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Simulating long-distance entanglement in quantum spin chains by superconducting flux qubits
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We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of
long-distance entanglement (LDE), namely, a finite ground-state entanglement between the end spins of a
quantum spin chain with open boundary conditions. As such, LDE can be considered an elementary precursor of
edge modes and topological order. We discuss two possible implementations which simulate open chains with
uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases,
we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring
LDE. In the first case, the adiabatic manipulation and the Ising interactions are realized using dc currents, while
in the second case microwaves fields are used to control the smoothness of the transformation and to realize the
effective XX interactions. We demonstrate the adiabatic preparation of the end-to-end entanglement in chains of
four qubits with realistic parameters and on a relatively fast time scale.
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I. INTRODUCTION

The inextricable complexity of many-body quantum sys-
tems can be efficiently analyzed with the aid of quantum
simulators [1,2], namely, quantum devices consisting of many
interacting systems that can be used to engineer and reproduce,
in a controlled way, the dynamics of complex quantum models.
Superconducting devices based on Josephson junctions are
extremely versatile systems that hold promise for the efficient
implementation of qubits for quantum technology applications
[3–5]; in particular, they have been proposed as one of the
most promising platforms for the implementation of quantum
simulators [6–11].

Here we show how superconducting devices can be
manipulated to simulate the phenomenon of long-distance
entanglement (LDE), namely, the nonvanishing entanglement
that is established between the end spins in the ground state
of a quantum spin chain with open boundary conditions. The
end points of the chain are, in general, nondirectly interacting
and, in principle, can be separated by arbitrary large distances.
Nevertheless, they can become strongly entangled if, as shown
in Fig. 1, one implements specific patterns of interactions such
as a strongly interacting uniform bulk coupled to the boundary
spins by weak end bonds or a regular pattern of alternating
weak and strong bonds [12–15]. LDE can be further enhanced
by considering indefinitely repeated modular chains, giving
rise to modular entanglement (ME) [16], and is generalized to
the so-called surface entanglement (SE) between distant and
noninteracting spins belonging to the surface of open two-
dimensional networks with weak boundary-to-bulk coupling
patterns [17].

*Corresponding author: fabrizio.illuminati@gmail.com

LDE and its generalizations are potentially important
concepts and tools because efficient schemes, such as quantum
repeaters, for the distribution of entanglement between remote
and nondirectly interacting resources are essential to quantum
information and communication applications [18–22]. In this
context, realizing LDE in spin chains would be an efficient
mean to operate and control distant qubits inside a quantum
processor. Moreover, LDE, ME, and SE can be seen as elemen-
tary precursors of the role that boundary conditions and edge
modes can play in the physics of quantum many-body systems,
anticipating some of the characteristic traits of topologically
ordered phases and other exotic forms of nonlocal order; in
particular, ground-state LDE in spin chains of the XX and
Heisenberg type with specific nonuniform coupling patterns
is loosely reminiscent of more complex forms of nonlocal
order such as symmetry-protected topological order [23,24],
which is realized in more elaborate one-dimensional models
with uniform couplings and open boundary conditions, such
as the spin-1 Heisenberg chain [25,26], the cluster-Ising
and cluster-XY models with three-body local interaction
terms [27–29], and the Kitaev fermionic chain with edge
Majorana modes [30].

The origin of LDE in a quantum spin chain with open
boundary conditions can be understood as the effect of a
strongly correlated bulk that mediates an effective entangling
interaction between the two weakly coupled spins at the two
ends of the chain. As already mentioned, this concept can be
extended to higher-dimensional open spin networks [17], for
which the external spins on the surface of the network can
be endowed with a rich variety of entanglement structures.
This phenomenon has been identified in a large class of
spin models ranging from the XX to the XXZ and the
fully isotropic Heisenberg Hamiltonian [14,15]. While, in
general, LDE is not observed in open chains with Ising-type
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FIG. 1. (Color online) A quantum spin chain with open boundary
conditions and nearest-neighbor interactions featuring a uniform bulk
with strong interspin coupling J and two edge spins attached to the
rest of the chain by weak end bonds λJ , with λ � 1.

interactions without external field, the inclusion of a moderate
transverse field can give rise to LDE, as discussed in Sec. III.
Indeed, the transverse field removes the degeneracy of the
two classical symmetry-breaking ground states of the pure
Ising Hamiltonian that prevents the formation of entanglement.
In any case, the transverse field has to remain of moderate
intensity because a large field tends to polarize the spins and
hence, again, to destroy their entanglement.

