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Perturbative gadgets are used to construct a quantum Hamiltonian whose low-energy subspace approx-
imates a given quantum k-local Hamiltonian up to an absolute error ε. Typically, gadget constructions
involve terms with large interaction strengths of order poly(ε−1). Here we present a 2-body gadget
construction and prove that it approximates a Hamiltonian of interaction strength γ = O(1) up to
absolute error ε � γ using interactions of strength O(ε) instead of the usual inverse polynomial in
ε. A key component in our proof is a new condition for the convergence of the perturbation series,
allowing our gadget construction to be applied in parallel on multiple many-body terms.

We also discuss how to apply this gadget construction for approximating 3- and k-local Hamilto-
nians. The price we pay for using much weaker interactions is a large overhead in the number of an-
cillary qubits, and the number of interaction terms per particle, both of which scale as O(poly(ε−1)).
Our strong-from-weak gadgets have their primary application in complexity theory (QMA hardness of
restricted Hamiltonians, a generalized area law counterexample, gap amplification), but could also mo-
tivate practical implementations with several weak interactions simulating a much stronger quantum
many-body interaction.
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1 Introduction

The physical properties of (quantum mechanical) spin systems can often be understood in terms of
effective interactions arising from the complex interplay of microscopic interactions. Powerful meth-
ods for analyzing effective interactions have been developed, for example the renormalization group
approach distills effective interactions at different length scales. Another common approach is per-
turbation theory – treating some interaction terms in the Hamiltonian as a perturbation to a simple
original system, giving us a sense of how the fully interacting system behaves. Here, instead of trying
to understand an unknown system, we ask an engineering question: how can we build a particular
(many-body) effective interaction from local terms of restricted form?

The idea of perturbative gadgets provides a powerful answer. Initially introduced by Kempe,
Kitaev and Regev [1] for showing the QMA-hardness of 2-Local Hamiltonian problem and subse-
quently used and developed further in numerous works [2, 3, 4, 5, 6, 7, 8], the perturbative gadgets
are convenient tools by which arbitrary many-body effective interactions (which we call the target
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Hamiltonian) can be obtained using a gadget Hamiltonian consisting of only two-body interactions.
In a broader context, these gadgets have also been used to understand the computational complexity
of physical systems (e.g. how hard it is to determine the ground state energy) with restricted geometry
of interactions [2], locality [1, 2, 6], or interaction types [4]. Here, we choose to focus on the issue of
restricted coupling strengths.

In a nutshell, perturbative gadgets allow us to map between different forms of microscopic Hamil-
tonians. This is an analogue of how gadgets are used in classical complexity theory, for example in
reductions among NP-complete constraint satisfaction problems (e.g. 3-SAT and graph 3-coloring).
In the context of combinatorial reductions in classical computation complexity theory, a gadget is a
finite structure which maps a set of constraints from one optimization problem into a constraint of
another problem. Using such gadgets, an instance of 3-SAT (an NP-complete problem) can be effi-
ciently mapped to an instance of graph 3-coloring (also NP-complete [9]). On the other hand, more
complex constructions allow us to create more frustrated instances of such problems without signif-
icant overhead, resulting in inapproximability as well as the existence of probabilistically checkable
proofs [10].

For classical CSP instances, gadgets can be used to reduce the arity of clauses, to reduce the size of
the alphabet, or to reduce the degree of each variable on the constraint graph. Analogously, quantum
gadgets [1, 2, 5, 11] have been devised for reducing the locality of interactions (analogous to arity
reduction in classical CSPs), the dimension of particles (alphabet reduction) and the degree of inter-
action. These reductions for quantum Hamiltonians give us tools that could help us explore the way to
the quantum PCP conjecture [12]. More modestly, gadget translations between types of local Hamil-
tonians would have implications for the area law [13, 14, 15] and other global properties. However,
generating approximate quantum interactions from a restricted set of terms is not straightforward.

For classical spin systems, creating effective interactions with arbitrary strength by coupling a
system to several ancilla degrees of freedom is a relatively simple task. For example, we can create
an effective (and twice stronger) ferromagnetic interaction between target spins a, b using two ancilla
spins x, y and connecting them to a, b as illustrated in Figure 1. The lowest energy states of this new
system correspond to the lowest energy states of a system with a ferromagnetic interaction between a
and b, with doubled strength.

Fig. 1. A ferromagnetic interactionE(a, b) = −2Jab of two classical spins a, b ∈ {−1, 1} can be “built” from
half-strength interactions involving two extra ancillas. The ground states of the system on the right have a = b,
while the lowest excited states have a 6= b and energy 4J above the ground state energy. Each edge between
two classical spins u and v in this illustration represents a term uv in the expression for energy. The # nodes
symbolize target spins and 2 nodes are ancillas.

For general quantum interactions where the target Hamiltonian consists of many-body Pauli op-
erators, the common perturbative gadget introduces a strongly bound ancillary system and couples
the target spins to it via weaker interactions, treating the latter as a perturbation. The target many-
body Hamiltonian is then generated in some low order of perturbation theory of the combined system
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of ancillary and target spins. Such gadgets first appeared in the proof of QMA-completeness of the
2-local Hamiltonian problem via a reduction from 3-local Hamiltonian [1]. There they helped build
effective 3-local interactions from 2-body interactions. Perturbative gadgets can also be used for re-
ducing a target Hamiltonian with general geometry of interactions to a planar interaction graph [2],
approximating certain restricted forms of 2-body interactions using other forms of 2-body interactions
[4, 16], realizing Hamiltonians exhibiting non-abelian anyonic excitations [17] and reducing k-local
interactions to 2-local [6, 5].

For perturbation theory to applya, all existing constructions of perturbative gadgets [1, 2, 6, 5, 4, 8]
require interaction terms or local fields with norm much higher than the strength of the effective
interaction which they generate (see Figure 2b). However, physically realizable systems often allow
only limited spin-spin coupling strengths. The main result of our paper is a way around this problem.

We first build a system with a large spectral gap between the ground state and the first excited state
using many relatively weak interactions: consider a collection of n spins that interact with each other
(i.e. O

(
n2
)

interaction terms) via ZZ interactions of constant strength J . Then the first excited state
of this n-spin system has energy O(n) higher than the ground energy, since the ground state subspace
is spanned by {|0〉⊗n, |1〉⊗n} and flipping a spin raises the energy by O(n). This way we can use
weaker interactions to construct a core with a large spectral gap. We then use it to replace the large
local field applied onto the single ancilla (Figure 2b) with weak interactions of a collection of ancillas
(Figure 2c). Finally, we connect the target spins to multiple ancillas instead of just one, which allows
us to use weaker β to achieve the same effective interaction strength between the target spins (Figure
2d).

Let us review a few definitions and then state our results precisely. An n-qubit Hamiltonian is an
2n × 2n Hermitian matrix; it is k-local or k-body (for a constant k) if it can be written as a sum of
M ≤ poly(n) terms Hj , each acting non-trivially on a distinct set of at most k qubits. Furthermore,
we requireb‖Hj‖ ≤ poly(n), and that the entries of Hj be specified by poly(n) bits. The smallest
eigenvalue ofH is its ground state energy, and we denote it λ(H). We use λj(H) to represent the j-th
smallest eigenvalue of H , hence λ(H) = λ1(H). Taking a 2-local Hamiltonian acting on n qubits,
we can associate it with an interaction graph G(V,E). Every vertex v ∈ V corresponds to a qubit,
and there is an edge e ∈ E between vertices a and b if and only if there is a non-zero 2-local term
He on qubits a and b such that He is neither 1-local nor proportional to the identity operator. More
generally, we can pair a k-local Hamiltonian with its interaction hypergraph in which the k-local
terms correspond to hyper-edges involving (at most) k vertices. Note that we depict all 2-local terms
on the same spins as a single edge. Next, because we can decompose any 2-local Hamiltonian term
in the Pauli basisc, we can define a Pauli edge of an interaction graph G as an edge between vertices
a and b associated with an operator γab Pa ⊗ Qb where P,Q ∈ {I, X, Y, Z} are Pauli matrices and
γab is a real number signifying the coupling coefficient. We refer to the maximum value of |γab| as
the interaction strength of the Hamiltonian. For an interaction graph in which every edge is a Pauli
edge, the degree of a vertex is called its Pauli degree. The maximum Pauli degree of a vertex in an
interaction graph is the Pauli degree of the graph.

a Note that there exist special cases (e.g. Hamiltonians with all terms diagonal in the same basis) when one can analyze the
Hamiltonian with non-perturbative techniques [18, 19].
bWe use the operator norm ‖ · ‖, defined as ‖M‖ ≡ max|ψ〉∈M |〈ψ|M |ψ〉| for an operator M acting on a Hilbert spaceM).
cFor example, the spin chain Hamiltonian H = 1

2

∑n
i=1 |01 − 10〉〈01 − 10|i,i+1 has interaction edges between successive

spins. Each 2-local interaction can be rewritten in the Pauli basis as 1
4

(I⊗ I−X ⊗X − Y ⊗ Y − Z ⊗ Z). It gives us an
overall energy shift (from the first term), and three Pauli edges with weight − 1

4
.
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1.1 Summary

We start in Section 2 with a theoretical framework of perturbation theory that is used throughout our
discussion, and then in Section 3 we present and prove our main result – a gadget construction that
simulates a target 2-local Hamiltonian using arbitrarily weak 2-local couplings and ancilla particles,
summarized in the following Theorem:

Theorem 1 (Effective 2-body interactions from weak couplings) Consider the
Hamiltonian Htarg = Helse +

∑M
j=1 γj Aaj ⊗ Bbj on n qubits, with aj , bj ∈ [n] labeling the qubits

that the operators A,B in the jth term act on. Htarg consists of

1. a Hamiltonian Helse with a non-negative spectrum, obeying ‖Helse‖ ≤ poly(n), which corre-
sponds to terms in the Hamiltonian that we will not decompose into gadgets, and

2. M distinct 2-local interaction terms, acting on an n qubit system, with an interaction graph of
Pauli degree p, assuming M ≤ poly(n), and bounded interaction strength γmax = maxj |γj | =
O(1).

