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In the lattice version of the multicomponent Widom-Rowlinson (WR) model, each site can be either empty
or singly occupied by one of M different particles, all species having the same fugacity z. The only nonzero
interaction potential is a nearest-neighbor hard-core exclusion between unlike particles. For M < M0 with some
minimum M0 dependent on the lattice structure, as z increases from 0 to ∞ there is a direct transition from the
disordered (gas) phase to a demixed (liquid) phase with one majority component at z > zd (M). If M � M0, there
is an intermediate ordered “crystal phase” (composed of two nonequivalent even and odd sublattices) for z lying
between zc(M) and zd (M) which is driven by entropy. We generalize the multicomponent WR model by replacing
the hard-core exclusion between unlike particles by more realistic large (but finite) repulsion. The model is solved
exactly on the Bethe lattice with an arbitrary coordination number. The numerical calculations, based on the
corner transfer matrix renormalization group, are performed for the two-dimensional square lattice. The results
for M = 4 indicate that the second-order phase transitions from the disordered gas to the demixed phase become
of first order, for an arbitrarily large finite repulsion. The results for M � M0 show that, as the repulsion weakens,
the region of the crystal phase diminishes itself. For weak enough repulsions, the direct transition between the
crystal and demixed phases changes into a separate pair of crystal-gas and gas-demixed transitions; this is an
example of a disorder-disorder reentrant transition via an ordered crystal phase. If the repulsion between unlike
species is too weak, the crystal phase disappears from the phase diagram. It is shown that the generalized WR
model belongs to the Ising universality class.
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I. INTRODUCTION

The nearest-neighbors lattice gas analogy of Onsager’s
solution of the two-dimensional (2D) Ising model enabled
one to understand physical implications of the spontaneous
breaking of the particle-hole symmetry on the existence and
critical properties of high-density liquid and low-density vapor
phases [1].

As concerns continuum fluids in thermal equilibrium,
Widom and Rowlinson [2] introduced a simple model of iden-
tical particles (molecules) living in an infinite ν-dimensional
space of points r ∈ V → Rν . There is a sphere of radius R and
volume v0 around the center of each molecule. The potential
energy U associated with a given configuration r1, . . . ,rN of
N molecules is defined by

U (r1, . . . ,rN ) = ε

[
V (r1, . . . ,rN )

v0
− N

]
, (1)

where V (r1, . . . ,rN ) denotes the volume covered by the
corresponding N (in general penetrating) spheres and ε > 0
is some energy constant. Due to the obvious inequalities
v0 � V (r1, . . . ,rN ) � Nv0, the potential energy is bounded
as follows:

−(N − 1)ε � U (r1, . . . ,rN ) � 0. (2)

The lower bound ensures a correct thermodynamics; the upper
bound tells us that the short-range forces among molecules
are purely attractive. The model is studied within the grand
canonical ensemble characterized by the dimensionless inverse
temperature θ = ε/(kBT ) and the particle fugacity z. The
corresponding particle density is given by ρ(z,θ ) = v0〈N〉/V ;
z is normalized so as to be asymptotically equal to ρ in the
ideal gas limit ρ → 0.

The symmetry of the Widom-Rowlinson (WR) fluid, whose
spontaneous breaking is responsible for the existence of liquid
and vapor phases, is hidden in the original formulation.
It becomes transparent after mapping (in a thermodynamic
sense) the WR model onto a WR mixture of two kinds
of molecules σ ∈ {A,B} interacting in a pairwise manner
U ({r}) = ∑

i<j uσiσj
(|ri − rj |), where the particles of the

same species do not interact whereas the unlike species interact
with a hard-core repulsion at distances smaller than 2R,

uσσ ′(r) =
{∞ if σ �= σ ′ and r < 2R,

0 otherwise.
(3)

Let us consider the case of equivalent species fugacities
zA = zB = z. At very low z, the system behaves like the
ideal gas with just one pure (mixed) phase with equivalent
species densities ρA = ρB . At very large z, since unlike
molecules experience an infinitely strong repulsion, the mixed
phase suffers from packing effects which are substantially
reduced in a demixed phase with a single majority compo-
nent. Consequently, the A − B symmetry is broken and the
WR mixture can exist in two different homogeneous (i.e.,
translationally invariant) pure phases: the A-rich phase with
δρ ≡ ρA − ρB > 0 or the B-rich phase with δρ < 0. The two
phases become equivalent (δρ = 0) at the “demixing” critical
point zd . For dimensions ν � 2, the proof of the existence of
more than one pure thermodynamic phase for sufficiently large
z was given by Ruelle [3] using the Peierls contour method.
Ruelle’s proof was generalized by Lebowitz and Lieb [4] to the
case when uAB(r) (r < 2R) is large positive but not infinite.
Integral equation theories for the pair correlation functions of
the WR mixture were developed in Refs. [5] and [6].