In the present work, we will demonstrate that the prepa-
ration of the ground state of models featuring LDE can
be realized by adiabatic quantum simulation [9,31]. This
technique allows for the preparation of the ground state of
complex Hamiltonians by the adiabatic control of some system
parameters, which allows one to continuously deform the
Hamiltonian from a simple configuration, whose ground state
can be easily prepared, to the final target configuration. If the
manipulation is slow enough, a system initialized in the ground
state of the simple Hamiltonian will follow the instantaneous
ground state of the evolving Hamiltonian until reaching the
ground state of the final, more complex one. A similar approach
has been demonstrated recently for the simulation of LDE in
a specific implementation with systems of trapped ions [32],
while in the present work we will investigate and demonstrate
the adiabatic quantum simulation of LDE using instead linear
arrays of superconducting flux qubits [33–36] interacting
according to the coupling pattern illustrated in Fig. 2, in
order to simulate a quantum spin chain with open boundary
conditions of the type reported in Fig. 1.

We propose two protocols that are specifically engineered
to make use of the simplest possible design of the supercon-
ducting circuits. The first protocol is designed to realize the
adiabatic quantum simulation of an Ising model in transverse
field in the regime of parameters that supports LDE. Indeed,
interactions of the Ising type are naturally realized with a flux

FIG. 2. (Color online) A linear array of superconducting flux
qubits, with a coupling pattern suitable for the simulation of LDE
in quantum spin chain with open boundary conditions of the type
illustrated in Fig. 1.

qubit [34], and this is the simplest spin configuration that can
be simulated with this device, as in this protocol one needs
only dc currents in order to manipulate the qubits. The second
protocol, on the other hand, makes use of microwave fields to
simulate more complex spin interactions of the XX type and to
adiabatically prepare the corresponding ground state. We show
that for comparable preparation times of the two protocols, the
latter allows for stronger end-to-end entanglement.

The paper is organized as follows. In Sec. II, we introduce
the system and discuss the general ideas for the implementation
of LDE with superconducting qubits. In Sec. III, we present
a specific protocol for the adiabatic simulation of LDE
where the adiabatic manipulation is performed controlling
dc currents. Then, in Sec. IV, we discus a second protocol
in which the manipulation is realized via microwave fields.
The experimental feasibility is discussed and demonstrated in
Sec. V. Finally, conclusions are drawn in Sec. VI.

II. THE SYSTEM

We consider superconducting flux qubits [33,34], which
use states of quantized circulation (magnetic flux) in a super-
conducting loop interrupted by three Josephson junctions, as
in Fig. 3. The dynamics of the low-energy states of the system
can be described by a double-well potential, where the lowest
localized states correspond to clockwise and anticlockwise
currents, as depicted in Fig. 3. We restrict our analysis to only
these two states that constitute a base for the superconducting
qubit. We call the two states |L〉 and |R〉, respectively.
Introducing the spin operators σ z = (|R〉〈R| − |L〉〈L|) and
σx = (|R〉〈L| + |L〉〈R|), the corresponding Hamiltonian is
analogous to that of a spin-1/2 particle in a magnetic field,

Hq = −� ε σ z − � σx, (1)

where the energy difference between the localize states ε, i.e.,
the magnetic energy bias, can be controlled via the external flux
φε threading the qubit loop, which is generated, for example,
by a nearby dc-current line. On the other hand, � accounts for
the tunneling amplitude between |L〉 and |R〉, and is fixed and
positive.