Then for any ε > 0 and ε � γ, there exists a Hamiltonian H̃ which is a sum of Helse and a 2-local
(gadgetized) Hamiltonian with interaction strengths O(ε), whose low-lying spectrum approximates
the full spectrum of Htarg as |λj(H̃) − λj(Htarg)| ≤ ε for all j from 1 to 2n. The new Hamil-
tonian H̃ acts on n + poly(‖Helse‖, ε−1,M) qubits and has an interaction graph of Pauli degree
poly(p, ‖Helse‖, ε−1,M).

Note that if we want to “gadgetize” the entire target Hamiltonian,Helse is simply zero. In the remainder
of the paper, for H̃ and Htarg in Theorem 1, when we refer to H̃ approximating Htarg up to error ε, we
mean the following. The low-lying eigenstates of H̃ are ε-close to |φj〉⊗|0 · · · 0〉anc where |0 · · · 0〉anc

is the state of the ancilla qubits of H̃ (the norm of the difference between the vectors is no greater than
ε), and the low-lying spectrum of H̃ is ε-close to {λj}.

At first glance Theorem 1 seems naively true: we could always consider a given target term γA⊗B
as a sum of m identical but smaller terms γ

mA⊗ B and treat each small term with a separate gadget.
Presumably, these gadgets are of weaker interaction strengths than a single gadget applied onto the
target term directly. However, if we intend to simulate γA ⊗ B up to error ε, we need to simulate
each of the small terms up to error ε/m, which would translate into interaction strength in the gadget
Hamiltonian scaling as poly(ε−1) regardless. Hence this idea does not improve the interaction strength
asymptotically. Our contribution here is to show that we could improve the interaction strength from
poly(ε−1) to poly(ε).

Our main Theorem 1 deals with 2-local target Hamiltonians, built from 2-local gadgets. What
about gadget constructions for reducing 3-local interactions [1, 2, 6] or k-local interactions [5, 6] to
2-local ones? Here we generalize Theorem 1 to propose gadget constructions for 3- and k-body target
Hamiltonians. In particular:

Corollary 1 (3-body terms from weak 2-body interactions) Let us consider a HamiltonianHtarg =

Helse +
∑M
i=1 γiAai ⊗ Bbi ⊗ Ffi , with Here aj , bj , fj ∈ [n] labeling the qubits that the operators

A,B, F in the jth term act on. Here Htarg consists of

1. Helse (the part we will not decompose into gadgets), a Hamiltonian with a non-negative spec-
trum, satisfying ‖Helse‖ ≤ poly(n), and
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2. a sum of M interaction terms that are 3-local, acting on an n qubit system, with an interac-
tion graph of Pauli degree p and ground state energy λ(Htarg), assuming M ≤ poly(n). The
interaction strength of Htarg satisfies γmax = maxj |γj | = O(1).

Then for any choice of ε > 0, there exists a Hamiltonian H̃ that consists of Helse (the part we leave
intact) and a sum of M terms that are 2-local, with interaction strength O(ε), acting on a system with
n+ poly(‖Helse‖, ε−1,M) qubits, with an interaction graph of Pauli degree poly(p, ‖Helse‖, ε−1,M)

and |λj(H̃)− λj(Htarg)| ≤ ε for all j.

We outline the proof of Corollary 1 in Sec. 4. An important property of these new constructions is
that they can be repeated in parallel, in essence generating arbitrary strong interactions from weak
ones. Thus, we can effectively rescale interaction strengths and amplify the eigenvalue gap of a local
Hamiltonian. The price we pay is the addition of many ancillas and a large increase in the number of
interactions per particle.

Whereas Theorem 1 states that a 2-local target Hamiltonian can be gadgetized to a Hamiltonian
with arbitrarily weak interactions, Corollary 1 states that the same could be accomplished for a 3-local
target Hamiltonian. (In Section 4 we also generalize it to k-local Hamiltonians.)

Next, besides producing a gadget Hamiltonian with weak interactions that generates the target
Hamiltonian, we could also generate the target Hamiltonian multiplied by a positive factor θ. In case
where θ > 1, this can be viewed as a coupling strength amplification relative to the original target
k-local Hamiltonian (see Corollary 2 below). The basic proof idea is to view the rescaled target
Hamiltonian θH (with θ > 1) as a sum of O(θ) copies of itself with interaction strength O(1). Using
the gadget constructions from [5], we transform the k-local Hamiltonian θH to a 2-local one. Finally,
using our 2-body gadget construction in this work, we translate this Hamiltonian to one with only
weak interactions (2-body).

Corollary 2 (Coupling strength amplification by gadgets) Let H =
∑M
j=1Hj be a k-local Hamil-

tonian on n qubits where M = poly(n) and each Hj satisfies ‖Hj‖ ≤ s for some constant s. Let
|φj〉 and λj be the j-th eigenstate and eigenvalue of H . Choose a magnifying factor θ > 1 and an
error tolerance ε > 0. Then there exists a 2-local Hamiltonian H̃ with interactions of strength O(1)

or weaker. The low-lying eigenstates of H̃ are ε-closedto |φj〉 ⊗ |0 · · · 0〉anc where |0 · · · 0〉anc is the
state of the ancilla qubits of H̃ , and the low-lying spectrum of H̃ is ε-close to θ{λj}.

What is the efficiency of this way of amplifying the couplings? If we do it in a series of reductions
from k to dk/2e to ddk/2e/2e, etc., to 2-body interactions, the final gadget Hamiltonian will act on a
system whose total number of qubits scales exponentially in k (which of course is not a problem for
k = 3).

1.2 Conclusions and Open Questions

A gadget construction based on perturbation theory allows us to map between Hamiltonians of dif-
ferent types, with the same low-lying spectral properties. First, we replace strong interactions by
repetition of interactions with “classical” ancillas; it works because for a low-energy state, all our
extra qubits are close to the state |0〉. This is reminiscent of repetition encoding found e.g. in [20].
Second, we employ parallelization; it is crucial to show that the perturbation series converges even
with many gadgets, relaxing the usual assumption about the norm of the perturbation.
dBy ε-close we mean the norm of the difference between the two quantities (scalar, vector or matrix operator) is ≤ ε.
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This construction should find use in computer science as well as physics. First, in complexity
theory, Theorem 1 together with [1] or Corollary 1 with [21] implies QMA-completeness of the 2-
local Hamiltonian problem with non-repeated terms with norm at most O(1) and an O(1) promise
gap. As a consequence, we also obtain efficient universality for quantum computation with time-
independent, 2-local Hamiltonians with restricted form/strength of terms, complementing [22, 2, 23].
Second, our amplification method from Corollary 2 has been utilized in a counterexample to the
generalized area law in [24]. Finally, we envision practical experimental applications of Theorem 1
– strengthening effective interactions between target (atomic) spins through many (but even for a few
R) coupled mediator spins. In our case, these interactions need to be precisely tuned, while elsewhere
we have seen disordered networks used to enhance transport between two sites in a quantum system
[25].

Thinking further about interaction strengths and spectra of local Hamiltonians, we realize that
Corollary 2 allows us to amplify the eigenvalue gap (low eigenvalue spacing) of a Hamiltonian. Does
it have direct implications for hardness of Local Hamiltonian problems? When we use it on Hamilto-
nians appearing in QMA-complete constructions, the fractional promise gap (the ratio of the number
of frustrated terms to the number of all terms in the Hamiltonian for a ground state of a local Hamilto-
nian) gets smaller. Thus, it does not directly help us move towards the quantum PCP conjecture [12].
Nevertheless, we have added another tool for mapping between Hamiltonians to our repertoire.

An important problem remains open. The price we pay for our construction is a massive blowup
in the degree (the number of interactions per particle). Is there a possibility of a quantum degree-
reduction gadget? One might try to use a “bad” quantum code for encoding each spin into several
particles, whose encoded low-weight operators that can be implemented in many possible ways; this
does not seem possible for both X and Z operators. As things stand, without a degree-reduction gad-
get, we do not have a way to reproduce our results in simpler geometry. It would be really interesting if
one indeed could create O(1)-norm effective interactions from O(1)-terms in 3D or even 2D lattices.

We also need to think about the robustness of our results – what will change when the Hamiltonians
are not exactly what we asked for? How precise do we need to be (e.g. for the 3-body to 2-body
gadgets), so that the second- and first-order terms get canceled? Also, Bravyi, Terhal, DiVincenzo and
Loss [6] mentioned that a k-body to 2-body reduction might possibly be implemented with poly(k)

overhead in interaction strength (instead of exponential in k). However, this question remains open.
The exponential scaling in the overhead in [6] is due to the usual gadget constructions which require
poly

(
ε−1
)

interaction strength. We hope (but haven’t proven) that with our new gadget construction,
this result could be improved.