The multicomponent generalization of the WR A − B

mixture consists in considering molecules of M different
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types σ = 1, . . . ,M with the same fugacity z. The molecules
interact in a pairwise manner; the only interaction is the
hard-sphere repulsion between any two particles of unlike
species like in (3). It was shown [7,8] that in dimensions
ν � 2 the WR model with any finite number of components
M exhibits the demixing phase transition at some zd (M); in a
pure demixed phase, the homogeneous density of just one of
the components is dominant, say ρ1 > ρ2 = ρ3 = · · · = ρM .
A hard (hyper-)cube version of the M-component WR model
was studied in the limit of infinite dimensionality ν → ∞ [9];
the calculation of thermodynamic functions within the second
virial coefficient is exact in that limit. It turns out that for
M � 31 the transition from the mixed phase at small values
of z to the demixed phase at large values of z is preempted by
solidification at intermediate values of z, zc(M) < z < zd (M).
In the corresponding crystal phase, all species are equivalent
(ρ1 = ρ2 = · · · = ρM = ρ/M with ρ being the total density
of molecules), but the density ρ ≡ ρ(r) varies periodically in
space, i.e., the translational symmetry is broken. The origin of
this phenomenon is purely entropic: for large M it pays the
system to create a periodic structure of alternating dense and
sparse regions, where the particles in the dense regions are less
restricted by the hard-core repulsions coming from particles
in the sparse regions.

In the lattice version of the multicomponent WR
model [7,8], each lattice site i can be either empty {σi =
0,z(0) = 1} or singly occupied by a particle of type σi =
1,2, . . . ,M , all particles having the same fugacity z(1) =
z(2) = · · · = z(M) ≡ z. The potential energy of a state con-
figuration {σi} reads as U ({σi}) = ∑

〈i,j〉 u(σi,σj ), where the
interaction potential between nearest-neighbor sites 〈i,j 〉 is
given by

u(σi,σj ) =
{∞ if σi �= σj and σi �= 0,σj �= 0,

0 otherwise.
(4)

The number density of species σ = 1, . . . ,M at site i will be
denoted by ρi(σ ), the total density of particles at site i by
ρi = ∑M

σ=1 ρi(σ ).
The phase diagram of the lattice WR model is similar to

that of the continuous WR model. In dimensions ν � 2 and
for any finite number of components M , the lattice WR model
exhibits the demixing phase transition at some zd (M); in a pure
demixed phase, the site-independent density of just one of the
components is dominant, say ρ(1) > ρ(2) = · · · = ρ(M). The
effect of varying exclusion diameter between different species
was studied in [10]. When the number of components M is
equal to or larger than some minimum M0, an entropy-driven
crystal phase exists for zc(M) < z < zd (M); the transition at
zc(M) is always of second order. In the crystal phase, the
average total particle densities on the even and odd sublattices
are unequal, ρe �= ρo, while the average densities of the species
σ = 1,2, . . . ,M are the same within a given sublattice, i.e.,
ρe(σ ) = ρe/M and ρo(σ ) = ρo/M . The rigorous upper bound
M0 < 276 derived for the square lattice [8] was surprisingly
large. The exact solution for the Bethe lattice of coordination q

gives M0 = [q/(q − 2)]2, which would suggest more realistic
M0 ∼ 4 for q = 4, while the Monte Carlo (MC) simulations
for the square lattice imply M0 = 7 [11]. The extension of
the hard-core exclusion to next-to-nearest neighbors leads to

analogous phases whose numbers and characters depend on
the specific lattice geometry [12].

The infinite hard-core potential is a mathematical simpli-
fication of real interparticle interactions. In this paper, we
generalize the multicomponent WR model by replacing the
hard-core exclusion between unlike species by an arbitrary
repulsion. Namely, the infinity in the interaction potential (4)
between unlike species on the nearest-neighbor sites is
replaced by U � 0. The corresponding interaction Boltzmann
factor

j = exp(−βU ) (5)

lies in the interval [0,1]. The case j = 0 (U → ∞) cor-
responds to the standard multicomponent WR model. The
opposite extreme case j = 1 (U = 0) is equivalent to the
noninteracting M-component lattice gas of singly occupied
lattice sites, with the trivial grand partition function for a lattice
of N sites:

	 = (1 + Mz)N. (6)

We shall concentrate on the neighborhood of the WR point j =
0, i.e., on large but finite repulsions, and study fundamental
effects of nonzero j on the phase diagram.