Furthermore, the flux qubit can be manipulated by mi-
crowave driving fields which modulate the energy difference
between |L〉 and |R〉. Its effect can be described by a

FIG. 3. (Color online) The flux qubit: A superconducting loop
interrupted by three Josephson junctions is described by a double-well
potential where the two lowest localized states correspond to states
of opposite circulating persistent currents, and constitute the base
vectors of the qubit.
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Hamiltonian of the form

Hw = 2 � � cos(ω t + ϕ) σ z. (2)

When two flux qubits are close together, they interact via
their mutual inductance according to an antiferromagnetic
(J > 0) Ising Hamiltonian [37],

HI = � J σ z
1 σ z

2 . (3)

The same antiferromagnetic as well as ferromagnetic inter-
action is also obtained constructing flux qubits with a shared
Josephson junction [38,39]. On the other hand, a more complex
setup, which, for example, makes use of an additional dc
superconducting quantum interference device (SQUID) as a
coupler device [40], allows for the interaction to be tunable.

In the present work, we consider the simple situation in
which � is fixed by construction. Nevertheless, in principle,
one can imagine more complex designs which permit the
control of both ε and � [41]. In this case, it should be possible,
in principle, to implement the same protocol discussed in
Ref. [32] for the simulation of LDE with trapped ions.
However, here we aim at keeping the design as simple as
possible and to analyze the performance of flux qubits as
adiabatic quantum simulators with minimal control.

To be specific, we analyze the preparation of LDE with a
chain of N flux qubits coupled by nearest-neighbor coupling,
whose Hamiltonian reads

H = −�

N∑
j=1

[
εj σ z

j + �j σx
j + 2�j cos(ω t + φj )

]

+ �

N−1∑
j=1

Jj,j+1 σ z
j σ z

j+1. (4)

In the following, we will analyze two limiting cases which
allow one to simulate two different spin models. In both cases,
we will show how to adiabatically prepare the corresponding
ground state and we will show that when the end spins are
weakly coupled to the bulk, such ground states exhibits LDE.

In the first place, in Sec. III, we consider the case of �j =
0, such that the control parameters are the energy bias εj .
Correspondingly, in this case we simulate an Ising spin model
in a transverse field, where the role of the transverse magnetic
field is played by the tunnel transition coupling �j between the
superconducting states of the flux qubit. Dc current through a
nearby current line is used to continuously tune εj from large to
vanishing values. The qubits are initialized using large values
of εj . In this situation, each flux qubit relaxes to the lowest-
energy eigenstate. If the noise temperature is sufficiently small,
then the probability to find the qubits in the excited state is
negligible. In this case, all of the spins are polarized. Starting
from this situation, the value of εj is adiabatically reduced
until zero, where the target Hamiltonian is realized and LDE
is achieved.

On the other hand, in the second case (Sec. IV), the
adiabatic manipulation is realized at εj = 0 and is performed
controlling the microwave field. In this case, an effective XX
model is obtained. Only the initialization is equal to that of
the first protocol and is realized with finite values of εj and
no microwaves. Specifically, the εj are set to large values
until the qubits relax to the polarized state. Then, εj is set

to zero and simultaneously the microwave field is switched
on. As we demonstrate in Sec. IV, if the field resonantly
drives the qubits in the regime of large �j , then the system
dynamics approximates that of an XX model in an external
field whose intensity is controllable via the intensity of the
driving field, which is proportional to �j . This intensity is
therefore manipulated adiabatically: initially it is set to a
sufficiently large value, such that the initialized state is also
the ground state of the effective model, then it is reduced until
the ground state of the effective XX model, which supports
LDE, is obtained.

A final remark is in order. Although the schemes that we
discuss in detail in the following sections are, in principle,
valid for arbitrary number of spins and concern models that are
exactly solvable both for finite size and in the thermodynamic
limit, in this work we are mainly interested in identifying
minimal protocols that can be implemented in real experiments
with technological control that is currently available or in
reach in the near future. In other words, we are interested
in a proof-of-principle experiment with a fully controlled
small-scale demonstrator, in line with the current trend in
quantum simulation research. Therefore, the aim of the present
work is to provide a first, clear and controlled, path towards the
actual experimental simulation of LDE. It is therefore crucial
to start by considering in full detail the simplest minimal
configuration of four spins for which we expect a significantly
reduced experimental effort as compared to what we can
expect for larger qubits chains. Stated differently, our main
goal is to show that using realistic parameters, the protocol
can be actually realized on a minimal, fully controlled array
of superconducting qubits.

