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Certain continuous-time quantum walks can be viewed as scattering processes. These
processes can perform quantum computations, but it is challenging to design graphs

with desired scattering behavior. In this paper, we study and construct momentum
switches, graphs that route particles depending on their momenta. We also give an
example where there is no exact momentum switch, although we construct an arbitrarily

good approximation.
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1 Introduction

Quantum walk is a powerful tool for quantum computation. In particular, the concept of

scattering on graphs has been used to develop algorithms [1, 2] and to establish universality

of models of computation based on quantum walk [3, 4].

In the scattering framework, we consider an infinite graph obtained by attaching semi-

infinite paths to some of the vertices of a finite graph Ĝ, as shown in Figure 1. (The vertices

to which semi-infinite paths are attached are called terminals.) A particle is initialized in a

state that moves toward Ĝ on one of the semi-infinite paths. After some time the particle

has scattered; it moves away from Ĝ and, in general, has some outgoing amplitude on each
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Fig. 1. An infinite graph G obtained from a finite graph Ĝ by attaching N semi-infinite paths. The
open circles are terminals, vertices of Ĝ to which semi-infinite paths are attached. The internal
vertices of Ĝ are not shown.

of the semi-infinite paths. By choosing the graph carefully, such a scattering process can be

designed to perform a quantum computation.

A discrete version of scattering theory can be used to compute the amplitude scattered

into each path. The theory of scattering on graphs was introduced by Farhi and Gutmann

in the setting with two semi-infinite paths [1]; Childs presented an application with an ar-

bitrary number of semi-infinite paths [3]. Other work has described further basic properties

of scattering on graphs [5], classified the scattering properties of some small graphs using a

computer search [6], established a discrete analog of Levinson’s Theorem [7, 8], and proved

completeness of the scattering and bound states [8].

While it is straightforward to compute the scattering behavior of a given graph, it is con-

siderably more difficult to design a graph that implements some desired scattering behavior.

Our goal in this paper is to develop tools for constructing scattering gadgets. We hope that

these ideas will ultimately prove useful in the design of scattering algorithms.

We focus on a scattering gadget called a momentum switch. A momentum switch has three

terminals (i.e., has the form of Figure 1 with N = 3) and has special scattering properties for

(at least) two momenta k and p. A particle with momentum k transmits perfectly between

paths 1 and 2, whereas a particle with momentum p transmits perfectly between paths 1 and

3. Thus a momentum switch routes a particle in a direction that depends on its momentum,

as shown in Figure 2.

A switch between momenta −π
2 and −π

4 was used as a tool in the multi-particle quantum

walk universality construction [4]. In this paper, we construct switches between other pairs

of momenta by considering a closely related type of graph called a reflection/transmission

(R/T) gadget. An R/T gadget is a graph with two terminals (as in Figure 1 with N = 2)

such that some momenta transmit perfectly between the two paths, whereas other momenta

perfectly reflect. The momentum switches we construct in this paper are built by combining

R/T gadgets in a prescribed way.

We also show that some pairs of momenta do not admit a momentum switch. In particular,

we prove that there is no switch between momenta −π
4 and − 3π

4 . (These two particular

momenta are relevant not only because they provide a concrete limitation on the construction
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Fig. 2. A momentum switch. A particle moving toward vertex 1 with momentum k transmits
perfectly to the upper path (through vertex 2), while a particle with momentum p transmits to
the lower path (through vertex 3).

of momentum switches, but because they both support the universal gates constructed in [3],

so a momentum switch between them would simplify a multi-particle universality construction

along the lines of [4].) Nevertheless, we exhibit graphs that approximate a momentum switch

at these two momenta to arbitrarily high precision.

The remainder of this paper is organized as follows. In Section 2 we review scattering

theory on graphs. Then in Section 3 we define momentum switches and R/T gadgets. In

Section 4 we give some explicit constructions of R/T gadgets, and in Section 5 we describe

how to construct a momentum switch starting from a specific type of R/T gadget. Using

this construction, we obtain a large class of momentum switches. In Section 6 we prove that

there is no perfect momentum switch between −π
4 and − 3π

4 , and in Section 7 we describe

approximate momentum switches between these momenta. We conclude in Section 8 with a

discussion of the results and some directions for future work.

2 Continuous-time quantum walk and scattering theory

The continuous-time quantum walk on an unweighted graph G describes a particle moving (in

superposition) between adjacent vertices of G. Specifically, the walk lives in the Hilbert space

{|v〉 : v ∈ V (G)} and is generated by a time-independent Hamiltonian equal to the adjacency

matrix of G.

As a motivating example, first consider the case where G is an infinite path. Then the

Hamiltonian is

H =
∑

x∈Z

(

|x〉〈x+ 1|+ |x+ 1〉〈x|
)

.

As with a free particle in one dimension (in the continuum), this Hamiltonian does not have

any normalized eigenvectors. However, if we allow unnormalized states, then we can solve the

eigenvalue equation and obtain eigenvectors |k̃〉 for each k ∈ [−π, π), defined by 〈x|k̃〉 = e−ikx.

These states satisfy 〈x|H|k̃〉 = E(k)〈x|k̃〉, where

E(k) = 2 cos(k).

We call these momentum states; the number k ∈ [−π, π) is the corresponding momentum.

While a momentum state is spread over the entire path, we can create a localized state,

called a wave packet, by taking a superposition of states with similar momenta. A wave
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packet consisting of momenta near k moves with speed
∣

∣

dE
dk

∣

∣ = |2 sin(k)| (see [4] for a formal

discussion of how wave packets move).

Now consider the more general setup shown in Figure 1. An infinite graph G is obtained by

attaching semi-infinite paths toN terminals of a finite graph Ĝ. In this setting one can prepare

a wave packet with momentum near k on the semi-infinite path labeled j ∈ [N ] := {1, . . . , N};
if k ∈ (−π, 0), the particle moves toward Ĝ. After some time the particle will have scattered

off Ĝ and will be in a superposition of states that move away from Ĝ on the semi-infinite

paths. Scattering theory provides tools for understanding such a process.