The model is solved exactly for the Bethe lattice with an
arbitrary coordination number q. The numerical calculations,
based on the corner transfer matrix renormalization group
(CTMRG), are performed for the 2D square lattice. The results
for M = 4 indicate that the second-order phase transitions
from the disordered gas to the demixed phase become of
first order for an arbitrarily small positive j . The results for
M � M0 show that, as the repulsion weakens, the region of
crystal phase diminishes itself. For weak enough repulsions,
the direct transition between the crystal and demixed phases
changes into a separate pair of crystal-gas and gas-demixed
transitions; this is an example of a disorder-disorder reentrant
transition via an ordered crystal phase. If the repulsion between
unlike species is too weak, the crystal phase disappears from
the phase diagram.

A reentrant fluid-solid-fluid transition was observed in
previous studies of systems with soft cores and two repulsive
interaction ranges, like the two-scale ramp potential [13,14] or
the square well–square shoulder model [15,16]. The computer
simulations of the purely repulsive ramp potential [17,18]
show a structural anomaly, namely, the melting of the solid
phase when the pressure is increased along an isotherm. This
phenomenon was detected also in Stillinger’s Gaussian core
model [19,20] and the antiferromagnetic Ising model with a
nearest-neighbor interaction and a staggered mean field [21],
and later on in models with one-scale interactions [22,23]. The
structural anomaly is shared by real physical systems such as
water, silica, or phosphorus [24,25]. Different definitions of the
structural anomaly in fluids, which can lead to very different
results, was discussed in [26]. In all mentioned papers, the
fluid-solid and solid-fluid transitions are discontinuous (of first
order), with regions of the phase coexistence. On the other
hand, the disorder-crystal and crystal-disorder transitions of
the generalized WR model are always continuous (of second
order).

The paper is outlined as follows. In Sec. II we present
the exact solution of the model on the Bethe lattice with the
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coordination number q. For the 2D square lattice, the CTMRG
technique is explained in Sec. III A, and Sec. III B brings the
numerical results. Conclusions are given in Sec. IV.

II. BETHE LATTICE COMPUTATION

We consider the Bethe lattice of (locally equivalent) sites
deep inside a tree, with coordination number q. The present
calculation is based on the exact solution of an “inverse
problem” for simply connected lattice structures [27,28]; for
details in the j = 0 case, see Ref. [11].

Every site i of the Bethe lattice is an articulation point of
multiplicity q. Site i can be either empty, σ = 0, or occupied
by one of the particles of M different types, σ = 1, . . . ,M . The
corresponding set of fugacities reads as zi(0) = 1 and zi(σ ) =
z for σ = 1, . . . ,M . For a given statistical model with two-site
interactions between nearest-neighbor sites, we calculate the
mean particle densities {ρi(σ )}, constrained by

M∑
σ=0

ρi(σ ) = 1, (7)

for each lattice site i. The direct problem, find {ρi(σ )} for
given {zi(σ )}, is nonlocal. The inverse problem, find {zi(σ )}
for prescribed {ρi(σ )}, is local in the sense that zi(σ ) depends
on ρi(σ ) at the same site and on {ρj (σ )} at the nearest-neighbor
sites j = 1, . . . ,q. According to [27,28], the inverse solution
for the Bethe lattice can be constructed from local inverse
problems for nearest-neighbor pairs of sites.

(1) Let z
〈i,j〉
i (σ ) [z〈i,j〉

j (σ )] be the set of fugacities at site
i (j ) which produce the given density profiles ρi(σ ) and ρj (σ )
at nearest-neighbor sites 〈i,j 〉. The fugacities at the original
Bethe lattice are then expressible as

zi(σ ) =
[

ρi(0)

ρi(σ )

]q−1 q∏
j=1

z
〈i,j〉
i (σ ). (8)

(2) Similarly, denoting by 	i the one-site and by 	〈i,j〉 the
two-site grand partition function, the grand potential on the
whole lattice is given by

β
 = −
∑
〈i,j〉

ln 	〈i,j〉 + (q − 1)
∑

i

ln 	i. (9)

In the two-site problems, the expected symmetry breaking
of the particle densities must be reflected via an analogous
symmetry breaking in the corresponding fugacities.