Indeed, the simplest minimal situation consists of N = 4
spins because for an odd number of spins, for example N = 3,
the ground state would be degenerate, and hence no LDE
could be observed in this case. For the case N = 4, we will
study the experimental feasibility of the protocol with realistic
parameters. On the other hand, the scaling of the efficiency
with the number of the spins is well beyond the scope both
of the present work and of the currently available quantum
simulation technologies. In particular, it is worth observing that
in order to optimize the adiabatic protocol for larger number
of spins, it would be, most likely, necessary to consider spin
models with more sophisticated coupling and entanglement
patterns, such as, for instance, models supporting modular
entanglement [16] or surface entanglement [17].

III. MANIPULATION WITH DC CURRENTS

Here we study the case with no microwave driving field.
Hence we consider the simple Ising model in transverse field:

H = −�

N∑
j=1

[
εj σ z

j + �j σx
j

] + �

N−1∑
j=1

Jj,j+1 σ z
j σ z

j+1, (5)

where εj is the tunable parameter. We also assume, as a
necessary condition for LDE, that the end spins are weakly
coupled to the bulk and that the effective magnetic field of
the external spins is much smaller than that of the others.
We consider antiferromagnetic couplings Jj,k > 0, which are
the kind of couplings that emerge naturally from the mutual
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FIG. 4. (Color online) (a) Gap between ground and first excited
state as a function of �, for a chain of N = 4 flux qubits described
by Eqs. (5) and (6). (b) Corresponding concurrence between first and
last qubits. The values of the parameters are ε = 0, J = 2π × 5 GHz,
λ = 0.2, and λh = 0.02.

inductance between two nearby flux qubits. In particular, the
simplest situation that can be realized in an experiment consists
of only four spins, such that

J2,3 ≡ J and J1,2 = J3,4 = λ J,

�2 = �3 ≡ � and �1 = �4 = λh �,

ε2 = −ε3 ≡ ε and ε4 = −ε1 = λh ε, (6)

with λ,λh � 1. We note that the same results that we discuss
below would be valid for ferromagnetic couplings (Jj,k < 0)
if the values of εj are chosen to all have the same sign.

When ε = 0, this model exhibits LDE. This is shown in
Fig. 4 where, for intermediate values of the external transverse
field, a maximum of the concurrence (see Appendix) between
first and last spins is observed. The corresponding gap between
ground and first excited state, shown in Fig. 4(a), is zero at
vanishing � and increases monotonically with �. A large
gap would allow for fast adiabatic preparation; however, the
entanglement is significant only for moderate values of �

where the gap is of moderate size. This imposes a tradeoff
between maximum velocity of the adiabatic manipulation and
maximum attainable entanglement.

The ground state of this model is achieved by the adiabatic
manipulation of the parameter ε from large values to zero. The
state of the system is initialized by setting a large value of
|ε|. In this situation, each qubit relaxes to the lowest-energy
eigenstate. Specifically, if |ε| is larger than the effective noise
temperature, then the probability to find a spin in the excited
state is negligible. Hence, in this situation, in agreement with
the staggered configuration defined in Eq. (6), the spins get
polarized in an antiferromagnetic state. Then the value of ε is
reduced according to the temporal profile

ε(t) = ε0e
−rt , (7)

with r sufficiently small to guarantee adiabaticity. At large
ε, in fact, the gap between ground and first excited state is
large, as shown in Fig. 5(a), and the adiabatic manipulation
can be relatively fast. On the other hand, as ε approaches
zero, the gap is significantly reduced and the velocity of
the variation has to be reduced in order to remain adiabatic.
Correspondingly, as shown in Fig. 5(b), the maximum of the
end-to-end entanglement is obtained at ε = 0.
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FIG. 5. (Color online) (a) Gap between ground and first excited
state as a function of ε, for a chain of N = 4 flux qubits described by
Eqs. (5) and (6) (at ε = 0, the gap is Gap/�|ε=0 = 2π × 58 MHz,
which corresponds to ∼2.8 mK). (b) Corresponding concurrence
between first and last qubits for small values of ε. The values of
the parameters are � = 2π × 4.5 GHz, J = 2π × 5 GHz, λ = 0.2,
and λh = 0.02.