In particular, the dynamics of scattering off Ĝ are closely related to certain eigenvectors

of G. For any k ∈ (−π, 0) and any semi-infinite path j ∈ [N ], G has an incoming scattering

state |scj(k)〉 satisfying H|scj(k)〉 = 2 cos(k)|scj(k)〉. Label vertices on the semi-infinite paths

by (x, j′), where j′ ∈ [N ] labels the path and x ∈ Z+ := {1, 2, . . .} labels the location on the

path. The incoming scattering states have the form

〈x, j′|scj(k)〉 = δj′,je
−ikx + Sj′,j(k)e

ikx (1)

on the semi-infinite paths, where S(k) is a unitary matrix called the S-matrix [8]. Although

the S-matrix is defined through the scattering eigenstates of the Hamiltonian, it is a nontrivial

fact that this matrix describes the dynamics of wave packet scattering (see, e.g., Theorem

1 of [4]). Specifically, the matrix element Sj′,j(k) can be interpreted as the amplitude for a

wave packet with momentum k to scatter from the jth semi-infinite path to the j′th.

For any fixed momentum k ∈ (−π, 0), the S-matrix can be computed by solving a system

of linear equations. Any state of the form (1) on the semi-infinite paths satisfies the eigenvalue

equation 〈v|H|scj(k)〉 = 2 cos(k)〈v|scj(k)〉 for all vertices v ∈ V (G) \ V (Ĝ), independent of

the form of S(k). Suppose Ĝ has m ≥ N vertices, including N terminals and m−N internal

vertices (vertices to which semi-infinite paths are not attached). Then the m conditions

〈v|H|scj(k)〉 = 2 cos(k)〈v|scj(k)〉 for vertices v ∈ V (Ĝ) constrain the N parameters Sj′,j(k)

for j′ ∈ [N ] as well as the m−N amplitudes 〈v|scj(k)〉 for internal vertices v.

There is a subtle technical point here that is reflected in the terminology used in the

remainder of the paper. Generically these m equations completely determine the m unknown

parameters and hence the state |scj(k)〉, but in special cases these equations have more than

one solution. This occurs only if there are one or more confined bound states, eigenstates

of H with no amplitude on the semi-infinite paths [8]. Given a confined bound state |ψc〉
with eigenvalue 2 cos(k), any state of the form |scj(k)〉 + α|ψc〉 also satisfies the eigenvalue

equation. Although |scj(k)〉 is specified uniquely by demanding orthogonality to the confined

bound states [8], all states of the form |scj(k)〉+α|ψc〉 have the same amplitudes on the semi-

infinite paths and hence the same S-matrix (since a confined bound state |ψc〉 has no amplitude

on the semi-infinite paths). In the remainder of the paper, we use the term scattering state

to describe any state of the form |scj(k)〉+ α|ψc〉.
Note that H may have eigenstates that are neither scattering states nor confined bound

states [8], but they are not relevant here since they cannot have the same eigenvalue as a

scattering state.

A compact formula for the S-matrix and the states |scj(k)〉 appears in reference [8]. Write
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the adjacency matrix of Ĝ in block form
(

A B†

B D

)

(2)

where the first block corresponds to the terminals and the second to the internal vertices.

Define the matrix

γ(z) =

(

zA− I zB†

zB zD − (1 + z2)I

)

.

Then one can show that [8, Eq. (3.1)]

(

S(k) 0
e−ikΨ(k) −e−2ikI

)

= −γ(eik)−1γ(e−ik)

where Ψ(k) is an (m−N)×N matrix with 〈v|Ψ(k)|j〉 = 〈v|scj(k)〉 for all internal vertices v

and all j ∈ [N ]. If for some k0 there is a confined bound state with eigenvalue 2 cos(k0), then

γ(eik0) is singular and one should take the limit as k → k0 in the above equation. Another

expression for the S-matrix is given by [8, Eq. (2.8)]

S(k) = −Q(eik)−1Q(e−ik) (3)

where

Q(z) = I− z
(

A+B†[(z + 1
z )I−D]−1B

)

.

For values of z on the unit circle, [Q(z), Q(z−1)] = 0 [8]. Using this fact and equation (3),

one can show that the S-matrix is unitary. Since Q(z) is a symmetric matrix, one can also

show that the S-matrix is symmetric.

3 Momentum switches and reflection/transmission gadgets

As discussed in Section 1, a momentum switch is a special type of gadget that can be used to

route a particle depending on its momentum. This property is naturally described in terms

of the S-matrix.

For example, Figure 3 shows the momentum switch used in reference [4]. The S-matrix of

this graph has a special form at momenta −π
4 and −π

2 :

Sswitch(−π
4 ) =





0 0 e−iπ/4

0 −1 0
e−iπ/4 0 0



 Sswitch(−π
2 ) =





0 −1 0
−1 0 0
0 0 1



 .

This equation says that a particle with momentum −π
4 traveling towards the graph along

path 1 transmits perfectly to path 3 (i.e., the amplitude for this process has unit magnitude),

whereas a particle with momentum −π
2 traveling along path 1 transmits perfectly to path 2.

In other words, this graph is a momentum switch between momenta −π
4 and −π

2 .

Generalizing this example, a finite graph Ĝ with three terminals (labeled 1, 2, 3) is a

momentum switch between two (disjoint) sets of momenta D,D′ ⊂ (−π, 0) if its S-matrix has

perfect transmission from terminal 1 to terminal 2 at each momentum k ∈ D and perfect

transmission from terminal 1 to terminal 3 at each momentum p ∈ D′ (i.e., |S1,2(k)| =

|S1,3(p)| = 1 for k ∈ D and p ∈ D′). See Figure 2 for an illustration.
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1

3 2

Fig. 3. The momentum switch from [4].

Momentum switches are closely related to another class of graphs that we call reflec-

tion/transmission (R/T) gadgets. An R/T gadget is a finite graph with two terminals. In

addition, there exist two sets of momenta R, T ⊂ (−π, 0) such that the gadget perfectly re-

flects (from both terminals) at all k ∈ R and perfectly transmits (between the two terminals)

at all p ∈ T (i.e., |S1,1(k)| = |S1,2(p)| = 1 for k ∈ R and p ∈ T ).