2 Effective interactions based on perturbation theory

The purpose of a perturbative gadget is to approximate a target n-qubit Hamiltonian Htarg by a gadget
Hamiltonian H̃ which uses a restricted form of interactions among the n qubits that Htarg acts on and
poly(n) additional ancilla qubits. The subspace spanned by the lowest 2n eigenstates of H̃ should
approximate the spectrum of Htarg up to a prescribed error tolerance ε in the sense that the j-th lowest
eigenvalue of H̃ differs from that ofHtarg by at most ε and the inner product between the corresponding
eigenstates of H̃ and Htarg (assume no degeneracy) is at least 1 − ε. These error bounds can be
established using perturbation theory [1, 2]. There are various versions of perturbation theory available
for constructing and analyzing gadgets (for a review see [26]). For example, Jordan and Farhi [5] use
Bloch’s formalism, while Bravyi et al. rely on the Schrieffer-Wolff transformation [6]. For the gadgets
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in Sec. 3, we use the technique from [1, 2].
Let us now review the basic ideas underlying the construction of effective Hamiltonians from

gadgets. The gadget Hamiltonian H̃ = H + V is a sum of an unperturbed Hamiltonian H and a
perturbation V . H acts only on the ancilla space, energetically penalizing certain configurations, and
favoring a specific ancilla state or subspace. Second, we have a perturbation V describing how the
target spins interact with the ancillas.

Let us introduce the following notations: let λj and |ψj〉 be the jth eigenvalue and eigenvector ofH
and similarly define λ̃j and |ψ̃j〉 for H̃ , assuming all the eigenvalues are labeled in a weakly increasing
order (λ1 ≤ λ2 ≤ · · · , similarly for λ̃j). Using a cutoff value λ∗, let us call L− = span{|ψj〉 : λj ≤
λ∗} the low-energy subspace and L+ = span{|ψj〉 : λj > λ∗} the high-energy subspace. Let Π−
and Π+ be the orthogonal projectors onto the subspaces L− and L+. For an operator O we define the
partitioning of O into these subspaces as O− = Π−OΠ−, O+ = Π+OΠ+, O−+ = Π−OΠ+ and
O+− = Π+OΠ−. We define similar notations L̃− and L̃+ for H̃ .

Our first goal is to understand H̃|L̃− , the restriction of the gadget Hamiltonian to its low-energy

subspace. Let us consider the operator-valued resolvent G̃(z) = (zI − H̃)−1 where I is the identity
operator. Similarly let us define G(z) = (zI − H)−1. Note that G̃−1(z) − G−1(z) = −V , which
allows an expansion of G̃ in powers of V :

G̃ = (G−1 − V )−1 = G(I− V G)−1 = G+GV G+GV GV G+ · · · . (1)

It is also standard to define the self-energy Σ−(z) = zI − (G̃−(z))−1. It is important because the
spectrum of Σ−(z) gives an approximation to the spectrum of H̃−, since by definition H̃− = zI −
Π−(G̃−1(z))Π− while Σ−(z) = zI − (Π−G̃(z)Π−)−1. As explained in [2], if Σ−(z) is roughly
constant in some range of z (see Theorem 2 below for details) then Σ−(z) is (loosely speaking)
playing the role of H̃−. This was formalized in Theorem 3 in [1] (and improved in Theorem A.1 in
[2]). Similarly to [2], we choose to work with H whose lowest eigenvalue is zero and whose spectral
gap is ∆. In [1], the gadget theorem (Theorem 3) is proven by establishing a sequence of Lemmas.
Out of these, Lemma 5 requires the condition ‖V ‖ < ∆

2 , with the consequence being the separation
of subspaces, namely L̃− ∩ L+ = {0}. Therefore, we here remove the condition ‖V ‖ < ∆

2 and use
L̃− ∩ L+ = {0} as an alternative assumption, giving us a slightly modified Gadget approximation
theorem:

Theorem 2 (Gadget approximation theorem, modified from [1]) LetH be a Hamiltonian with
a gap ∆ between its ground state and first excited state. Assuming the ground state energy of H is
0, let λ∗ = ∆/2. Consider a bounded norm perturbation V . The perturbed Hamiltonian is then
H̃ = H + V . Following the notations introduced previously, if the following holds:

1. L̃− ∩ L+ = {0}, with L+ = span{|ψj〉 : λj ≤ λ∗} for |ψj〉 eigenvectors of H and L̃− =

span{|ψ̃j〉 : λ̃j ≤ λ∗} for |ψ̃j〉 eigenvectors of H̃ .

2. There is an effective Hamiltonian Heff with a spectrum contained in [E1, E2] for some ε > 0

and E1 < E2 < ∆/2− ε, such that for every z ∈ [E1− ε, E2 + ε], the self-energy Σ−(z) obeys
‖Σ−(z)−Heff‖ ≤ ε.

then all the eigenvalues of H̃− are close to the eigenvalues of H , obeying

|λj(Heff)− λj(H̃−)| ≤ ε.
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The first, subspace condition, says that a combination of the unperturbed high-energy eigenstates
of H can not by themselves form a low-energy state of H̃ . We choose to avoid the original stronger
condition ‖V ‖ ≤ ∆

2 from [1], since it imposes limitations on the global properties of the gadget con-
struction, in particular the number of ancillas we use, disregarding the structure of the perturbation.
One might question whether the use of perturbation theory is sensible if we assume that the pertur-
bation ‖V ‖ is no longer necessarily small compared to the spectral gap ∆ (we want to use a large
number M of gadgets). However, such use has been justified previously by Bravyi et al. [6] in a
similar context.

To apply Theorem 2, a series expansion for the self-energy Σ−(z) = zI− G̃−1
− (z) is truncated at

some low order, for whichHeff is approximated. Using the series expansion of G̃ in (1), the self-energy
can be expanded as (see [1] for details)

Σ−(z) = H− + V− + V−+G+(z)V+− + V−+G+(z)V+G+(z)V+− + · · · , (2)

with G+(z) = Π+(zI − H)−1Π+. The 2nd and higher order terms in this expansion give rise to
effective many-body interactions. Introducing auxiliary spins and a suitable selection of 2-local H
and V , we can engineer Σ−(z) to be ε-close to Heff = Htarg ⊗ Π− (here Π− is the projector to the
ground state subspace of the ancillas) in the range of z considered in Theorem 2. Therefore with
‖Σ−(z)−Heff‖ ≤ ε, condition 2 of Theorem 2 is satisfied.

In the next Section, we will look at the usual 2-body gadgets and see how the second order terms
in the self-energy result in the desired effective Hamiltonian. Then we present our construction that
involves more ancillas with weaker interactions, and show that the effective Hamiltonian is again what
we want, and that the conditions for Theorem 2 are met.

3 A new gadget for 2-body interactions

We can decompose any 2-local interaction of spin- 1
2 particles in the Pauli basise, using terms of the

form γA ⊗ B, with the operator A acting on spin a and B acting on spin b, and γ the interaction
strength. Without loss of generality, we can also use ± Pauli matrices, and fix the coupling strengths
to be positive. It will be enough to show how to replace any such “Pauli” interaction in our system by
a gadget, aiming at the target interaction Htarg = Helse +γA⊗B, with Helse some O(1)-norm, 2-local
Hamiltonian. First, we briefly review the existing constructions [2, 6, 8] for generating Htarg using a
gadget Hamiltonian H̃ . Then we present a new 2-body gadget which simulates an arbitrary γ = O(1)

strength 2-local interaction using a gadget Hamiltonian with terms of strength only o(1), “building”
quantum interactions from many weaker ones.

The usual construction. Consider a target 2-local term involving two qubits a, b as depicted in
Fig. 2(a). The standard construction of a gadget Hamiltonian H̃ that captures the 2-local target
term is shown in Fig. 2(b). First, we introduce an ancilla qubit w bound by a local field, with the
Hamiltonian H = −∆

2 Zw. Alternatively, up to a spectral shift we could write H = ∆|1〉〈1|w
where |1〉〈1|w = 1

2 (I − Zw). Then we let w interact with a and b through
√

∆/2A ⊗ I ⊗ Xw

and −
√

∆/2 I⊗B⊗Xw, and choose ∆ = Θ(ε−1). We can view these terms as a perturbation to H .
The low energy effective Hamiltonian calculated from (2) is approximately A ⊗ B ⊗ |0〉〈0|w (up to
an overall energy shift) [8]. Here “up to an error ε” means that the j-th lowest eigenvalue of H̃ differs
eIt is useful that the Pauli matrices A,B ∈ {I, X, Y, Z} square to identity, because A2 and B2 terms in our effective Hamil-
tonian will become simple overall energy shifts
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Fig. 2. Interaction graphs for effective two-body interaction mediated by ancilla qubits. Each node represents a
particle. The size of the node indicates the strength of local field applied onto it. The width of each edge shows
the strength of the interaction between the particles that the edge connects. (a) The desired 2-local interaction
between target spins a, b. (b) The usual perturbative gadget uses a single ancilla w in a strong local field, and
large-norm interactions with the target spins. (c) We can replace the strong local field ∆/2 by ferromagnetic
interactions with a fixed core – a group of C “core” ancilla qubits located in a field of strength J/2, interacting
with each other ferromagnetically (as a complete graph), with strength J/2. (d) Instead of the strong interactions
between target spins a, b and a single ancilla w, we can use R different “direct” ancillas (labeled as w1, w2, · · · ,
wR) and weaker interactions of strength β.

from that of Htarg by at most ε and the inner product between the corresponding eigenstates of H̃ and
Htarg (assume no degeneracy) is at least 1− ε.

Our construction. In the usual construction, with better precision (decreasing ε), the spectral gap ∆

(related to local field strength) and interaction strengths grow as inverse polynomials in ε. We now
suggest a 2-body gadget which simulates an arbitrary O(1) strength target interaction using a gadget
Hamiltonian of only O(ε) interaction strength i.e. without the need for large-norm terms. We build it
in a sequence of steps illustrated in Fig. 2.