A. Crystal phase

In the crystal phase, there are two alternating even and
odd sublattices. For the particle states σ = 1, . . . ,M , we set
ρi(σ ) = ρe for even sites and ρi(σ ) = ρo for odd sites. In the
two-site 〈i,j 〉 problem, we have z

〈i,j〉
i (0) = z

〈i,j〉
j (0) = 1 and

z
〈i,j〉
i (σ ) = z1, z

〈i,j〉
j (σ ) = z2 for σ = 1, . . . ,M . The two-site

grand partition function 	〈i,j〉 ≡ 	〈1,2〉 reads as

	〈1,2〉 = 1 + M(z1 + z2) + Mz1z2 + M(M − 1)jz1z2, (10)

where the first term comes from two empty sites, the second
one from one empty site, and the other occupied by an arbitrary
particle, the third one from two particles in the same state,

and the fourth one from two particles in different states. The
corresponding one-site particle densities are given by

ρ1	
〈1,2〉 = z1 + z1z2 + (M − 1)jz1z2, (11a)

ρ2	
〈1,2〉 = z2 + z1z2 + (M − 1)jz1z2. (11b)

After some algebra, these equations determine z1 and z2 as
functions of the particle densities as follows:

z1 = M(ρ1 + ρ2) − 1 + (ρ1 − ρ2)[1 + j (M − 1)] + √
D

2(1 − Mρ1)[1 + j (M − 1)]
,

(12a)

z2 = M(ρ1 + ρ2) − 1 + (ρ2 − ρ1)[1 + j (M − 1)] + √
D

2(1 − Mρ2)[1 + j (M − 1)]
,

(12b)

where the plus sign of the square root of the discriminant

D = [1 − (M − 1)(1 − j )(ρ1 + ρ2)]2

+ 4ρ1ρ2(M − 1)(1 − j )[1 + j (M − 1)] (13)

is fixed by the condition z1,2 → 0 for ρ1,2 → 0. For 	〈1,2〉, we
get

	〈1,2〉 = M(M − 1)(1 − j )(ρ1 + ρ2)

2(1 − Mρ1)(1 − Mρ2)[1 + j (M − 1)]

+ 2[1 + j (M − 1)] + M(
√

D − 1)

2(1 − Mρ1)(1 − Mρ2)[1 + j (M − 1)]
. (14)

The original lattice fugacity in (8) does not depend on site
i for all particle states σ = 1, . . . ,M , zi(σ ) = z. Using the
density constraint (7), we obtain one equation for each of two
sublattices:

z =
(

1 − Mρ1

ρ1

)q−1

z
q

1 , (15a)

z =
(

1 − Mρ2

ρ2

)q−1

z
q

2 . (15b)

The grand potential per site βω ≡ β
/N is determined
from (9) as

βω = −q

2
ln 	〈1,2〉 − q − 1

2
ln[(1 − Mρ1)(1 − Mρ2)]. (16)

Introducing the new variables s = (ρ1 + ρ2)/2 and t =
ρ1 − ρ2, Eqs. (15a) and (15b) can be written as

z = z(s,t) = z(s, − t). (17)

They always have a trivial solution with t = 0, which
corresponds to the disordered phase of equivalent even and
odd sublattices, ρ1 = ρ2. A nontrivial solution t �= 0 exists if
s ∈ [sL

c ,sU
c ], where the lower and upper bounds are given by

the equation ∂z(s,t)/∂t |
t=0

= 0 [11]:

sL
c = 1

2M
(1 −

√
E), (18a)

sU
c = 1

2M
(1 +

√
E), (18b)
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with

E = 1 − 4M(q − 1)

(1 − j )q2(M − 1)
. (19)

The corresponding critical fugacities read

zL
c = Mq−1

[1 + j (M − 1)]q
1 − √

E

1 + √
E

(
(q − 2)/q − √

E

1 − √
E

)q

,

(20a)

zU
c = Mq−1

[1 + j (M − 1)]q
1 + √

E

1 − √
E

(
(q − 2)/q + √

E

1 + √
E

)q

.

(20b)

The value of the nontrivial t changes continuously from 0 at
z � zL

c to some nonzero symmetry-broken value ±T in the
interval (zL

c ,zU
c ) and finally goes again continuously to 0 at zU

c .
For z > zU

c , the disordered phase with the trivial t = 0 takes
place.