The results for the adiabatic preparation are shown in
Figs. 6 and 7. The thin red lines correspond to the fidelity
F = |〈φ[ε(t)]|ψ(t)〉|2 between the instantaneous ground state
|φ[ε(t)]〉, i.e., the ground state of the Hamiltonian for fixed
values of ε(t) corresponding to the specific time, and the
evolved state evaluated solving the corresponding Schrödinger
equation |ψ̇(t)〉 = − i

�
H (t)|ψ(t)〉 with the time-dependent

Hamiltonian given in Eq. (5), where the parameters are
given in Eq. (6) and the time dependence is defined by
Eq. (7), and when the initial state is the initial ground state
|ψ(0)〉 = |φ[ε(0)]〉. When the fidelity is one, it means that
perfect adiabatic following is realized. This is the case of
Fig. 6. The corresponding concurrence between the end spins
is evaluated applying the procedure discussed in the Appendix
to the reduced density matrix for the two spins which can be
evaluated from the evolved state. We observe that in Fig. 6,
the concurrence (blue thick line) saturates to a steady sizable
value at large time. It means that LDE have been efficiently
prepared. On the other hand, in Fig. 7, the fidelity is reduced as
a result of the shorter preparation time (larger r). In this case,
the transformation is not exactly adiabatic and the system has a
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FIG. 6. (Color online) End-to-end concurrence (thick blue line)
and fidelity between the evolved state and the instantaneous ground
state (thin red line) for the model described by Eqs. (5)–(7), when
the initial state is the ground state of Eqs. (5) and (6) at ε = 2π ×
20 GHz. The other parameters are � = 2π × 4.5 GHz, ε0 = 2π ×
20 GHz, J = 2π × 5 GHz, λ = 0.2, λh = 0.02, r = 2π × 40 MHz,
and N = 4.
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FIG. 7. (Color online) Same as Fig. 6, but with r = 2π ×
150 MHz.

finite probability to be excited. The corresponding concurrence
does not approach a steady value; however, at finite times, a
strong entanglement is also observed in this case.

So far we have considered the values of �j to have a well-
defined relative strength as defined in Eq. (6). In reality, the
experimental control of these parameters is nontrivial. They are
fixed by construction and the actual values vary from sample
to sample due to unavoidable fluctuations in the construction
process. It is therefore important to analyze the sensitivity of
the protocol to small deviations from the reference values set
in Eq. (6). The results of this analysis are reported in Fig. 8,
where we plot results obtained for the parameters of Fig. 6
but with �j = �(1 + ξj ) for j = 2,3 and �j = λh �(1 +
ξj ) for j = 1,4, where ξj are stochastic variables uniformly
distributed in the range [−δξ ,δξ ]. Figures 8(a) and 8(c) report

the values of the end-to-end concurrence between the first and
the last spin in the chain, in the instantaneous ground state
corresponding to the final time of the evolution, and evaluated
for 103 different realizations of the variables ξj when δξ is
set, respectively, to the values 0.05 and 0.1. The dash-dotted
black lines indicate the corresponding average value, while
minimum and maximum realizations are highlighted by solid
black lines. The blue solid thick line corresponds to the ideal
result of Fig. 6, namely, to the case in which ξj = 0 ∀j .