The first step is to reduce the large local field ∆ in Fig. 2(b). Let us call the ancilla w directly
interacting with the target spins a direct ancilla. We add a core C – a set of C ancilla qubits c1, . . . , cC ,
with a complete graph of ferromagnetic (ZZ) interactions of strength J

2 , and in a local field of strength
J
2 where J = O(ε). We then let the direct ancilla w interact (ferromagnetically) with each of the core
ancillas, as in Fig. 2(c). The Hamiltonian for the direct and core ancillas then reads

J

2

∑
c∈C

(I− ZwZc) +
J

2

∑
c∈C

(I− Zc) +
J

2

∑
c,c′∈C

(I− ZcZc′)︸ ︷︷ ︸
≡HC

. (3)

HC is the Hamiltonian describing the core C. The ground state of this Hamiltonian is |0〉w|0 · · · 0〉C ,
and the gap between its ground and first excited state |1〉w|0 · · · 0〉C is ∆ = JC. Here C is the number
of ancillas in the core C.

The second step is to use R direct ancillas w1, . . . , wR instead of just one, connecting each of
them to the core ancillas as in Figure 2(d). The Hamiltonian then becomes

H =
J

2

R∑
i=1

∑
c∈C

(I− Zwi
Zc) +HC . (4)



1206 Perturbative gadgets without strong interactions

Its ground state is |0 · · · 0〉w ⊗ |0 · · · 0〉C (here we use the subscript w to refer to all the direct ancillas
connected to the target qubits), and the gap between the two lowest energies is still ∆ = JC.

We want to engineer an effective interaction Htarg = γAa⊗Bb +Helse, where the first term is our
desired Hamiltonian, and Helse is a finite-norm Hamiltonian that includes all the other terms that we
want to leave unchanged by this gadget. Starting with the Hamiltonian H (4), we add a perturbation

V = Helse + β

R∑
i=1

(Aa ⊗Xwi −Bb ⊗Xwi) , (5)

where β > 0 is the strength of the interactions between the target spins and the direct ancillas. Show-
ing that we can use perturbation theory to obtain the effective Hamiltonian crucially relies on Theo-
rem 2, and we will justify that its conditions hold later. Let us now prepare the notations and tools
for this. Let L− be the subspace with the ancillas in the state |0〉⊗(R+C). Denote L+ the subspace
orthogonal to L− and let Π− and Π+ be the projectors onto these subspaces. We then have

V− = Π−VΠ− = Helse ⊗Π−, (6)

V−+ = Π−VΠ+ = β(Aa −Bb)⊗
R∑
i=1

|0〉〈1|wi
, (7)

V+− = Π+VΠ− = β(Aa −Bb)⊗
R∑
i=1

|1〉〈0|wi
, (8)

V+ = Π+VΠ+ = Helse ⊗Π+ + β

R∑
i=1

(Aa −Bb)⊗Π+Xwi
Π+. (9)

The low-energy sector of the gadget Hamiltonian H̃ = H + V can be described by the self-energy
expansion (2). Let us compute the terms up to the second order.

• At the 0th order, H− = 0 by definition.

• At the 1st order, V− is given by (6).

• At the 2nd order, we have the term V−+G+V+−, where V−+ and V+− can be computed from
(7) and (8). We also need the operator-valued resolvent

G+(z) =
∑

x:h(x)>0

1

z − h(x)∆
|x〉〈x|.

A second order transition process from the low energy subspace back to itself can only take
the form |0〉⊗R → |x〉 → |0〉⊗R, with x an R-bit string of Hamming weight 1 (there are R
qubits that can be flipped there and back). Hence, the only non-trivial terms in the product
V−+G+V+− have the form β(Aa − Bb) · 1

z−∆ · β(Aa − Bb). Altogether, we have R of these
terms, so the second order term becomes

V−+G+V+− =
1

z −∆
Rβ2(Aa −Bb)2.
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We could obtain the higher order terms in a similar fashion. In the end, the self-energy expansion
becomes

Σ−(z) = Helse︸︷︷︸
1st order

+
1

z −∆
Rβ2(Aa −Bb)2︸ ︷︷ ︸

2nd order

+

∞∑
m=1

V−+G+(V+G+)mV+−︸ ︷︷ ︸
error term

. (10)

Recall that G(z) = (zI −H)−1. The range of z we consider is |z| ≤ ‖Helse‖ + |γ|. We can assume
γ > 0 in Htarg (e.g. by absorbing a possible minus sign into the A matrix), and choose

β =

√
γ∆

2R
=

√
γJC

2R
. (11)

Since z � ∆, we can write 1
z−∆ = − 1

∆

(
1− z

∆

)−1 ≈ − 1
∆ +O

(
1

∆2

)
. Then the 1st and 2nd order

terms are approximately equal to the desired effective HamiltonianHeff = Htarg⊗Π− up to an overall
spectral shift (because A2 = B2 = I). We will show later, in Claim 2, that with good choices of R
and C we can make β and J as small as we want.

Fig. 3. Parallel composition of M (here M = 4) two-body gadgets from Fig. 2(d), using a single common core
with C “core” ancillas. Each gadget has R “direct” ancillas interacting with the target spins. The total number of
ancillas is thus MR+ C.

Parallel 2-body gadgets. So far, we have focused on a single 2-local term in our target Hamiltonian
(see Fig. 2). Similarly to [2], we can apply our gadgets in parallel, which enables us to deal with a
target Hamiltonian with M such 2-local terms. Let us then consider a target Hamiltonian of the form

Htarg = Helse +

M∑
j=1

γjAaj ⊗Bbj (12)

and apply our construction to every term γjAaj ⊗ Bbj in parallel, as in Fig. 3. Note that we save a
lot of resources by using only a single core. Each target term γjAaj ⊗Bbj is associated with R direct
ancilla qubits w(i)

1 , w(i)
2 , · · · , w(i)

R that are connected to target spins ai and bi. All of the direct ancillas
also interact with each of the C core ancillas. As before, the core consists of C qubits that are fully
connected with ferromagnetic (ZZ) interactions of strength J

2 and also with local fields of strength J
2

on each qubit. Hence the full gadget Hamiltonian for the general 2-local target Hamiltonian in (12)
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takes the form H̃ = H + V with

H =
J

2

M∑
j=1

R∑
i=1

∑
c∈C

(I− Z
w

(j)
i
Zc) +HC , (13)

V = Helse +

M∑
j=1

βj

R∑
i=1

(
Aaj −Bbj

)
⊗X

w
(j)
i
.

where HC is the core Hamiltonian from (4), βj =
√

γjJC
2R and the spectral gap between the ground

state and the first excited state ofH is ∆ = JC. Computing the self-energy expansion as in (10) for the
gadget Hamiltonian in (13) yields a contribution − 1

z−∆

∑M
j=1 β

2
jR(Aaj − Bbj )2 at the second order

(see Claim 2 for more details). Because each term in the perturbative expansion Σ−(z) corresponds
to a sequence of state transitions from L− to L+ and backf, the second order contribution comes from
those transitions where one ancilla is flipped from |0〉 to |1〉 and back to |0〉. Such transitions cannot
involve more than one ancilla qubit. Hence we can regard the second order transitions involving
different ancillas as occurring independently of each other (in parallel). This enables the 2-body
gadgets to capture multiple 2-local target terms, and is much more effective than a “serial” approach:
constructing a gadget for a single 2-body interaction, calling what we get Helse, then building another
gadget for another 2-body interaction, and so on.

In order to show that the low-lying subspace of our gadget Hamiltonian H̃ captures the spectrum
of Htarg using Theorem 2, it is necessary to establish that H̃ meets both conditions of the theorem.
The first condition, L̃− ∩ L+ = {0}, requires the vectors the unperturbed high-energy states not to
become perturbed low energy states by themselves. We will prove this as Claim 1 below. The second
condition says that the self-energy expansion Σ−(z) can be approximated by an effective Hamiltonian
when z is in a certain range. We establish this as Claim 2 for H̃ by proving that the perturbation series
converges for Σ−(z). Theorem 1 then follows from Theorem 2 with H̃ being the Hamiltonian in (13).

3.1 The 2-local construction satisfies the subspace condition.

The first condition in Theorem 2 is a property of the high-energy subspace of the original Hamiltonian.
We need it in order to avoid the need to bound the norm of the whole perturbation. Let us provide a
high-level description of the condition and the ideas behind its proof.

Consider the gadget Hamiltonian H̃ = H+V defined in (13). We need to lower bound the lowest
energy E+ = minψ〈ψ|H̃|ψ〉 of a state |ψ〉 that comes from the subspace L+, the excited subspace of
H , spanned by states orthogonal to the state |0 · · · 0〉w. The terms in H involve only ancilla qubits,
while V includes Helse, and terms that couple some computational (target) qubit a and a direct ancilla
w. These 2-local terms have form βwAa ⊗Xw, with interaction strengths |βw| ≤ βmax = O(1), as in
Figure 4(a). We now want to show thatE+ is strictly above λ∗ = ∆

2 . To do this, we find a sequence of
successively lower lower bound E+ using a sequence of progressively simpler Hamiltonians, finally
arriving at 1-local ones in (24), (28) and (30).