The crystal phase can exist only if the discriminant E � 0.
This means that for the fixed coordination number q and the
Boltzmann factor j < (q − 2)2/q2, the number of components
M must be equal to or larger than some minimum M0, M �
M0, given by

M0 = (1 − j )q2

(q − 2)2 − jq2
. (21)

Note that M0 → ∞ just at j = (q − 2)2/q2. Equivalently,
for the fixed coordination number q and the number of
components M > (q − 2)2/q2, the crystal phase exists only
if the Boltzmann factor j � jmax, where the maximum value
jmax is given by

jmax = 1 − 4M(q − 1)

q2(M − 1)
. (22)

In the limit of M → ∞, we have the asymptotic expansion

jmax = (q − 2)2

q2
− 4(q − 1)

q2

1

M
+ O

(
1

M2

)
. (23)

B. Demixed phase

In the demixed phase, all sites are equivalent but one of the
components, say σ = 1, is dominant. This means that the den-
sity of 1-particles ρi(1) = ρ(1) is larger than ρi(σ ) = ρ(2) for
all remaining particle states σ = 2, . . . ,M . In the two-site 〈i,j 〉
problem, we set z

〈i,j〉
i (0) = z

〈i,j〉
j (0) = 1, z〈i,j〉

i (1) = z
〈i,j〉
j (1) =

z(1) for particles of type 1 and z
〈i,j〉
i (σ ) = z

〈i,j〉
j (σ ) = z(2) for

all particles of type σ = 2, . . . ,M . The two-site grand partition
function is given by

	〈1,2〉 = 1 + 2z(1) + z(1)2 + 2(M − 1)z(2)

+ (M − 1)z2(2) + 2(M − 1)jz(1)z(2)

+ (M − 1)(M − 2)jz2(2). (24)

The corresponding particle densities are given by

ρ(1)	〈1,2〉 = z(1) + z2(1) + (M − 1)jz(1)z(2), (25a)

ρ(2)	〈1,2〉 = z(2) + z2(2) + jz(1)z(2) + (M − 2)jz2(2).

(25b)

0 2 4 6 8 10
z

0

0.05

0.1

0.15

j

crystal

disorder

demixed

FIG. 1. (Color online) The phase diagram in the (z,j ) plane for
the generalized WR model on the Bethe lattice with the coordination
number q = 4 and the number of components M = 7.

Considering in (8) zi(σ ) = z for all sites i and particle states
σ = 1,2, . . . ,M , we get

z =
(

1 − ρ(1) − (M − 1)ρ(2)

ρ(1)

)q−1

z(1)q, (26a)

z =
(

1 − ρ(1) − (M − 1)ρ(2)

ρ(2)

)q−1

z(2)q . (26b)

The grand potential per site is obtained in the form

βω = −q

2
ln 	〈1,2〉 − (q − 1) ln[1 − ρ(1) − (M − 1)ρ(2)].

(27)
The above set of nonlinear equations can be solved only nu-
merically. The trivial disordered solution ρ(1) = ρ(2) always
exists. If more real solutions exist, the one with the minimal
βω dominates.

Let Mt � M0 denote the “transition” number of compo-
nents, such that the direct transition from the disordered to
the demixed phase is of second order for M � Mt and of first
order for M > Mt . For the Bethe lattice of the coordination
number q, we have the trivial value Mt = 2 independent of j .

In Fig. 1 we present the phase diagram in the (z,j ) plane
for our generalized WR model on the Bethe lattice with the
coordination number q = 4 and the number of components
M = 7. Note that from Eq. (21) we have M0 = 4 for j = 0
and M0 = 7 for j = 1/8, i.e., there is no crystal phase for
M = 7 components if j > 1/8. The second-order transition
line from the disorder to crystal phases, given by formula (20a),
is depicted by the solid curve. The second-order transition line
from the crystal to disorder phases, given by formula (20b),
is depicted by the dashed curve; along this line the system
exhibits the reentrant phenomenon. The transitions from the
crystal or disordered phases to the demixed phase take place
along the dash-dotted curve. It is seen that for small j � 0.105,
the successive order in which the phase transitions takes place
is basically the same as in the standard WR model with j =
0. For weak enough repulsions j ∈ [0.105,0.125), the direct
transition between the crystal and demixed phases changes
into a separate pair of crystal-gas and gas-demixed transitions;
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this is an example of a disorder-disorder reentrant transition
via an ordered crystal phase. If the repulsion between unlike
species is too weak j > 1/8, the crystal phase disappears from
the phase diagram.

III. CTMRG METHOD

A. Technique

On the square lattice, the free energy Z can be decomposed
into four corner transfer matrices C, each representing the
Boltzmann weight of a quadrant of the lattice system Z =
Tr C4 [29]. The fourth power of the corner transfer matrix
can be then interpreted as the density matrix ρ = C4. The
concept of the renormalization can be applied to this density
matrix [30–32]. The CTMRG method combines the corner
transfer matrix representation of the density matrix, the density
matrix renormalization, and an accurate approximation of
the free energy for a large-scale system in terms of an
iterative numerical calculation [33–35]. During the process,
the space of states is truncated. The dimension of the truncated
space is denoted by D; the larger the value of D used, the more
accurate results are obtained.