We observe that the average concurrences are very close
to the corresponding ideal values obtained for ξj = 0, and
that the fluctuations increase with the value of δξ . In all
cases, the actual value of the concurrence always remains con-
fined within a relatively narrow range of values. In particular,
we observe that in certain cases, the value of the end-to-end
concurrence resulting from a random choice of the parameters
can overcome that found in the initial configuration. The values
of minimum and maximum realizations are also reported as
black solid horizontal lines in Figs. 8(b) and 8(d). Here we
use the corresponding set of parameters for the calculation
of the time evolution of the concurrence (thick green lines)
and of the fidelity (thin magenta lines) under the adiabatic
manipulation, as done in Fig. 6. Specifically, the solid and
dashed lines correspond, respectively, to the sets of parameters
exhibiting minimum and maximum concurrence. We observe
that in general, the adiabatic manipulation reproduces, with
significant accuracy, the expected values of the concurrence of
the instantaneous ground state at large time, and the fidelity is
always very close to 1. These results show that the protocol is
significantly and strongly resilient to random deviations of the
tunnel splitting �j .
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FIG. 8. (Color online) Sensitivity of the protocol to random variations of the tunnel splittings �j . Specifically, �j = �(1 + ξj ) for j = 2,3,
and �j = λh�(1 + ξj ) for j = 1,4, with ξj random variables uniformly distributed in the range [−δξ ,δξ ]. (a),(b) δξ = 0.05. (c),(d) δξ = 0.1.
All of the other parameters are as in Fig. 6. (a),(d) The concurrence between first and last spins, of the instantaneous ground state evaluated at
the final time of the protocol, and each horizontal line corresponds to a different realizations of ξj . The dash-dotted black lines are the average
concurrence over 1000 realizations, and the solid black lines indicate the maximum and minimum realizations. The solid thick blue lines are
found for ξj = 0. (b),(d) The horizontal solid black lines indicate the maximum and minimum concurrence of the corresponding (a) and (c).
The green lines and the magenta lines report, respectively, the evolution of the end-to-end concurrence and of the fidelity evaluated for the
values of ξj corresponding to the minimum (solid lines) and maximum (dashed lines) realizations of (a) and (c).
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IV. MANIPULATION WITH MICROWAVE FIELDS

In this section, we show how to simulate XX spin-1/2
models with flux qubits. This is realized by means of a
microwave field driving the qubits in the regime of large �. In
this case, the Hamiltonian reads

H (t) = −�

N∑
j=1

[
εj σ z

j + 2� cos(ω t + ϕj ) σ z
j + �j σx

j

]

+ �

N−1∑
j=1

Jj,j+1 σ z
j σ z

j+1, (8)

where the value of � is assumed to be the same for all of
the spins. At the anticrossing point, that is, when εj = 0, it is
useful to study the system in the interaction picture defined by
the unitary transformation

U0 = e−iH0t , (9)

where H0 = −∑N
j=1

ω
2 σx

j , and such that the transformed state

|ψ̃〉 = U
†
0 |ψ〉 satisfies ∂

∂t
|ψ̃〉 = −iH̃ (t)|ψ̃〉, with

H̃ (t) = U
†
0 H (t) U0 − H0

= −�

N∑
j=1

[
�

(
cos ϕj σ z

j + sin ϕj σ
y

j

) +
(

�j−ω

2

)
σx

j

]

+ �

N−1∑
j=1

Jj,j+1

2

(
σ

y

j σ
y

j+1 + σ z
j σ z

j+1

)

− �

N∑
j=1

�
[

sin(2ω t + ϕj )σy

j + cos(2ω t + ϕj )σ z
j

]

+ �

N−1∑
j=1

Jj,j+1

2

[
cos(2ω t)

(
σ z

j σ z
j+1 − σ

y

j σ
y

j+1

)
+ sin(2ω t)

(
σ

y

j σ z
j+1 + σ z

j σ
y

j+1

)]
. (10)

Let us now assume that the tunnel splittings are the same
for all of the qubits, �j = � ∀j . If we set the field to be
resonant with the energy gap between the single spin energy
eigenstates, ω = 2�, and we neglect the fast oscillating terms
under the assumption 4� � �,Jj,k/2, then Eq. (10) can be
approximated by the effective time-independent Hamiltonian

H̃eff = −�

N∑
j=1

�
(

cos ϕj σ z
j + sin ϕj σ

y

j

)

+ �

N−1∑
j=1

Jj,j+1

2

(
σ

y

j σ
y

j+1 + σ z
j σ z

j+1

)
, (11)

which describes an XX spin chain in an external magnetic
field whose intensity is proportional to �.