First, we will show that E+ for the general Hamiltonian H̃ is greater or equal to the value of E+

for a similar system in which all of the operators Aa are the same (so that they do not compete against
each other in lowering the energy) as in Figure 4(a). Second, we can only lower E+ by making all

fNote that in fact L− = span{|0 · · · 0〉w|0 · · · 0〉C} where the subscript w refers to all the ancillas w(j)
1 , w(j)

2 , · · · , w(j)
R ,

for j = 1, 2, · · · ,M . The transitions that contribute to the perturbative expansion Σ−(z) are restricted to only to the direct
ancillas |0 · · · 0〉w since the core ancillas do not interact with the target qubits.
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of the operators Aa identities, and using only operators − |βw|Xw on the direct ancillas. Because
the target spins are now independent from the ancillas, the contribution from Helse is then no larger in
magnitude than ‖Helse‖. This is depicted in Figure 4(b).

Fig. 4. A sequence of gadget Hamiltonians with progressively lower lower bounds on E+. (a) Taking the terms
acting on the target spins to be all the same. (b) Decoupling the target spins from the direct ancillas using −I
operators on the target spins and (weighted) X-fields on the direct ancillas. (c) Replacing the interactions with
core ancillas by an overall shift, and a (weighted) Z-field on the direct ancillas, arriving at (30).

We are now left with a Hamiltonian which is a sum of Helse, single-qubit terms on the direct
ancilla qubits, and their interactionsgwith the core ancillas. The Hilbert space divides into a direct sum
of invariant subspaces labeled by the state of the core ancillas. These subspaces are decoupled (the
original Hamiltonian H and the perturbation V do not flip the core ancillas), so we can analyze them
one by one. We do so for the subspaces with a ≥ 1 core ancillas flipped to |1〉, and then finally for
the subspace with all core ancillas equal to |0〉. It turns out that in each such subspace we can map
the terms ZwZc, ZcZc′ , Zc and Helse of the Hamiltonianhto one that is simply an overall shift, and a
−∆a

2 Zw term on each of the direct ancillas, with ∆a a function of how many ancillas were flipped.
The resulting 1-local Hamiltonian illustrated in Figure 4(c) can be analyzed, and yields the desired
lower bound on E+. Let us then state and prove our first Claim.
Claim 1 Consider the 2-body gadget Hamiltonian H̃ = H + V from (13), corresponding to a target
Hamiltonian Htarg = Helse +

∑M
i=1 γiAi ⊗ Bi with γj ≤ O(1) and Helse positive semi-definite. Let

∆ be the spectral gap between the ground and the first excited subspace of H , and define a cutoff
λ∗ = ∆/2. Following Section 2, we define L+ = span{|ψj〉 : λj > λ∗} for |ψj〉 eigenvectors of
H , and L̃− = span{|ψ̃j〉 : λ̃j < λ∗}, for |ψ̃j〉 eigenvectors of H̃ . Then if ∆ ≥ 160Mγmax, with
γmax = maxj=1,··· ,M |γj |, we have

L̃− ∩ L+ = {0}.

We start the proof by exhibiting a sequence of Hamiltonians with progressively lower E+, and
then showing Claim 1 for the last of them.

Let |ψ〉 ∈ L+ be the state with minimum energy for the perturbed Hamiltonian H̃ , and let us label
this minimum energy E+ = 〈ψ|H̃|ψ〉. The Hamiltonian H̃ connects target spins to direct ancillas via
terms of the type Aa⊗Xj . We now argue that E+ can be only lowered if we decouple the target spins
from the direct ancillas, and simply use −I⊗Xj instead of Aa ⊗Xj .
gIf the values of β are different for different terms, we still use a single core with a fixed J , fixed C, fixed ∆ = JC, and adjust
each βw for each target interaction individually so that the resulting effective interaction strength β2

wR/∆ = O(1) is what we
desire.
hThere is no Zw term on the direct ancillas, so that a single direct ancilla flip increases the energy by ∆ = JC.
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The expectation value 〈ψ|H̃|ψ〉 = EH + EV comes from the expectation value of H which is
diagonal in the computational basis (the Z and ZZ terms involving the ancillas) and the expectation
of V , which includes the interactions with target spins as well as the term Helse. Let us rewrite the
state |ψ〉 as

|ψ〉 =
∑
w

cw|w〉 ⊗ |φw〉, (14)

where w is a binary string labeling computational basis state of all the ancillas. The expectation value
of the term H depends only on the magnitudes of the cw’s. The contribution from Helse is∑

w

|cw|2 〈φw|Helse|φw〉. (15)

Finally, each term in V of the form Aa ⊗Xj contributes

c∗vcv′〈v|Xj |v′〉〈φv|Aa|φv′〉 (16)

for every pair v, v′ that differ only at bit j. This expression can be positive or negative, depending on
cv and cv′ . More crucially, its magnitude will depend on 〈φv|Aa|φv′〉. BecauseAa is a Pauli operator,
this magnitude can never exceed 1. Let us now consider a state

|ψ′〉 =

(∑
w

|cw| |w〉

)
⊗ |φ〉, (17)

with positive coefficients |cw|, and a particular state |φ〉 chosen to minimize 〈φ|Helse|φ〉. The expecta-
tion value ofH does not change, while the contribution fromHelse can only decrease, because we have
chosen |φ〉 to minimize it. In other words, 〈ψ′|H|ψ′〉 ≤ 〈ψ|H|ψ〉 and 〈ψ′|Helse|ψ′〉 ≤ 〈ψ|Helse|ψ〉.
Finally, the expectation value of the interaction terms in V ′ (when we set Aa = −I) like (16) now
become

−|cv| · |cv′ |〈v|Xu|v′〉 ≤ −c∗vcv′〈v|Xu|v′〉〈φv|Aa|φv′〉. (18)

Thus, 〈ψ′|V ′|ψ′〉 ≤ 〈ψ|V |ψ〉 and we conclude that the new minimum energy of H̃ ′ restricted to
L+ is E′+ ≤ 〈ψ′|H|ψ′〉+ 〈ψ′|V ′|ψ′〉 ≤ E+. It means that when we replace the Hamiltonian V with
one that has no interactions between the direct ancillas and the target spins, and uses operators −Xw

on the direct ancillas, E+ decreases (or remains what it was).
Therefore, we can assume without loss of generality that the Hamiltonian H̃ has this special form.

We will continue the proof by showing that if |ψ〉 ∈ L+ then 〈ψ|H̃|ψ〉 > λ∗ for any normalized state
|ψ〉.

The subspace L+ is spanned by (direct + core) ancilla qubit states with at least one |1〉. Let
K− = |0 · · · 0〉w be the all-zero state the direct ancillas, and let Sa = span{|x〉C : h(x) = a} be the
subspace of the core ancillas with exactly a qubitsiin the state |1〉. Thus, the subspace L+ splits into
two parts as L+ = L1 ⊕ L2, wherej

L1 = Hw ⊗

(
C⊕
a=1

Sa

)
, L2 = K⊥− ⊗ S0. (19)

iHere h(x) is the Hamming weight of the binary string x.
jHereHw is the Hilbert space of the direct ancillas.
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The first part L1 spanned by all the states where the core has at least one qubit |1〉, while the second
part L2 is spanned by all the states with the core ancillas all |0〉, and at least one direct ancillas being
|1〉. We now first show that ∀|ψ〉 ∈ L1, 〈ψ|H̃|ψ〉 > λ∗, and then similarly for L2.

(1) If |ψ〉 ∈ L1, then 〈ψ|H̃|ψ〉 > λ∗.

Let us first consider |ψa〉 ∈ Hw ⊗ Sa for some fixed a ∈ {1, 2, · · · , C}. Then |ψa〉 is a (linear
combination of) state(s) where a ancillas in the core are |1〉 and the other C − a core ancillas are |0〉.
We will find a lower bound for Ẽ+,a = 〈ψa|H̃|ψa〉 by considering each component of H̃ . Recall from
(3) the definition of the core Hamiltonian

HC =
J

2

∑
c∈C

(I− Zc) +
J

2

∑
c,c′∈C

(I− ZcZc′). (20)

Then the energy of |ψa〉 with respect to the core Hamiltonian is EC,a = 〈ψa|HC |ψa〉 = Ja(C − a+

1) ≥ JC. Let

Hw =
J

2

M∑
j=1

R∑
i=1

∑
c∈C

(I− Z
w

(j)
i
Zc) =

J

2

M∑
j=1

R∑
i=1

(
CI− Z

w
(j)
i

∑
c∈C

Zc

)
(21)

be the interaction Hamiltonian between the direct ancillas and the core ancillas. Recall from (13) that
H = Hw +HC . The second equality in (21) indicates that Hw consists of a sum of terms of the form
CI−Z

w
(j)
i

∑
c∈C Zc. Let us focus on such a term for a particular direct ancilla w. Consider the states

|0〉w ⊗ |a〉C and |1〉w ⊗ |a〉C with |a〉C ∈ Sa and look at the term Zw
∑
c∈C Zc. Its expectation value

in these states is C − 2a and 2a − C, regardless of the state of the core ancillas. Thus, we get an
effective Hamiltonian

h′w = CI− (C − 2a)Zw (22)

for each direct ancilla w. Collecting these effective Hamiltonians for each direct ancilla, we get

H ′w =
J

2

M∑
j=1

R∑
i=1

h′
w

(j)
i

=
J

2

N∑
k=1

h′k, (23)

whose lowest energy in the subspaceHw⊗Sa is equal to that of Hw. For convenience, we relabel the
direct ancillas by k = 1, . . . N with N = MR (we are simulating M two-body interactions using R
direct ancillas per interaction), and replace the sum over i and j with a single index summation over
k.

