(θ ) sin(θ ) 0

− sin(θ ) cos(θ ) 0
0 0 1

⎞
⎠, (A6)

Y (r) =

⎛
⎜⎜⎝

2r2 − 1 0 −2r
√

1 − r2

0 0 0

2r
√

1 − r2 0 2r2 − 1

⎞
⎟⎟⎠. (A7)

Since Z(θ ) commutes with S, the singular values of A1→2 are
the same as of SY (r)S and take the following form:

λ1 = 1

4

√
x2 + 16y + |x|

√
32y + x2, (A8)

λ2 = 1

4

√
x2 + 16y − |x|

√
32y + x2, (A9)

λ3 = s2
2z (A10)

where x2 = 8(1 − 2r2)2c4
2z, y = s2

2z, and λ1 � λ2 � λ3. The
value of αz can be computed from the smallest singular value
λ3. If αz = π/4, then all singular values will be 1; thus,
the delayed channel will be unitary, A1→2 = R2RWR1, and,
consequently, we reconstruct a unitary rotated (nonentangling)
swap gate. If αz �= π/4, then the reconstruction results in a
nontrivial interaction correlating the system with the memory
degrees of freedom.
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