As in the previous section, we consider only four spins,
with the couplings of the end spins scaled by the small factor
λ. Moreover, also in this case, we assume antiferromagnetic
interactions, and correspondingly the phases ϕj should be
opposite for neighboring spins. Hence, we assume

J2,3 ≡ J and J1,2 = J3,4 = λ J,

ϕ2 = ϕ4 = 0 and ϕ1 = ϕ3 = π, (12)

with λ � 1. The following results also apply to the ferromag-
netic case when ϕj = 0 ∀j .

The adiabatic preparation goes as follows. First the system
has to be initialized. This step is similar to the one already
discussed in the protocol of Sec. III. We consider no microwave
field � = 0 and we set the single spin energies εj to large
values (much larger than �) in a staggered configuration
ε1 = ε3 = −ε2 = −ε4. The system then relaxes to the ground
state, that is, the antiferromagnetic state, if the effective noise
temperature is smaller then |εj |. Once the system is initialized,
the parameters εj are set to zero and the microwave field is
switched on with an amplitude � larger than Jj,k/2 (note,
however, that � have to be smaller than � in order for the
effective model to be valid). In this way, if the phases of the
driving fields are set as in Eq. (12), then the initialized state is
also the ground state of the effective Hamiltonian. In particular,
while in the original frame the spins will start to oscillate under
the effect of the driving field, in the transformed reference
frame the antiferromagnetic state will remain stationary.

At this point, the amplitude of the driving field � is
adiabatically manipulated from large values to zero according
to the temporal function

�(t) = �0e
−rt . (13)

Thereby, using a sufficiently small r , the state of the system
follows the instantaneous ground state until it approaches
the ground state of the XX model which exhibits LDE.
We note that the adiabatic following takes place effectively
in the transformed reference frame; nevertheless, since the
transformation U0 is local, the entanglement properties in the
two representations are the same, meaning that in the original
representation also, the end spins get entangled.

As shown in Fig. 9(a), also in this case, the gap is large
for large values of the effective magnetic field, in this case
�, and decreases as � decreases. Hence, similarly to the first
protocol [see Eq. (7)], the adiabatic transformation can be fast
at the beginning and has to slow down when the gap reduces.
In particular, we have chosen the system parameters such that
the corresponding gap is of the same order of magnitude as the
one presented in Fig. 5 for the first protocol. In this way, we
expect that the preparation time for the two protocols is similar.
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FIG. 9. (Color online) (a) Gap between ground and first excited
state as a function of �, for a chain of N = 4 flux qubits described
by the effective model in Eqs. (11) and (12) (at � = 0, the gap
is Gap/�|�=0 = 2π × 38 MHz, which corresponds to ∼1.8 mK).
(b) Corresponding concurrence between first and last qubits. The
values of the other parameters are J = 2π × 1 GHz and λ = 0.2.
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FIG. 10. (Color online) End-to-end concurrence (thick blue
lines) and fidelity between the evolved state and the instantaneous
ground state (thin red lines) for the full model described by Eq. (8)
with εj = 0 (solid lines), and for the effective model described by
Eq. (11) (dashed lines), when the initial state is the ground state of
Eqs. (8) at � = 0 and εj=2,4 = −εj=1,3 = 2π × 100 GHz. In all cases,
we consider a chain of N = 4 spins with the parameters defined in
Eqs. (12) and (13). The values of the other parameters are �j =
ω/2 = 2π × 10 GHz ∀j , �0 = 2π × 2 GHz, J = 2π × 1 GHz,
λ = 0.2, and r = 2π × 0.02 GHz.

On the other hand, we observe that the achievable end-to-end
concurrence is significantly larger in this case.

Numerical results for this protocol are presented in Figs. 10
and 11. In this case, we compare two cases: the results obtained
integrating the Schrödinger equation with the full Hamiltonian
in Eq. (8) (solid lines) and that obtained with the effective
Hamiltonian in Eq. (11) (dashed lines). The red thin lines
depict the fidelity between the instantaneous ground state,
|φ̃[�(t)]〉, of the effective Hamiltonian (11) and the evolved
states under the two Hamiltonians corresponding to the solid
and dashed lines, respectively. We note that the evolved
states |ψ(t)〉 under the full Hamiltonian (8) can be compared
to the instantaneous ground state, |φ̃[�(t)]〉, only after the
latter is transformed back to the original representation by
the application of the unitary transformation U0 defined in
Eq. (9). The two states are, in fact, defined in two different
representations, and therefore the corresponding fidelity (thin
red solid lines) is found as F = |〈φ̃[�(t)]|U †