Let us now add the perturbation V (13). For each direct ancilla k there is a term in V of the form
vk = βk(A⊗Xk −B ⊗Xk) = βkOAB ⊗Xk, and we have shown by a sequence of reductions that
the lowest energy of vk in Hk ⊗ Sa is lower bounded by that of v′k = 2βkXk. Thus, when we label
V ′ =

∑N
k=1 v

′
k =

∑N
k=1 2βkXk, we get a 1-local Hamiltonian

H̃ ′ = EC,aI +H ′w + V ′ = EC,aI +

N∑
k=1

(
2βkXk +

JC

2
I− J(C − 2a)

2
Zk

)
=

(
Ja(C − a+ 1) +

JCN

2

)
I +

N∑
k=1

√
4β2

k +
J2

4
(C − 2a)2Pk

(24)
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acting only on the direct ancillas, which gives us a lower bound on E+, i.e. for any |ψa〉 ∈ Hw ⊗ Sa,

min
Hw⊗Sa

〈ψa|H̃|ψa〉 ≥ min
Hw⊗Sa

〈ψa|H̃ ′|ψa〉, (25)

with Pk a single qubit operator of the form p̂ · ~̂σ, with ~̂σ = {X,Y, Z} and unit vector p̂. Note that the
lower bound (25) does not include Helse in H̃ ′; because Helse ≥ 0, we are only lowering the right side
by omitting it.

Note that the above argument can be generalized toL1 = Hw⊗(⊕Ca=1Sa). For a general |ψ〉 ∈ L1,
|ψ〉 must take the form

|ψ〉 = |φ〉w ⊗
C∑
a=1

ηa|a〉C , where |a〉 =
∑

h(x)=a

ca,x|x〉, x ∈ {0, 1}C (26)

for some sets of complex coefficients {ηa} and {ca,x} that are both normalized. Then 〈ψ|HC |ψ〉 =∑C
a=1 |ηa|2Ja(C − a + 1). Let A be the set of a for which ηa 6= 0. Let amax be the value of a in A

that maximizes (C − 2a)2. Define

|ψ′〉 = |φ〉w ⊗ |amax〉C ,

h′w,amax
= CI− (C − 2amax)Zw,

H ′w,amax
=

J

2

N∑
k=1

h′k.

(27)

Then 〈ψ|Hw|ψ〉 ≥ 〈ψa|H ′w,amax
|ψa〉 for any |φ〉w ∈ Hw. Since the generalization from Hw ⊗ Sa

to Hw ⊗ (⊕Ca=1Sa) does not concern the direct ancillas, we can use the same argument as before to
construct a 1-local Hamiltonian

H̃ ′amax
=

C∑
a=1

|ηa|2
(
Ja(C − a+ 1) +

JCN

2

)
I +

N∑
k=1

√
4β2

k +
J2

4
(C − 2amax)2Pk,amax (28)

such that for any |ψa〉 ∈ L1, there always exists a value amax such that min|ψ〉∈L1
〈ψ|H̃|ψ〉 ≥

min|ψ〉∈L1
〈ψ|H̃ ′amax

|ψ〉.
Let us now find a lower bound on 〈ψ|H̃ ′amax

|ψ〉. Note that Ja(C − a + 1) ≥ JC for any a =

1, 2, · · · , C. Let βmax = maxk=1,2,··· ,N |βk|. Noting that Pk,amax in (28) is a unit-norm operator, for
any |ψ〉 ∈ L1 we get

〈ψ|H̃ ′amax
|ψ〉 ≥

(
JC +

JCN

2

)
−N

√
4β2

max +
J2

4
(C − 2amax)2

= JC +
JCN

2
− JCN

2

√
1 +

16β2
max

J2C2

≥ JC − JCN

2
· 16β2

max

2J2C2
= JC − 4Nβ2

max

JC

= ∆− 4MRβ2
max

∆
≥ 79∆

80
>

∆

2
= λ∗, (29)

where we have used 2Rβ2
max/∆ = γmax from (11) and asked for ∆ ≥ 160Mγmax in the last line. Here

γmax = maxj=1,··· ,M |γj | where γj are coefficients in the target Hamiltonian. Putting (29) into (25),
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we get E+ > ∆
2 = λ∗. We have thus shown the desired lower bound on E+ in the subspace L1. Let

us now deal with the other part, L2.

(2) If |ψ〉 ∈ L2, then 〈ψ|H̃|ψ〉 > λ∗.

Any state in the subspaceL2 = K⊥−⊗S0 has the core ancillas in the state |0 · · · 0〉C , hence 〈ψ|HC |ψ〉 =

0. To find a lower bound for the energy of Hw in this subspace, we use the construction H ′w in (23)
with a = 0. For the energy of V we use the same simplifying argument and obtain (again) a 1-local
Hamiltonian acting only on the N = MR direct ancillas (cf. Equation 24)

H̃ ′0 =

N∑
k=1

(
∆

2
I− ∆

2
Zk − 2βkXk

)
=

N∑
k=1

Sk, (30)

such that
min
|ψ〉∈L2

〈ψ|H̃|ψ〉 ≥ min
|ψ〉∈L2

〈ψ|H̃ ′0|ψ〉. (31)

We now show that the energy of any direct ancilla state orthogonal to K− = span{|0 . . . 0〉w} is
strictly lower bounded by λ∗ = ∆/2. Since the core ancilla state will always be |0 · · · 0〉C , we will
exclude it from our discussion and thus omit the w subscript for the direct ancilla. All quantum states
in the proof from here on refer to the state of the direct ancillas.

To show the energy lower bound we use induction on the number of direct ancillas, n. Let

En = min
|φ〉⊥|0〉⊗n

〈φ|
n∑
k=1

Sk|φ〉. (32)

Specifically, we prove the following statement:

En ≥
3∆

4
− δn, with δn =

40nβ2

9∆
, n = 1, · · · , N. (33)

We start with the initial case n = 1. There the only state orthogonal to |0〉 is |1〉. Hence E1 = ∆,
which satisfies (33). Now assume (33) holds for some n. An (n+ 1)-qubit state that is orthogonal to
|0 · · · 0〉 (denoted by the superscript �) must have the form

|ψ�n+1〉 = a|ξ�n 〉|0〉+ b|φ�n 〉|1〉+ c|0 · · · 0〉|1〉, (34)

where |ξ�n 〉 and |φ�n 〉 are some states that are orthogonal to |0 · · · 0〉. Let us calculate the energy of the
state (34).

En+1 =

n∑
i=1

〈ψ�n+1|Si|ψ
�
n+1〉+ 〈ψ�n+1|Sn+1|ψ�n+1〉 (35)

= |a|2
n∑
i=1

〈ξ�n |Si|ξ�n 〉〈0|0〉+ |b|2
n∑
i=1

〈φ�n |Si|φ�n 〉〈1|1〉+ |c|2
n∑
i=1

〈0 · · · 0|Si|0 · · · 0〉〈0|0〉

(36)

+ 2Re

(
ab∗

n∑
i=1

〈ξ�n |Si|φ�n 〉〈0|1〉+ ac∗
n∑
i=1

〈ξ�n |Si|0 · · · 0〉〈0|1〉+ bc∗
n∑
i=1

〈φ�n |Si|0 · · · 0〉〈1|1〉

)
+ |a|2〈0|S|0〉n+1 + |b|2〈1|S|1〉n+1 + |c|2〈1|S|1〉n+1

+ 2Re
(
ab∗〈ξ�n |φ�n 〉〈0|S|1〉+ ac∗〈ξ�n |0 · · · 0〉〈0|S|1〉+ bc∗〈φ�n |0 · · · 0〉〈1|S|1〉

)
.
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Note that 〈0|1〉 = 0 and 〈ψ�n |0 · · · 0〉 = 〈φ�n |0 · · · 0〉 = 0. Also recall that 〈0|Si|0〉 = 0, 〈1|Si|1〉 = ∆

and 〈0|Si|1〉 = −2βi. Hence,

En+1 = |a|2
n∑
i=1

〈ξ�n |Si|ξ�n 〉+ |b|2
n∑
i=1

〈φ�n |Si|φ�n 〉+ 0 + 0 + 0 + 2Re

(
bc∗

n∑
i=1

〈φ�n |Si|0 · · · 0〉

)
(37)

+ 0 + |b|2∆ + |c|2∆ + 2Re
(
−ab∗〈ξ�n |φ�n 〉2βn+1

)
+ 0 + 0

≥ |a|2En + |b|2En + 2Re

(
bc∗

n∑
i=1

〈φ�n |Si|0 · · · 0〉

)
+ |b|2∆ + |c|2∆− 4|a||b|βmax, (38)

where we lower bounded the last term using absolute values, a maximum magnitude of the β’s, and
|〈ψ�n |φ�n 〉| ≤ 1. Next, we observe that the term 〈φ�n |Si|0 · · · 0〉n is nonzero only for parts of |φ�n 〉with
a single |1〉. The largest magnitude it could possibly have is when the state |φ�n 〉 is made only from
states with a single |1〉 as 1√

n

∑n
i=1 |0 · · · 1i · · · 0〉. We then get

∑n
i=1〈φ�n |Si|0 · · · 0〉 ≥ −2βmax

√
n.