There is a simple connection between R/T gadgets and momentum switches. While a

momentum switch has three terminals and an R/T gadget only has two, we now show that

by downgrading a terminal of a momentum switch Ĝ to an internal vertex (i.e., by removing

the corresponding semi-infinite path from G), we can obtain an R/T gadget between the

momenta separated by the switch.

Let Ĝ be a momentum switch and fix k ∈ D and p ∈ D′. The S-matrix takes the form

Sswitch(k) =





0 T 0
T 0 0
0 0 R



 Sswitch(p) =





0 0 T ′

0 R′ 0
T ′ 0 0





where R, T,R′, T ′ have unit magnitude, i.e., the switch connects paths 1 and 2 at momentum

k and paths 1 and 3 at momentum p. Using equation (1), we see that the states |sc1(k)〉,
|sc2(k)〉, and |sc2(p)〉 have no amplitude on path 3.

Let G′ be the graph obtained from G by removing the semi-infinite path connected to

terminal 3, i.e., now we only attach semi-infinite paths to terminals 1 and 2. Since the

states |sc1(k)〉, |sc2(k)〉, and |sc2(p)〉 have no amplitude on the removed vertices, they remain

eigenstates of G′, and in particular they are still scattering states. Thus we can infer the

S-matrix of G′ from these states using (1), giving

SR/T(k) =

(

0 T
T 0

)

SR/T(p) =

(

R′′ T ′′

0 R′

)

,

where R′′ and T ′′ need to be determined. Unitarity implies T ′′ = 0 and thus

SR/T(p) =

(

R′′ 0
0 R′

)

.

Hence G′ is an R/T gadget with D ⊆ T and D′ ⊆ R. The same construction can be used

to obtain an R/T gadget with D′ ⊆ T and D ⊆ R (by downgrading terminal 2 instead of

terminal 3).
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(1, 1) (1, 2)a(1, 1) (1, 2)

pnp1

p2 pn−1

G0

Fig. 4. A type 1 R/T gadget. Vertices of G0 that are not part of the periphery P = {p1, . . . , pn}
are not shown. The induced subgraph on vertices V (G0) \ P is denoted g0.

4 Constructing R/T gadgets

In this Section we show how to design R/T gadgets between certain sets of momenta. We

consider scattering on graphs obtained by attaching a finite graph G0 to one vertex of an

infinite path. The corresponding gadget, called a type 1 R/T gadget, is shown in Figure 4. We

focus on such gadgets because their scattering properties are closely related to the eigenvectors

of the subgraph G0.

We refer to the graph shown in Figure 4 as Ĝ, and we write G for the full graph obtained

by attaching two semi-infinite paths to terminals (1, 1) and (1, 2). As shown in the Figure,

the graph Ĝ for a type 1 gadget is determined by a finite graph G0 and a subset P =

{p1, . . . , pn} ⊆ V (G0) of its vertices, called the periphery. Each vertex in the periphery is

connected to a vertex denoted a, and a is also connected to two terminals (1, 1) and (1, 2). A

type 1 R/T gadget with n = 1 has only one edge between G0 and a; in this special case we

also call it a type 2 R/T gadget (see Figure 5).

Looking at the eigenvalue equation for the scattering state |sc1(k)〉 at vertices (1, 1) and

(1, 2), we see that the amplitude at vertex a satisfies

〈a|sc1(k)〉 = 1 +R(k) = T (k).

Thus perfect reflection at momentum k occurs if and only if R(k) = −1 and 〈a|sc1(k)〉 = 0,

while perfect transmission occurs if and only if T (k) = 1 and 〈a|sc1(k)〉 = 1. Using this fact,

we now derive conditions on the graph G0 that determine when perfect transmission and

reflection occur.

For type 1 gadgets, we give a necessary and sufficient condition for perfect reflection: G0

should have an eigenvector for which the sum of amplitudes on the periphery is nonzero.

Lemma 1. Let Ĝ be a type 1 R/T gadget. A momentum k ∈ (−π, 0) is in the reflection set

R if and only if G0 has an eigenvector |χk〉 with eigenvalue 2 cos(k) satisfying

n
∑

i=1

〈pi|χk〉 6= 0. (4)
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Proof. First suppose that Ĝ has perfect reflection at momentum k, i.e., R(k) = −1 and

〈a|sc1(k)〉 = 0. Since 〈(1, 1)|sc1(k)〉 = e−ik − eik 6= 0 and 〈(1, 2)|sc1(k)〉 = 0, to satisfy the

eigenvalue equation at vertex a, we have

n
∑

j=1

〈pj |sc1(k)〉 = eik − e−ik 6= 0.

Further, since G0 only connects to vertex a and the amplitude at this vertex is zero, the

restriction of |sc1(k)〉 to G0 must be an eigenvector of G0 with eigenvalue 2 cos(k). Hence the

condition is necessary for perfect reflection.

Next suppose that G0 has an eigenvector |χk〉 with eigenvalue 2 cos(k) satisfying (4), with

the sum equal to some nonzero constant c. Define a scattering state |ψk〉 on the Hilbert space

of the full graph G with amplitudes

〈v|ψk〉 =
eik − e−ik

c
〈v|χk〉

for all v ∈ V (G0), 〈a|ψk〉 = 0, and

〈(x, j)|ψk〉 =
{

e−ikx − eikx j = 1

0 j = 2

for all x ∈ Z+.

We claim that |ψk〉 is an eigenvector of G with eigenvalue 2 cos(k). The state clearly

satisfies the eigenvalue equation on the semi-infinite paths since it is a linear combination

of states with momentum ±k. At vertices of G0, the state is proportional to an eigenvector

of G0, and since the state as no amplitude at a, the eigenvalue equation is also satisfied at

these vertices. It remains to see that the eigenvalue equation is satisfied at a, but this follows

immediately by a simple calculation.