We consider a square of lattice sites with dimension L × L.
There is a central row and N additional rows on both sides, so
L = 2N + 1 where N counts for the number of iterations of the
transfer matrix. When the density matrix ρ(N) is obtained for a
sufficiently large system, we calculate the expectation values
of microscopic variables at the center of the system, which
represents bulk thermodynamics deep inside the system. For
example, the spontaneous particle density for our crystal phase
is obtained as follows:

m(N)
c = 1

Tr ρ(N)
Tr{[2n(i,j ) − 1](−1)i+j ρ(N)}, (28)

where {i,j} are the coordinates of the central point and the
function n(i,j ) = 0 if the central site is empty and n(i,j ) = 1
otherwise. This expression reproduces correctly mc as the
sublattices A and B difference mA − mB . As the order
parameter for the demixed phase, we consider

md = |m1e−iφ1 + · · · + mMe−iφM |, (29)

where mσ is the occupation of the particle state σ =
1,2, . . . ,M and the angle φσ = 2π (σ − 1)/M . The quantity
md vanishes in the disordered phase with m1 = m2 = · · · =
mM and attains a positive value if one of the components is
dominant. In the limit z → ∞, md = 1 for any value of M � 2
and j ∈ [0,1].

In order to detect the position of the phase transitions,
special quantities exhibiting singular behavior near the phase
transition, like the specific heat, are usually used. Here we use
the von Neumann entropy, defined as

SN = − Tr ρ ln ρ. (30)

Close to a second-order critical point, the von Neumann
entropy can be expressed as [36,37]

SN ∼ c

6
ln ξ, (31)

where c is the central charge and ξ is the correlation length of
the particle system. Consequently, the von Neumann entropy

has a logarithmic divergence at the critical point. At a first-
order transition point, it exhibits a discontinuity.

As concerns critical exponents, we shall calculate the plot of
the spontaneous density around the critical point to obtain the
exponent β. Moreover, in two dimensions and at the critical
point, we shall study the finite-size scaling of the particle
density

m(L) ∝ L−η/2, large sample size L, (32)

to deduce the exponent η [34]. Using, e.g., the numerical
logarithmic derivative

ηeff(L) = −2
ln[m(L + 2)] − ln[m(L)]

ln(L + 2) − ln(L)
, (33)

we can extract the critical exponent η as the limit η =
limL→∞ ηeff(L).

B. Numerical results

The MC simulations for j = 0 in Ref. [11] indicate that
at the direct disorder-demixed phase transition zd , there is
no jump in the density for M � 4 (so the transition is of
second order) while there is a jump in density for M � 5.
In other words, Mt = 4 for the standard WR model on the
square lattice. For M = 4 particle components, an arbitrarily
large (but finite) repulsion between different species causes
the disorder-demixed transition to become of first order. This
fact is documented in Fig. 2 on the plot of the von Neumann
entropy versus the fugacity for the generalized WR model with
M = 4 components and a large finite repulsion j = 0.001. The
solid (black) curve connects data evaluated with boundary
conditions fixed at the particle state dominant in the demixed
phase, while the dashed (red) curve connects data for free
boundary conditions. We see that the two curves calculated
with distinct boundary conditions produce a hysteresis inside
which the disorder and demixed phase coexist, as is usual in
the case first-order phase transitions [38]. The corresponding
plot of the order parameter md (29) is presented in Fig. 3. For
M = 3 components, the second-order phase transition takes
place also for small j > 0.

3.204 3.205 3.206 3.207 3.208 3.209
z

0.8

1

1.2

1.4

1.6

S N

FIG. 2. (Color online) The von Neumann entropy of the disorder-
demixed phase transition for the generalized WR model with M = 4
components and a large finite repulsion j = 0.001. The solid and
dashed curves correspond to fixed and free boundary conditions,
respectively.
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FIG. 3. (Color online) The spontaneous particle density of the
disorder-demixed transition for M = 4 and j = 0.001.

The MC simulations for j = 0 in Ref. [11] indicate that
the standard WR model on the square lattice exhibits the
crystal phase at and beyond M0 = 7 particle components. In
Fig. 4, we plot by the solid curve the von Neumann entropy
SN versus the fugacity z for that standard j = 0 WR model
with M = 7 components. There are two singularities. The
logarithmic one on the left indicates the continuous (second-
order) disorder-crystal phase transition, and the right one
indicates the discontinuous (first-order) crystal-demixed phase
transition. For the generalized WR model with j = 0.018
(dashed curve), there are three singularities. The one in the
middle corresponds to the reentrant transition from the crystal
to gas phase. The corresponding plots of the order parameters
mc (28) and md (29) are presented in Fig. 5.