Putting this in, recalling (33) and using absolute values, we get

En+1 ≥
(
|a|2 + |b|2

)(3∆

4
− δn

)
− |b||c| · 4βmax

√
n+

(
|b|2 + |c|2

)
∆− |a||b| · 4βmax (39)

=
3∆

4

(
|a|2 + |b|2 + |c|2

)
−
(
|a|2 + |b|2

)
δn + |b|2∆− |a||b| · 4βmax − |b||c| · 4βmax

√
n+ |c|2 · ∆

4

≥ 3∆

4
− δn + |b|2∆− |b| · 4βmax + |c|

(
|c|∆

4
− |b| · 4βmax

√
n

)
︸ ︷︷ ︸

f(|c|)

, (40)

where we have used (33), and then |a|2 + |b|2 ≤ 1 and |a| ≤ 1. Independent of |b|, let us look at f(|c|),
a quadratic function of |c|. Its minimum is at |c| = |b|·8βmax

√
n

∆ , with the value fmin = − |b|
2·16nβ2

max
∆ . In

(40) it means

En+1 ≥
3∆

4
− δn + |b|2∆− |b| · 4βmax −

16|b|2nβ2
max

∆
(41)

=
3∆

4
− δn + |b|2

(
∆− 16nβ2

max

∆

)
︸ ︷︷ ︸

≥9∆/10

−|b| · 4βmax (42)

≥ 3∆

4
− δn + |b|

(
|b|9∆

10
− 4βmax

)
︸ ︷︷ ︸

g(|b|)

, (43)

where in the second line we have used ∆ ≥ 160Mγmax to guarantee ∆ − 16β2
maxn

∆ ≥ ∆ − 16β2
maxN
∆ =

∆ − 16Mγmax ≥ 9∆
10 . The expression g(|b|) is quadratic in |b|, minimized at |b| = 20βmax

9∆ , giving the

value gmin = − 40β2
max

9∆ . Putting it into (43), we get

En+1 ≥
3∆

4
− δn −

40β2
max

9∆
=

3∆

4
− δn+1, (44)



Y.-D. Cao and D. Nagaj 1215

which proves our induction step, as δn =
40nβ2

max
9∆ . Therefore, (33) holds. Let n = N and we have for

any |ψ〉 ∈ L2,

〈ψ|H̃ ′0|ψ〉 ≥ EN ≥
3∆

4
− 40Nβ2

max

9∆
=

3∆

4
− 40MRβ2

max

9∆

=
3∆

4
− 20Mγmax

9
≥
(

3

4
− 1

72

)
∆ =

53

72
∆ >

∆

2
= λ∗, (45)

where in the last line we have used (11) and ∆ ≥ 160Mγmax. Combining the above statement with
(31), we have 〈ψ|H̃|ψ〉 > λ∗ for any |ψ〉 ∈ L2.

This concludes the proof of Claim 1. 2

3.2 The perturbation series converges.

Let us now state and prove our second claim – the convergence of the perturbation series for our
gadget construction.

Claim 2 Consider the 2-body gadget Hamiltonian H̃ = H + V defined in (13) with spectral gap ∆

between the ground and the first excited subspace of H , and a target Hamiltonian Htarg = Helse +∑M
j=1 γjAj ⊗ Bj with γj = O(1) and Helse positive semi-definite. Choose a constant parameter

d ∈ (0, 1) and an error tolerance ε. If we set ∆ = M3Rd and choose the number of direct ancillas
per target term R and the core size C according to

R = Ω

(
max

{
ε−

2
d ,

(
‖Helse‖2

2M4γmax

) 1
d

,
(
M3ε−2

) 1
1−d

})
, C = Ω

(
M3Rd ε−1

)
, (46)

then the strengths of the interaction terms in the gadget Hamiltonian are small, i.e. βj , J = O(ε).
Furthermore, the self energy expansion (2) satisfies

‖Σ−(z)−Htarg ⊗Π−‖ = O(ε), (47)

where Π− is the projector onto L−, and z obeys |z| ≤ ε+ ‖Helse‖+
∑M
j=1 |γj |.

This claim is one of the central results of this work – it shows that our gadget Hamiltonian (for a
2-local target Hamiltonian) uses only interactions of strength O(ε), i.e. no strong interactions. This is
qualitatively different from previous constructions which require interactions of strength poly(ε−1).
However, the price we pay for avoiding strong interactions is that the number of ancillas scales as
poly(ε−1), as shown in (46), while previous constructions require some number of ancillas indepen-
dent of ε. Hence we present a tradeoff between interaction strength and ancilla number in a gadget
Hamiltonian.

Let us prove Claim 2. First we show that H̃ consists of only weak interaction terms. When we
choose ∆ = M3Rd for some d ∈ (0, 1) and substitute it into (11), we find that the interaction strength

between the target spins and direct ancillas will be βj =
√

γj∆
2R = O(ε), if we choose

R�
(
M3ε−2

) 1
1−d . (48)

Next, recalling ∆ = CJ , the strength of the interaction J between the core ancillas will be O(ε)

if we choose C �M3Rd ε−1.
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Furthermore, once we set ∆ = M3Rd, we can easily satisfy the requirement ∆ ≥ 160Mγmax in
Claim 1 for reasonable R – more specifically, we need R�

(
160γmax/M

2
)1/d

.
We will now analyze the higher order terms in the self energy expansion Σ−(z) according to (2)

and show that the error term in Eq. 2 scales as O(ε). The perturbative expansion of Σ−(z) for the
construction in (13) yields

Σ−(z) = Helse +
1

z −∆

M∑
j=1

Rβ2
j (Aaj −Bbj )2 +

∞∑
k=1

V−+ (G+V+)
k
G+V+−︸ ︷︷ ︸

error

. (49)

We can associate every term in the perturbation series with a path starting in the ancilla state |0〉w|0〉C
(i.e. belonging to L−) to states in L+ and back to L−. Each path consists of a sequence of virtual
transition steps between states of the ancillas, denoted x → x′ with R-bit strings x, x′. The number
of steps for a path is dependent on the order of the perturbation term. A path for the m-th order is

L−
V−+−−−→ |y〉 V+−−→ |y1〉

V+−−→ |y2〉
V+−−→ · · · V+−−→ |ym−2〉

V+−−→︸ ︷︷ ︸
(m− 2) steps

|y′〉 V+−−−−→ L−, (50)

where y and y′ areR-bit strings with Hamming weight 1, and |yi〉 ∈ L+. In particular, these states be-
long to the subspaceL2 = K⊥−⊗S0 in (19). Observe that each term in Tm = V−+(G+V+)m−2G+V+−
is composed from transitions of the following three types

1. a |0〉 → |1〉 flip of some direct ancilla qubit w,

2. a |1〉 → |0〉 flip of some w,

3. the state of the ancillas stays the same.

In the first two cases, V+ (also V−+ or V+−) contributes the term from V that flips the direct ancilla
w via · · · ⊗ Xw. In the third case, the ancilla state stays the same, and V+ contributes a term that
contains interaction with w via · · · ⊗ |1〉〈1|w. This type of term contains the factor Helse. Note that
for the k − 2 transitions, the number of flips kf cannot exceed k. Furthermore, it must be even for
the transition to terminate in L−. Finally, every transition step yi → yi+1 also contributes a factor

1
z−h(yi)∆

coming from G+, with h(yi) the Hamming weight of the string yi.
We can find the norms of the perturbation terms at a given order by enumerating all possible paths

and adding up their contributions. For this, we introduce a graphical representation of the paths in
Fig. 5. Each grid point in the lower-right triangle, including the diagonal points, corresponds to a state
with a particular number of the direct ancillas flipped. We start from the lower-leftmost point, which
corresponds to the all-zero subspaceL−. Each transition (ancilla flip) maps to a rightwards or upwards
movement on the graph, while remaining in the high-energy subspace is depicted by a diagonal step.
A valid path ends at the top-rightmost point, which again belongs to the ground state subspace L−.
Furthermore, a valid path can touch the diagonal line only at the last step of the transition (otherwise,
it would be a composition of paths at lower orders).

Suppose at a certain point the direct ancillas are in a state |y〉 with h(y) ancillas in |1〉 and the rest
in |0〉, with h(y) ∈ {1, 2, · · · , N} being the Hamming weight of y. Let us first look at transition steps
that flip an ancilla takes |y〉 to a new state |y′〉 where y and y′ differ by one bit.
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Fig. 5. A graphical representation of the contributions to the error term of order m = 2k or m = 2k + 1.
An up- and right-moving, sub-diagonal path corresponds to a sequence of transitions. A bit flip moves 2 squares
horizontally/vertically, while “staying” moves across one square diagonally. The distance from the diagonal
corresponds to the number h(y) of flipped ancillas in a given state y.

1. If an ancilla in |y〉 is flipped from |0〉 to |1〉, we move to the right in Figure 5. There areN−h(y)

ways to flip a 0 to 1 at this point, and we simply overestimate it by N . Furthermore, we get a
contribution from G+, and we overestimate it by ‖G+‖ ≤ 1

|h(y)∆−z| ≤
1
∆ . Thus, we find that

the norm of a contribution from this first type of transition step is upper bounded by N
∆ .

2. Second, when an ancilla is flipped from |1〉 to |0〉, we move up in Figure 5. There are h(y) ways
to unflip a spin now. The resolvent G+ again contributes a factor 1

z−h(y)∆ . Taken together, the
factor h(y) “cancels”kthe h(y) in the denominator from the resolvent. The contribution from
this process is less than 1

∆ .

3. Third, for a step that keeps the ancilla state, we remain in the same state y, and move one step
diagonally on the graph, getting a contributionHelse. We can do this in h(y) ways, because there
are h(y) ancillas in the state |1〉 that terms like · · · ⊗ |1〉〈1| apply to. The resolvent G+ again
contributes a factor 1

z−h(y)∆ . Similarly to what we did above, we “cancel” the factor h(y), and

conclude that a contribution from this type of step is upper bounded by ‖Helse‖
∆ .