Since |ψk〉 has the form of a scattering state with perfect reflection, we see that R(k) = −1

and T (k) = 0 as claimed. �

The following Lemma gives a sufficient condition for perfect transmission (which is also

necessary for type 2 gadgets). Let g0 denote the induced subgraph on V (G0) \ P where

P = {pi : i ∈ [n]} is the periphery.

Lemma 2. Let Ĝ be a type 1 R/T gadget and let k ∈ (−π, 0). Suppose |ξk〉 is an eigenvector

of g0 with eigenvalue 2 cos k and with the additional property that, for all i ∈ [n],
∑

v∈V (g0):
(v,pi)∈E(G0)

〈v|ξk〉 = c 6= 0 (5)

for some constant c that does not depend on i. Then k is in the transmission set T . If Ĝ is

a type 2 R/T gadget, then this condition is also necessary.

Proof. If g0 has a suitable eigenvector |ξk〉 satisfying (5), define a scattering state |ψk〉 on

the full graph G, with amplitudes 〈a|ψk〉 = 1,

〈v|ψk〉 =
{

− 1
c 〈v|ξk〉 v ∈ V (g0)

0 v ∈ P
(6)
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in the graph G0, and

〈(x, j)|ψk〉 =
{

e−ikx j = 1

eikx j = 2

for x ∈ Z+. As in the proof of Lemma 1, the state |ψk〉 is clearly satisfies the eigenvalue

equation (with eigenvalue 2 cos(k)) at vertices on the semi-infinite paths and vertices of g0.

The factor of − 1
c in (6) is chosen so that the eigenvalue condition is satisfied at vertices in P .

It is easy to see that the eigenvalue condition is also satisfied at a.

Since |ψk〉 is a scattering eigenvector ofG with eigenvalue 2 cos(k) and perfect transmission,

we have T (k) = 1.

Now suppose Ĝ is a type 2 R/T gadget (as shown in Figure 5), with P = {p}. Perfect

transmission along with the eigenvalue equation at vertex a implies

〈p|sc1(k)〉 = 0,

so the restriction of |sc1(k)〉 to g0 must be an eigenvector (since p is the only vertex connected

to g0). The eigenvalue equation at p gives

〈a|sc1(k)〉+
∑

w : (w,p)∈E(G0)

〈w|sc1(k)〉 = 0 =⇒
∑

w : (w,p)∈E(G0)

〈w|sc1(k)〉 = −1.

Hence the restriction of |sc1(k)〉 to V (g0) is an eigenvector of the induced subgraph, with the

additional property that the sum of the amplitudes at vertices connected to p is nonzero. �

4.1 Reflection/transmission set reversal

We now show how to switch the reflection and transmission sets for a type 2 gadget. In

particular, for any such gadget with transmission set T and reflection set R, we construct

another (type 1) gadget with transmission set T ′ and reflection set R′ such that R ⊆ T ′ and

T ⊆ R′.

The new R/T gadget Ĝ↔ is depicted in Figure 6. It is obtained by taking two copies of

the subgraph g0 from Figure 5, connecting both to a new vertex u, and connecting one copy of

g0 to the infinite path. More concretely, let w1, . . . , wr be the vertices of G0 adjacent to p, as

shown in Figure 5. For each vertex v ∈ V (g0) there are two corresponding vertices v(1), v(2) ∈
V (Ĝ↔); in particular, for each vertex wj there are two vertices w

(1)
j , w

(2)
j in Figure 5, as

shown in Figure 6. The vertex u ∈ V (Ĝ↔) is connected to the vertices w
(1)
1 , . . . , w

(1)
n and

w
(2)
1 , . . . , w

(2)
n . Vertices w

(1)
1 , . . . , w

(1)
n are also connected to a vertex a ∈ V (Ĝ↔), and a is also

connected to the two terminals (1, 1), (1, 2) ∈ V (Ĝ↔).

Lemma 3. Let Ĝ be a type 2 R/T gadget with transmission set T and reflection set R. The

type 1 R/T gadget Ĝ↔ defined above has transmission set T ′ ⊇ R and reflection set R′ ⊇ T .

Proof. First consider a momentum k ∈ T . Using the condition derived in Lemma 2, we see

that g0 has an eigenvector |ξk〉 with eigenvalue 2 cos(k) where the sum of the amplitudes on

vertices w1, . . . , wr is nonzero. Now consider the induced subgraphG↔
0 of Figure 6 obtained by

removing vertices (1, 1), (1, 2), and a. This subgraph has an eigenvector |χ↔
k 〉 with eigenvalue

2 cos(k) given by

〈v(i)|χ↔
k 〉 = (−1)i〈v|ξk〉 and 〈u|χ↔

k 〉 = 0
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(1, 1) (1, 2)a(1, 1) (1, 2)

p

wrw1

w2 wr−1

g0

Fig. 5. A type 2 R/T gadget, i.e., a type 1 gadget with |P | = 1.

(1, 1) (1, 2)a(1, 1) (1, 2)

u

w
(1)

r
w

(1)

1

w
(1)

2
w

(1)

r−1

g
(1)

0

w
(2)

r
w

(2)

1

w
(2)

2
w

(2)

r−1

g
(2)

0

Fig. 6. The R/T gadget Ĝ↔ reversing the reflection and transmission sets of Figure 5.
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(1, 1) (1, 2)a

1

2

l1 − 1

l1

l1 + 1

l1 + l2 − 2

l1 + l2 − 1

Fig. 7. An R/T gadget built from a path of length l1 + l2 − 2.

for all vertices v ∈ V (g0) and for i ∈ {1, 2}. The fact that |χ↔
k 〉 is an eigenvector follows

because |ξk〉 is an eigenvector of g0. Also, since
∑r

j=1〈wj |ξk〉 6= 0, we have
∑r

j=1〈w
(1)
j |χ↔

k 〉 6=
0. Using Lemma 1 we see that perfect reflection occurs at momentum k, so T ⊆ R′.