In Fig. 6, the phase diagrams in the (z,j ) plane are presented
for the generalized WR model with M = 7 (open symbols) and
M = 10 (full symbols) components. The disorder-crystal and
crystal-disorder phase transitions are represented by circles,
the crystal-demixed and disorder-demixed phase transitions
are denoted by squares. The phase diagrams resemble the one
for the Bethe lattice in Fig. 1.

For the generalized M-component WR model on the Bethe
lattice with the coordination number q in Sec. II, we have

0 1 2 3 4 5 6
z

0

0.2

0.4

0.6

0.8

1

S N

FIG. 4. (Color online) The von Neumann entropy SN versus the
fugacity z for the WR model with M = 7 particle components. The
solid curve corresponds to an infinite j = 0 repulsion between unlike
species, the dashed curve corresponds to a finite repulsion j = 0.018.
The dimension of truncated space of states is D = 50.

0 1 2 3 4 5 6
z

0

0.2

0.4

0.6

0.8

m
c , 

m
d

FIG. 5. (Color online) The crystal order parameter mc (left frag-
ment) and the demixed order parameter md (right fragment) for
the Widom-Rowlinson model with M = 7 components. The solid
and dashed curves correspond to j = 0 and j = 0.018, respectively.
D = 50.

defined the maximal repulsion Boltzmann factor jmax for which
the crystal phase exists. For q = 4, the exact formula (22)
implies

jmax = 1

4
− 3

4

1

M − 1
∼

M→∞
1

4
− 3

4

1

M
. (34)

The corresponding dependence of jmax on the number of
components M for the Bethe lattice with q = 4 is represented
in Fig. 7 by a dashed curve. The solid curve is the (inverse)
polynomial fit of the numerical CTMRG data for the square
lattice (solid circles). In the asymptotic limit M → ∞, the fit
implies that

jmax ∼
M→∞

0.15 − 2.9

M1.6
. (35)

At the critical point, the correlation length of the particle
system ξ diverges in the bulk and ξ ∝ L for a finite system of
characteristic length L. According to Eq. (31), defining

ceff(L) = 6
∂SN

∂(ln L)
, (36)

the central charge c of the critical model is obtained as
the limit c = limL→∞ ceff(L). In what follows, we shall

0 2 4 6 8 10
z

0

0.02

0.04

0.06

0.08

j

FIG. 6. (Color online) The critical lines in the (z,j ) plane for the
generalized WR model with M = 7 (open symbols) and M = 10 (full
symbols) components. D = 30.
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M
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0.25
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ax

FIG. 7. (Color online) The maximal repulsion Boltzmann factor
j for which the crystal phase exists in the generalized WR model on
the square lattice with M components. The dashed curve corresponds
to the exact Bethe result (22) for the coordination number q = 4. The
solid curve is the (inverse) polynomial fit of the numerical CTMRG
data (solid circles) which converges to jmax = 0.15 as M → ∞.
D = 30.

restrict ourselves to the WR model on the square lattice
with M = 7 components. For j = 0, there is the only
critical point zc = 1.661 96 at which the disorder-crystal
phase transition takes place. For j = 0.018, there is the
disorder-crystal phase transition at zL

c = 2.585 45 and the
reentrant crystal-disorder phase transition at zU

c = 4.474 55.
In Fig. 8, we plot the dependence of ceff on the system size
L for the above three critical points: the solid curve stands
for (j = 0,zc = 1.661 96), the dashed curve corresponds
to (j = 0.018,zL

c = 2.585 45), and the dash-dotted curve
corresponds to (j = 0.018,zU

c = 4.474 55). It is seen that
as L goes to infinity, all three curves converge to the value
c = 1/2, which is the central charge of the Ising universality
class. Note that due to relatively large values of L we have to
increase the dimension of the truncated space to D = 300.