Altogether, at order m, our paths have length m, out of which we have f flips, f unflips, and
m− 2f diagonal steps. The contribution of each such path is upper bounded by

cpath ≤
Nf (2βmax)2f‖Helse‖m−2f

∆m−1
. (51)

We now need to find an upper bound on the number of valid paths such as the one shown in Fig. 5.
If we did not have the diagonal steps, for even m = 2k, this would be the kth Catalan number

– the number of up- & right-moving paths between corners of a square of size 2k that don’t pass
above the diagonal. In our case, the situation is just a bit more difficult. The number of 2k-step (resp.
(2k + 1)-step) paths is upper bounded by the Motzkin number of order 2k (resp. 2k + 1). These

kHere “cancel” means that the product h(y)
|h(y)∆−z| is O(∆−1).
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numbers correspond to a number of up-, diagonal-, and right-moving paths across a square, remaining
below the diagonal. It suffices for our purposes to use a crude upper bound on the Motzkin numbers:
M2k ≤ 32k and M2k+1 ≤ 3 · 32k, basically saying we have ≤ 3 ways to go at each step. This is
grossly over-counting (e.g. going above the diagonal, going farther from the diagonal than N , etc.),
but we do not mind, as it will suffice for our argument. Let us finish it first for even m = 2k and then
for odd m = 2k + 1.

Upper bounds on the (2k)th order. In estimating the error, we here consider only the 4th order and
onward, i.e. k ≥ 2, as the second order is the actual term that we want to generate (for details of the
2nd order, see Appendix 1).

In order to make sure that the sequence of transitions finishes at L−, the number of flips kf = 2f

must be even (f ∈ N, f ≤ k). Hence, the number of steps where the ancilla state stays the same is
2(k − f), an even number. A contribution from some path to Σ−(z) is a term whose norm is upper
bounded by

≤

f︷ ︸︸ ︷
N(2βmax)2 × · · · ×N(2βmax)2×

k−f︷ ︸︸ ︷
‖Helse‖2 × · · · × ‖Helse‖2

∆2k−1
. (52)

The condition R ≥
(
‖Helse‖2
2M4γmax

) 1
d

from (46), combined with N = MR and (11) implies

‖Helse‖2 ≤ 2M4Rdγmax = 4MR
∆γmax

2R
= N (2βmax)

2
. (53)

Using this and (11), we conclude that the overall contribution of a single path (52) is bounded from
above by

≤
(
N(2βmax)2

∆

)k
1

∆k−1
= 2k (Mγmax)

k 1

∆k−1
= ∆

(
2Mγmax

∆

)k
. (54)

The total number of legal paths is less than 9k. Thus, the norm of the (2k)th order is bounded from
above by

‖T2k‖ ≤ 9k∆

(
2Mγmax

∆

)k
= ∆

(
18Mγmax

∆

)k
. (55)

We have chosen ∆�M , which makes it a small contribution, as we wanted.

Upper bounds on the (2k + 1)th order. Finding a bound on the 3rd order is straightforward:

‖T3‖ = N · (2βmax) · 1

∆
· ‖Helse‖ ·

1

∆
· (2βmax) ≤

(
4Nβ2

max

) 3
2

∆2
=

√
(2Mγmax)

3

∆
, (56)

using (11). Recalling ∆ = M3Rd, we get ‖T3‖ ≤ (2γmax)3/2R−d/2 = O
(
R−d/2

)
, a small contribu-

tion.
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Analogously, we do the calculation for the general (2k + 1)th order, obtaining

‖T2k+1‖ ≤ 3 · 9k · [N(2βmax)2]f · ‖Helse‖2(k−f)+1

∆2k
≤ 3 · 9k · [N(2βmax)2]k+ 1

2

∆2k

≤ 3 · 2k · 9k ·
(
Mγmax

∆

)k√
2Mγmax∆ =

(
3
√

2
)

∆

(
18Mγmax

∆

)k+ 1
2

. (57)

Comparing with (56), we find that the last expression is also true for k = 1. Therefore, together
with (55), we can bound all of the terms in the error series by

‖Tm‖ ≤ 3
√

2 ∆

(
18Mγmax

∆

)m
2

= 3
√

2∆qm, (58)

for m ≥ 3 with q =
√

18Mγmax/∆ = O
(
M−1R−

d
2

)
. Thus, the whole series

∑∞
m=3 ‖Tm‖ is upper

bounded by a geometric series that converges, implying

∞∑
m=3

‖Tm‖ ≤ const.×∆q3 = O
(
R−

d
2

)
≤ ε, (59)

for our choice of ε when we choose a suitably large R � ε−
2
d . This concludes the proof of Claim 2.

2
In conclusion, in Eq. 10 we have ‖Σ−(z)−Heff‖ = O(ε) where the effective Hamiltonian Heff =

Htarg⊗Π−+ γΠ− (up to an overall shift) captures the target Hamiltonian. Therefore we have proven
Theorem 1. Let us have a last look at the required resources:

Remark 1 If Htarg acts on n qubits, our gadget Hamiltonian H̃ acts on

n+MR+ C (60)

� n+MR+M3Rd ε−1

� n+ max

{
Mε−

2
d +M3ε−3,

(
M4−dε−2

) 1
1−d , M

(
‖Helse‖2

2M4γmax

) 1
d

+ ε−1 ‖Helse‖2

2Mγmax

}

qubits. If the interaction graph of Htarg has degree D, then the interaction graph of the gadget Hamil-
tonian has total degree max{DR,RC} = poly(D, ε−1, ‖Helse‖,M).

This concludes the story of the 2-body gadgets with weak interactions. Let us now apply the
construction to reducing k-local to 2-body with weak interaction (k ≥ 3), and prove Corollary 1.

4 Reducing k-body to 2-body interactions (k ≥ 3)

With the new 2-body construction in mind, is it possible to use the core idea and “parallelism” of the
2-body gadgets to construct a 3-body to 2-body gadget that also uses only weak interactions? There
is a straightforward way to combine the usual 3-to-2-body gadgets with our strong-from-weak 2-body
construction as sketched in Figure 6. This is what we claim in Corollary 1. We start from the usual 3-
body to 2-body construction in [2] and replace the strong 1-local term of magnitude ∆ by interactions
with a core. Finally, we reduce the large-norm 2-body interactions in these gadgets with weak ones
using the 2-body gadgets from Section 3.
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Fig. 6. 3-local interactions from weak interactions. (a) The 3-local interaction we want to approximate. (b) The
standard construction by Oliveira and Terhal [2] with target term Aa ⊗Bb ⊗ Ff replaced by one (direct) ancilla
w in a large field ∆, interacting with the target spins via strong interactions of order ∆2/3. In addition, a and
b interact with strength of order ∆1/3 to compensate for the error term at 2nd order perturbation theory. (c) The
local fields are replaced by interactions with a core. (d) Each strong 2-local interaction term can be reduced to
many O(1) terms by our 2-body gadget construction, using another common core.

For general k-body to 2-body reduction, we can resort to the construction from [5], where the
gadget Hamiltonian consists of only 2-local interaction terms (i.e. no extra 1-local terms). This makes
it easy to directly apply our new 2-body gadgets and reduce the gadget Hamiltonian to one with only
weak interactions.

Let us conclude with an open question. Although it is possible to apply our construction to reduce
any k-body target Hamiltonian to a 2-body one with arbitrarily weak interactions, the qubit overhead
is likely exponential in k. With the original constructions proposed in [1, 2] it is possible to use O(k)

qubits with an exponential overhead in interaction strengths [8]. Perhaps a middle ground between
the two constructions could be sought such that both the interaction strength and qubit overheads are
polynomial in k.
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Appendix A The second order perturbation term for 2-body gadgets

In this Appendix, for the purpose of illustration we calculate the upper bound on the norm of the
second order in the perturbation series for the self-energy for our 2-body gadget construction from
Section 3.2. The interested reader can find similar bounds for the fourth and sixth orders as well in
the arXiv version of this paper.

The 2nd order is what contributes to the effective Hamiltonian, which has M terms of norm O(1)

there. Let us see what we get here. From (49) we see that T2 = 1
z−∆

∑M
j=1Rβ

2
j (Aaj −Bbj )2. Every

term at the second order corresponds to a transition of the form

L− → |y〉 → L−. (A.1)
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Here |y〉 is a state where only one direct ancilla qubit w is flipped to |1〉 while the others remain at
|0〉. From our construction of V in (13), observe that each term that involves a particular direct ancilla
w

(j)
i is associated with a corresponding coefficient βj . Therefore all the transitions of the form (A.1)

involving w(j)
i would contribute a term of the form

βj(Aaj −Bbj )︸ ︷︷ ︸
V−+

· 1

z −∆︸ ︷︷ ︸
G+

·βj(Aaj −Bbj )︸ ︷︷ ︸
V+−

(A.2)

to the perturbative expansion Σ−(z). Note that because the Hamming weight of y is h(y) = 1, the
resolvent component G+ contributes a factor 1

z−h(y)∆ = 1
z−∆ . Since R direct ancillas are introduced

for the target 2-local term involving aj and bj , the total contribution of the direct ancillas used for
generating the j-th target term would be multiplied by a factor of R. Summing over all the target
terms from j = 1 to M , we get the current form of T2. Assuming Aaj and Bbj are both unit-norm
operators,

‖T2‖ ≤
1

∆
·MR(2βmax)2 = 2Mγmax, (A.3)

using the choice βi =
√

γi∆
2R . This is just what we expected (because the norm of what we are

generating should be something on the order of M ).
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