Next suppose k ∈ R. Lemma 1 states that G0 has an eigenvector |χk〉 with eigenvalue

2 cos(k) such that 〈p|χk〉 6= 0. Now consider the induced subgraph g↔0 of Figure 6 obtained

by removing vertices (1, 1), (1, 2), a, and w
(1)
1 , . . . , w

(1)
r . This graph has an eigenvector |ξ↔k 〉

with eigenvalue 2 cos(k) defined by

〈v|ξ↔k 〉 =











〈v|χk〉 for v ∈ V (g
(2)
0 )

〈p|χk〉 v = u

0 otherwise.

To see that this is an eigenvector, observe that g↔0 is a disconnected graph and |χk〉 is an

eigenvector of one of its components. Using this and Lemma 2 (since u is the only vertex

adjacent to the periphery of Ĝ↔ with non-zero amplitude), we see that k ∈ T ′, so R ⊆ T ′. �

4.2 Examples

We now present some examples of simple type 2 R/T gadgets.

4.2.1 Paths

As a first example, suppose G0 is a finite path of length l1 + l2 − 2 connected to a at the l1th

vertex, as shown in Figure 7. We determine the reflection and transmission sets as a function

of l1 and l2.

Using Lemma 1, we see that perfect reflection occurs at momentum k ∈ (−π, 0) if and

only if the path has an eigenvector with eigenvalue 2 cos(k) with non-zero amplitude on vertex

l1. Recall that the path of length L (where the length of a path is its number of edges) has
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(1, 1) (1, 2)a

1

2 r − 2

r − 1

r

Fig. 8. An R/T gadget built from an r-cycle.

eigenvectors |ψj〉 for j ∈ [L+ 1] given by

〈x|ψj〉 = sin

(

πjx

L+ 2

)

(7)

with eigenvalues λj = 2 cos(πj/(L+ 2)). Hence

Rpath =

{

− πj

l1 + l2
: j ∈ [l1 + l2 − 1] and

jl1
l1 + l2

6∈ Z

}

.

To characterize the momenta at which perfect transmission occurs, consider the induced

subgraph obtained by removing the l1th vertex from the path of length l1 + l2 − 2 (a path of

length l1 − 2 and a path of length l2 − 2). We can choose bases for the eigenspaces of this

induced subgraph so that each eigenvector has all of its support on one of the two paths, and

has nonzero amplitude on one of the vertices l1 − 1 or l1 + 1. Thus Lemma 2 implies that Ĝ

perfectly transmits for all momenta in the set

Tpath =

{

−πj
l1

: j ∈ [l1 − 1]

}

∪
{

−πj
l2

: j ∈ [l2 − 1]

}

.

For example, setting l1 = l2 = 2, we get Tpath = {−π
2 } and Rpath = {−π

4 ,− 3π
4 }.

4.2.2 Cycles

Suppose G0 is a cycle of length r. Labeling the vertices by x ∈ [r], where x = r is the vertex

attached to the path (as shown in Figure 8), the eigenvectors of the r-cycle are

〈x|φm〉 = e2πixm/r

with eigenvalue 2 cos(2πm/r), where m ∈ [r]. For each momentum k = −2πm/r ∈ (−π, 0),
there is an eigenvector with nonzero amplitude on the vertex r (i.e., 〈r|φm〉 6= 0), so Lemma 1

implies that perfect reflection occurs at each momentum in the set

Rcycle =

{

−πj
r

: j is even and j ∈ [r − 1]

}

.

To see which momenta perfectly transmit, we use Lemma 2. Consider the induced sub-

graph obtained by removing vertex r. This subgraph is a path of length r − 2 and has
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eigenvalues 2 cos(πm/r) for m ∈ [r−1] as discussed in the previous section. Using the expres-

sion (7) for the eigenvectors, we see that the sum of the amplitudes on the two ends is nonzero

for odd values of m. Perfect transmission occurs for each of the corresponding momenta:

Tcycle =
{

−πj
r

: j is odd and j ∈ [r − 1]

}

.

For example, the 4-cycle (i.e., square) has Tcycle = {−π
4 ,− 3π

4 } and Rcycle = {−π
2 }.

5 Constructing momentum switches

We now construct a momentum switch between the reflection and transmission sets R and

T of a type 2 R/T gadget. We attach the gadget and its reversal (defined in Section 4.1) to

the leaves of a claw, as shown in Figure 9. Specifically, given a type 2 R/T gadget Ĝ, the

corresponding momentum switch Ĝ≺ consists of a copy of G0, a copy of G↔
0 , and a claw. The

three leaves of the claw are the terminals. Vertex p of G0 is connected to leaf 2 of the claw,

and vertices w
(1)
1 , . . . , w

(1)
r of G↔

0 are each connected to leaf 3 of the claw.

The high-level idea of the switch construction is as follows. For momenta in the trans-

mission set, the gadget perfectly transmits while its reversal perfectly reflects, so the claw is

effectively a path connecting terminals 1 and 2. For momenta in the reflection set, the roles of

transmission and reflection are reversed, so the claw is effectively a path connecting terminals

1 and 3.

Lemma 4. Let Ĝ be a type 2 R/T gadget with reflection set R and transmission set T . The

gadget Ĝ≺ described above is a momentum switch between R and T .

Proof. We construct a scattering eigenstate for each momentum k ∈ T with perfect transmis-

sion from path 1 to path 2, and similarly construct a scattering eigenstate for each momentum

k′ ∈ R with perfect transmission from 1 to 3. These eigenstates show that S2,1(k) = 1 and

S3,1(k
′) = 1. Since the S-matrix is symmetric and unitary, this gives the complete form of

the S-matrix for all momenta in R ∪ T . In particular, this shows that Ĝ≺ is a momentum

switch between R and T .

We first construct the scattering states for momenta k ∈ T . Lemma 2 shows that the

graph g0 has a 2 cos(k)-eigenvector |ξk〉 satisfying equation (5) with some nonzero constant

c. We define a state |µk〉 on G≺ and we show that it is a scattering eigenstate with perfect

transmission between paths 1 and 2. The amplitudes of |µk〉 on the semi-infinite paths and

the claw are

〈(x, 1)|µk〉 = e−ikx 〈0|µk〉 = 1 〈(x, 2)|µk〉 = eikx 〈(x, 3)|µk〉 = 0.