To confirm the Ising universality class, we have determined
the critical index η by studying the convergence of ηeff ,
given by formula (33), as L → ∞. The results for the WR

0 200 400 600 800 1000
L

0.5

0.55

0.6

0.65

0.7

c ef
f

FIG. 8. (Color online) The WR model on the square lattice with
M = 7 components. The dependence of ceff (36) on the system size
L. The solid curve stands for the standard j = 0 WR model at
zc = 1.661 96, the dashed curve corresponds to (j = 0.018,zL

c =
2.585 45), and finally the dash-dotted curve corresponds to (j =
0.018,zU

c = 4.474 55). As L → ∞, all three curves converge to the
central charge c = 1/2 of the Ising universality class. D = 300.
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FIG. 9. (Color online) The WR model on the square lattice with
M = 7 components. The dependence of ηeff (33) on the system size
L. The solid, dashed, and dash-dotted curves stand for the (j =
0,zc = 1.661 96), (j = 0.018,zL

c = 2.585 45), and (j = 0.018,zU
c =

4.474 55) critical points, respectively. All three curves converge to
the Ising value η = 1/4. D = 300.

model with M = 7 components at the three considered critical
points are presented in Fig. 9. As before, the solid, dashed,
and dash-dotted curves stand for the (j = 0,zc = 1.661 96),
(j = 0.018,zL

c = 2.585 45), and (j = 0.018,zU
c = 4.474 55)

critical points, respectively. As L → ∞, all three curves
converge close to the 2D Ising value η = 1/4.

As concerns the crystal order parameter mc, we anticipate
the Ising behavior

mc ∝ |T − Tc|β, β = 1
8 , (37)

close to the critical temperature Tc. Since by definition the
fugacity z = exp(μ/kBT ) with μ being the chemical potential,
it holds that T ∝ 1/ ln(z). We can rewrite the relation (37) as
follows:

m8
c ∝ |1/ ln z − 1/ ln zc|. (38)

For the generalized WR model with M = 7 components and
j = 0.018, the plot of m8

c as the function of 1/ ln z − 1/ ln zc

is drawn in Fig. 10; the left data set corresponds to the critical
point zU

c = 4.474 55, and the right data set corresponds to

-0.04 -0.02 0 0.02
1/ln(z)-1/ln(zc)

0

0.002

0.004

0.006

0.008

0.01

m
c8

FIG. 10. (Color online) The generalized WR model with M =
7 components and j = 0.018. The plot of m8

c as the function of
1/ ln z − 1/ ln zc at the critical points zU

c = 4.474 55 (left data) and
zL

c = 2.585 45 (right data). The linear dependence confirms the Ising
critical exponent β = 1/8. D = 70.
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the critical point zL
c = 2.585 45. We see that in both cases

the plot is linear, which confirms the Ising-like behavior (37)
with the critical index β = 1/8. The knowledge of two critical
exponents η and β determines all remaining critical indices
via the scaling relations [29,39,40].

IV. CONCLUSION

The lattice version of the multicomponent WR model
acquired a great deal of interest because it exhibits, besides the
usual demixed phase transition, also the crystal phase driven by
entropy. The initial extremely large rigorous estimates of the
minimum (number of components to have the crystal) M0 were
later replaced by much smaller values, 4 for the Bethe lattice
with coordination q = 4 and 7 for the 2D square lattice [11],
making the WR model of practical interest.

In the original WR model, the nearest-neighbor interaction
of unlike species corresponds to an infinite hard-core potential,
with the corresponding Boltzmann factor j = 0. In real
physical systems with a finite repulsion potential, j is always
positive. In this paper, we generalized the multicomponent
WR model to an arbitrary repulsion j ∈ [0,1]. The model was
studied in the region close to j = 0, namely, by using its exact
solution on the Bethe lattice (with the coordination number
q = 4) and the numerical CTMRG technique for the square
lattice. The consideration of nonzero j has two fundamental
effects on the phase diagram.

For M < M0, there is a direct transition between the
disordered and demixed phases. In the original WR model with
j = 0, the transition is of second order for M = 2,3,4. It was
shown here that for M = 4 the consideration of a very small
value of j = 0.001 changes this transition to the first-order
one (see Figs. 2 and 3). For M = 3, the second order of the
disorder-demixed transition remains unchanged for small j .

The second fundamental effect concerns the crystal phase.
In the original WR model with j = 0, if M � M0 there are
two phase transitions as the fugacity z goes from 0 to ∞: the
disorder-crystal phase transition at zc and the crystal-demixed
phase transition at zd . In the generalized WR model with M �
M0, there exists certain intervals of j values in which the
system undergoes three phase transitions: the disorder-crystal
transition at zL

c , the crystal-disorder transition at zU
c , and finally

the disorder-demixed transition at zd . This reentrant disorder-
disorder phenomenon is interesting not only from an academic
point of view. If the repulsion between unlike species is too
weak, the crystal phase disappears from the phase diagram. For
all studied critical points, the generalized WR model belongs
to the Ising universality class with the central charge c = 1/2
and the critical indices β = 1/8 and η = 1/4.
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