The rest of the graph consists of the three copies of the subgraph g0 and the vertices p and

u↔. The corresponding amplitudes are

〈v|µk〉 =



















− 1
c 〈v|ξk〉 v ∈ V (g

(1)
0 )

1
c 〈v|ξk〉 v ∈ V (g

(2)
0 )

− eik

c 〈v|ξk〉 v ∈ V (g
(3)
0 )

0 v = p or v = u↔.
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u
↔

g
(1)

0

g
(2)

0

p

g
(3)

0

01

2

3

Fig. 9. A momentum switch Ĝ≺ built from a type 2 R/T gadget and its reversal.

01

2

3

Fig. 10. A momentum switch between −π

3
and − 2π

3
.
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We claim that |µk〉 is an eigenstate of the Hamiltonian with eigenvalue 2 cos(k). As in

previous proofs, the state clearly satisfies the eigenvalue condition on the semi-infinite paths

and at the vertices of G0 and G↔
0 , and the factors of 1

c in the above equation are chosen so

that it also satisfies the eigenvalue condition at vertices p and u↔. Since |µk〉 is a scattering

state with perfect transmission from path 1 to path 2, we see that S2,1(k) = 1.

Finally, we construct an eigenstate |νk′〉 with perfect transmission from path 1 to path 3

for each momentum k′ ∈ R. This state has the form

〈(x, 1)|νk′〉 = e−ik′x 〈0|νk′〉 = 1 〈(x, 2)|νk′〉 = 0 〈(x, 3)|νk′〉 = eik
′x

on the semi-infinite paths and the claw. Lemma 1 shows that G0 has a 2 cos(k′)-eigenstate

|χk′〉 with 〈p|χk′〉 6= 0, which determines the form of |νk′〉 on the remaining vertices:

〈v|νk′〉 =























− 1
〈p|χ

k′ 〉
〈v|χk′〉 v ∈ V (G0)

− eik
′

〈p|χ
k′ 〉

〈v|χk′〉 v ∈ V (g
(2)
0 )

−eik′
v = u↔

0 otherwise.

As before, it is easy to check that this a momentum-k′ scattering state with perfect transmis-

sion from path 1 to path 3, so S3,1(k
′) = 1.

Thus the gadget from Figure 9 is a momentum switch between R and T . �

Using this construction, we can obtain a momentum switch from any of the examples

discussed in Section 4.2. For example, using the R/T gadget built from the 3-cycle, we get

a momentum switch between −π
3 and − 2π

3 , as shown in Figure 10. More generally, using an

r-cycle, we obtain a switch between momenta of the form −πj
r with odd or even values of

j. As another example, using a path of length 4 connected at the center vertex, we obtain a

switch between −π
4 and −π

2 that differs from the one shown in Figure 3.

6 Impossibility of a momentum switch between −π
4 and − 3π

4

In this Section we prove that there does not exist a momentum switch between momenta −π
4

and − 3π
4 . We begin by proving that there is a basis for the space of scattering states with

momentum k = −π
4 or k = − 3π

4 where each basis vector has entries in Q(
√
2). We then use

this to prove that there is no R/T gadget between these two momenta. Since any momentum

switch can be converted into an R/T gadget between the momenta it separated (as shown in

Section 3), this implies that no momentum switch exists between −π
4 and − 3π

4 .

6.1 Basis vectors with entries in Q(
√
2)

Recall the general setup shown in Figure 1: N semi-infinite paths are attached to a finite

graph Ĝ. Consider an eigenvector |τk〉 of the adjacency matrix of G with eigenvalue 2 cos(k)

for k ∈ (−π, 0). In general this eigenspace is spanned by incoming scattering states with

momentum k and confined bound states [8] (which have zero amplitude on the semi-infinite

paths). We can thus write the amplitudes of |τk〉 on the semi-infinite paths as

〈(x, j)|τk〉 = κj cos(k(x− 1)) + σj sin(k(x− 1))
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for x ∈ Z+, j ∈ [N ], and κj , σj ∈ C, and the amplitudes on the internal vertices as

〈w|τk〉 = ιw

for ιw ∈ C, where w indexes the internal vertices. We write the adjacency matrix of Ĝ as a

block matrix as in (2). Since the state |τk〉 satisfies the eigenvalue equation on the semi-infinite

paths, it remains to satisfy the conditions specified by the block matrix equation
(

A B†

B D

)(

κ
ι

)

+ cos(k)

(

κ
0

)

+ sin(k)

(

σ
0

)

= 2 cos(k)

(

κ
ι

)

.

Hence, the nullspace of the matrix

M =





A− cos(k)I sin(k)I B†

0 0 0
B 0 D − 2 cos(k)I





is in one-to-one correspondence with the 2 cos(k)-eigenspace of the infinite matrix (here the

first block corresponds to κ, the second to σ, and the third to ι). Further, M only has entries

in Q(cos(k), sin(k)), so its nullspace has a basis with amplitudes in Q(cos(k), sin(k)), as can

be seen using Gaussian elimination.

We are interested in the specific cases 2 cos(k) = ±
√
2 corresponding to k = −π

4 or

k = − 3π
4 . In these cases Q(cos(k), sin(k)) = Q(

√
2), and we may choose a basis for the

nullspace of M with amplitudes from Q(
√
2). Furthermore, cos(kx), sin(kx) ∈ Q(

√
2) for all

x ∈ Z+, so with such a choice of basis, each amplitude of |τk〉 is also an element of Q(
√
2).

As noted above, the spectrum of G may include confined bound states [8] with eigenvalue

±
√
2. However, any such states are eigenstates of the adjacency matrix of Ĝ subject to the

additional (rational) constraints that the amplitudes on the terminals are zero. As such, the

confined bound states have a basis over Q(
√
2). We can use this basis to restrict attention to

those states orthogonal to confined bound states using only constraints over Q(
√
2), so there

exists a basis over Q(
√
2) for the N -dimensional subspace of scattering states with energy

±
√
2 that are orthogonal to the confined bound states. Finally, since Q(

√
2) can be seen as a

two-dimensional vector space over Q, note that for any member of this basis |τk〉 there exist

rational vectors |uk〉, |wk〉 such that |τk〉 = |uk〉 +
√
2|wk〉. Since H2|τk〉 = 2|τk〉, we have

H|uk〉 = ±2|wk〉 and H|wk〉 = ±|uk〉, so

|τk〉 = (H ±
√
2I)|wk〉. (8)

6.2 No R/T gadget and hence no momentum switch

Recall from Section 3 that a momentum switch between two momenta k and p can always

be converted into an R/T gadget between k and p. Here we show that if an R/T gadget

perfectly reflects at momentum −π
4 , then it must also perfectly reflect at momentum − 3π

4 .

This implies that no R/T gadget exists between these two momenta, and thus no momentum

switch exists.

We use the following basic fact about two-terminal gadgets several times:

Fact 1. If a two-terminal gadget has a momentum-k scattering state |φ〉 with zero amplitude

along path 2, then the gadget perfectly reflects at momentum k.
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Proof. Without loss of generality, we may assume that |φ〉 is orthogonal to all confined bound

states. If |φ〉 has zero amplitude along path 2, then there exist some µ, ν ∈ C such that

〈(x, 2)|φ〉 = µ〈(x, 2)|sc2(k)〉+ ν〈(x, 2)|sc1(k)〉 = µe−ikx + µReikx + νTeikx = 0

for all x ∈ Z+. Since this holds for all x, we have µ = µR + νT = 0. Since µ and ν cannot

both be zero, we have T = 0. �

For an R/T gadget, the scattering states (at some fixed momentum) that are orthogonal

to the confined bound states span a two-dimensional space. As shown in Section 6.1, we can

expand each scattering eigenstate at momentum k = −π
4 in a basis with entries in Q(

√
2),

where each basis vector takes the form (8). This gives

|sc1(−π
4 )〉 = (H +

√
2I)(α|a〉+ β|b〉)

where α, β ∈ C, α 6= 0, and |a〉 and |b〉 are rational 2-eigenvectors of H2.

If T (−π
4 ) = 0, then for all x ≥ 0,

〈x, 2|sc1(−π
4 )〉 = 0 = 〈x, 2|(H +

√
2I)(α|a〉+ β|b〉).

Dividing through by α and rearranging, we get that for all x ≥ 0,

β

α
(〈x, 2|H|b〉+

√
2〈x, 2|b〉) = −〈x, 2|H|a〉 −

√
2〈x, 2|a〉.

If the left-hand side is not zero, then β/α ∈ Q(
√
2) since H, |a〉, and |b〉 are rational. If the

left-hand side is zero, then (H+
√
2I)|a〉 is an eigenstate at energy 2 cos(k) with no amplitude

along path 2, so β = 0 (using Fact 1), and again β/α ∈ Q(
√
2).

Now write β/α = r + s
√
2 with r, s ∈ Q, and consider the rational 2-eigenvector of H2

|c〉 := |a〉+ (r + sH)|b〉.

Note that

α(H +
√
2I)|c〉 = α(H +

√
2I)|a〉+ α(rH + r

√
2 + sH2 + sH

√
2)|b〉.

Since |b〉 is a 2-eigenvector of H2 and β/α = r + s
√
2, this simplifies to

α(H +
√
2I)|c〉 = α(H +

√
2I)|a〉+ β(H +

√
2I)|b〉 = |sc1(−π

4 )〉,

so |sc1(−π
4 )〉 can be written as α(H +

√
2I) times a rational 2-eigenvector of H2.

Since 〈x, 2|sc1(−π
4 )〉 = 0 for all x ≥ 1 (and α 6= 0), we have

〈x, 2|(H +
√
2I)|c〉 = 〈x, 2|H|c〉+

√
2〈x, 2|c〉 = 0.

As H is a rational matrix and |c〉 is a rational vector, the rational and irrational components

must both be zero, implying 〈x, 2|c〉 = 〈x, 2|H|c〉 = 0 for all x ≥ 1. Furthermore, since

|sc1(−π
4 )〉 is a scattering state with zero amplitude on path 2, it must have some nonzero

amplitude on path 1 and thus there is some x0 ∈ Z+ for which 〈x0, 1|c〉 6= 0 or 〈x0, 1|H|c〉 6= 0.
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(1, 1)

(1, 2)

(1, 3)

(1, 4)

Fig. 11. A graph Gbc that implements a basis-changing gate at −π

4
and − 3π

4
.

Now consider the state obtained by replacing
√
2 with −

√
2:

|sc1(−π
4 )〉 := α(H −

√
2I)|c〉.

This is a −
√
2-eigenvector of H, which can be confirmed using the fact that |c〉 is a 2-

eigenvector of H2. As 〈x, 2|H|c〉 = 〈x, 2|c〉 = 0 for all x ≥ 1, 〈x, 2|sc1(−π
4 )〉 = 0 for all x ≥ 1.

Furthermore the amplitude at vertex (x0, 1) is nonzero, i.e., 〈x0, 1|sc1(−π
4 )〉 6= 0, and hence

|sc1(−π
4 )〉 has a component orthogonal to the space of confined bound states (which have zero

amplitude on both semi-infinite paths). Hence, there exists a scattering state with eigenvalue

−
√
2 with no amplitude on path 2. By Fact 1, the gadget perfectly reflects at momentum

− 3π
4 . It follows that no perfect R/T gadget (and hence no perfect momentum switch) exists

between these momenta.

This proof technique can also establish non-existence of momentum switches between other

pairs of momenta k and p. For example, a slight modification of the above proof shows that

no momentum switch exists between k = −π
6 and p = − 5π

6 .

7 An approximate switch between −π
4 and − 3π

4

Although no perfect switch exists between momenta −π
4 and − 3π

4 , in this Section we construct

a sequence of graphs that approximates such a switch arbitrarily well. At a high level, the

switch works by splitting an incoming wave packet into two pieces, applying a momentum-

dependent relative phase, and recombining the pieces.

The first ingredient in our construction is the graph Gbc shown in Figure 11, which was

used in the single- and multi-particle universality constructions to implement a basis-changing

gate [3, 4]. At momenta k = −π
4 and − 3π

4 , the S-matrix of this graph has the form

S(−π
4 ) =

(

0 Ubc

Ubc 0

)

S(− 3π
4 ) =

(

0 −U∗
bc

−U∗
bc 0

)

,

where each block has size 2× 2 and

Ubc = − 1√
2

(

i 1
1 i

)

.

The second ingredient, which we use to apply a momentum-dependent phase, is the graph

Gph shown in Figure 12. This graph has perfect transmission at both momenta of interest,

with transmission coefficients T (−π
4 ) = −eiφ and T (− 3π

4 ) = eiφ, where

eiφ =
2
√
2

3
+
i

3
= e

i arctan 1

2
√

2 . (9)
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(1, 1) (1, 2)

Fig. 12. A graph Gph with perfect transmission and irrational argument at −π

4
and − 3π

4
.

Gph Gph Gph

m copies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

a c

b d

Fig. 13. An approximate momentum switch between −π

4
and − 3π

4
(for suitable values of m).

We construct an approximate momentum switch from Gph and Gbc as shown in Figure 13.

Here we use m copies of Gph for some odd m that depends on the precision required in the

approximation. To understand the scattering matrix of this graph, we use the following

fact. Suppose graphs G1 and G2 each have one input terminal and one output terminal, and

both have perfect transmission at some fixed momentum k, i.e., |T1(k)| = |T2(k)| = 1. Now

consider the gadget obtained by merging G1 with G2 by identifying the output vertex of G1

with the input vertex of G2 (now the input terminal is that of G1 and the output terminal is

that of G2). Then the resulting graph has perfect transmission with transmission coefficient

e2ikT1(k)T2(k).

Using this fact and equation (9) we see that the graph obtained by merging m copies of

Gph in this way (with m odd) has transmission coefficients T (− 3π
4 ) = −T (−π

4 ) = i(m−1)eimφ.

Now look at the induced subgraph of Figure 13 on vertices contained within the dotted box,

and consider attaching semi-infinite paths to vertices labeled a, b, c, d. Using the fact that the

path with two edges has perfect transmission with coefficient 1 (at any momentum), we see

that the S-matrix of this gadget is

(

0 Um(k)
Um(k) 0

)

where

Um(−π
4 ) =

(

−i(m−1)eimφ 0
0 1

)

Um(− 3π
4 ) =

(

i(m−1)eimφ 0
0 1

)

.

The full graph shown in Figure 13 is obtained from this subgraph by merging it with

two copies of Gbc in a similar way to the merging procedure described above. Since each of
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the subgraphs being merged has perfect transmission from input terminals (on the left) to

output terminals (on the right), their S-matrices compose in a simple way. At both momenta

k ∈ {−π
4 ,− 3π

4 }, the overall S-matrix has perfect transmission from the input paths on the

left-hand side to the output paths on the right-hand side, and takes the form

(

0 V (k)
V (k) 0

)

where

V (−π
4 ) = −UbcUm(−π

4 )Ubc = −1

2

(

−im+1eimφ + 1 −imeimφ + i
−imeimφ + i −im−1eimφ − 1

)

V (− 3π
4 ) = −U∗

bcUm(− 3π
4 )U∗

bc = −1

2

(

im+1eimφ + 1 −imeimφ − i
−imeimφ − i im−1eimφ − 1

)

assumingm is odd. Since im+1 = −im−1 = ±1, we can see from these expressions that if either

eimφ ≈ 1 or eimφ ≈ −1, then the graph is close to a momentum switch at these momenta.

(More precisely, since a momentum switch is a three-terminal gadget and this graph has four

terminals, we obtain an approximate momentum switch from this graph by downgrading the

terminal vertex (1, 2) to an internal vertex). Since arctan(2−3/2) is an irrational multiple of

π, the set {e2ijφ : j ∈ Z+} is dense on the unit circle, so for any ǫ > 0 and choice of sign ±,

there exists some j ∈ Z+ such that |ei(2j+1)φ ± 1| = |e2ijφ ± e−iφ| < ǫ. Taking m = 2j + 1

copies of Gph, this lets us approximate a momentum switch between −π
4 and − 3π

4 to any

desired precision. In particular, m = 37 gives an approximation with

∥

∥

∥

∥

V (−π
4 )−

(

−1 0
0 1

)∥

∥

∥

∥

≈ 0.0076 ≈
∥

∥

∥

∥

V (− 3π
4 )−

(

0 i
i 0

)∥

∥

∥

∥

.

The next value of m yielding a better approximation is m = 379, with an error of approxi-

mately 0.0071.

8 Discussion

In this work we have constructed momentum switches that route a quantum walker along a

path that depends on its momentum. Our results could be used to design variants of the

multi-particle quantum walk universality construction that use qubits encoded as particles

with different momenta (the original construction [4] used momenta −π
4 and −π

2 ). More

broadly, we hope that tools for designing scattering gadgets will be useful for developing new

quantum algorithms based on continuous-time quantum walk.

We also gave an example showing that (perfect) momentum switches cannot always be

constructed. Exact implementation of an S-matrix by scattering on an unweighted graph is

analogous to exact synthesis of unitary operations using a finite set of gates [9, 10]. It might

be interesting to further explore the set of S-matrices that can be realized by scattering on

graphs, and perhaps to characterize the set of momentum switches that can be implemented.

Other avenues for research also remain open. Many of our results only apply to graphs

in a restricted family. In particular, our understanding of R/T gadgets is mostly limited

to those of type 1 (although our result concerning non-existence of an R/T gadget between
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momenta −π
4 and − 3π

4 is more general). It would be more satisfying to determine necessary

and sufficient conditions for a graph to be an R/T gadget (or a momentum switch) without

restricting its form.

More generally, one might consider the problem of designing scattering gadgets with other

restrictions on the allowed Hamiltonian. Here we have assumed that the Hamiltonian is the

adjacency matrix of a simple graph. One might also consider, say, Laplacians of graphs.

Another natural model would allow matrices whose entries are unrestricted, but that can

have at most some number of nonzero entries in each row (i.e., whose underlying graphs have

bounded degree).
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