0 |ψ(t)〉|2. On the
other hand, the fidelity for the evolved state |ψ̃eff(t)〉 under the
effective Hamiltonian (11) (thin red dashed lines) is found as
F = |〈φ̃[�(t)]|ψ̃eff(t)〉|2. The numerical results show that the

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time (ns)

 

 

Concurrence
Fidelity
Concurrence eff.
Fidelity eff.C

o
n
cu

rr
en

ce
F
id

el
it
y

FIG. 11. (Color online) Same as Fig. 10, with r = 2π × 0.1 GHz.

fidelity for both the full and the effective model is always very
close, meaning that the system of flux qubits well simulates the
effective XX spin model. In particular, in Fig. 10, the fidelity
is always very close to one, indicating that almost perfect
adiabatic following is realized under this condition. On the
other hand, when the preparation time is reduced [the rate r

appearing in Eq. (13) is increased], as in Fig. 11, the system
can be excited and the fidelity is reduced.

The corresponding end-to-end concurrence is obtained by
applying the definition given in the Appendix to the reduced
density matrix for the end spins which, in turn, is evaluated
from the evolved states |ψ(t)〉 (thick solid light-blue line)
and |ψ̃eff(t)〉 (thick dashed dark-blue line). The results for
the two models are always very similar, confirming that the
system accurately simulates the XX chain. In particular, in
full similarity with the protocol of Sec. III, when the adiabatic
condition is fulfilled, as in Fig. 10, the concurrence approaches
a large steady value; and, when the manipulation is too fast, the
entanglement at large time oscillates, but reaches large values
at finite times.

Finally, also in this case, we analyze the stability of the
protocol to random deviations of the tunnel splitting �j

from the ideal condition of equal values assumed so far.
Moving along lines similar to the analysis presented in the
previous section, we now consider the parameters of Fig. 10
and we assume �j = �(1 + ξj ), with ξj random variable
uniformly distributed in the range [−δξ ,δξ ]. In this case,
in Figs. 12(a) and 12(c), we report the final end-to-end
concurrence evaluated from the instantaneous ground state
of the effective Hamiltonian in Eq. (11) with an added term of
the form

Hξ = �
∑

j

ξj σ x
j . (14)

On the other hand, the time evolutions for the concurrence
(green thick lines) and the fidelity (magenta thin lines) in
Figs. 12(b) and 12(d) are evaluated from the full Hamiltonian
in Eq. (8).

As in the previous discussions, also in this case we
consider the maximum and minimum realizations, as shown
in Figs. 12(a) and 12(c), and we report them, as horizontal
black lines, in Figs. 12(b) and 12(d). The corresponding
parameters are then used to evaluate the time evolutions in
Figs. 12(b) and 12(d) . We observe once more that at large time,
the end-to-end concurrence approaches the corresponding
expected results (horizontal black lines), and the fidelity is
always close to one, meaning that the adiabatic simulation
scheme continues to work also in the presence of fluctuations
in the tunnel splitting. However, at variance with the first
protocol, we observe from Figs. 12(a) and 12(c) that deviations
from the initial configuration always tend to reduce the
end-to-end concurrence. Moreover, this reduction can already
be significant at quite small values of δξ . This is due to the fact
that the ideal situation is found when ξj ∼ 0, i.e., when ξj� is
much smaller then the other parameters; in particular it means
that the optimal situation is found when ξj� � J . However,
we have seen that this scheme works under the condition
J � �. These facts imply that the second protocol operates
properly only when ξj � J/� � 1, hence requiring a higher
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FIG. 12. (Color online) Sensitivity of the protocol to random variations of the tunnel splittings �j . Specifically, �j = �(1 + ξj ), with
ξj random variables uniformly distributed in the range [−δξ ,δξ ]. (a),(b) δξ = 0.001. (c),(d) δξ = 0.002. All of the other parameters are as in
Fig. 10. (a),(d) The concurrence between first and last spins, of the instantaneous ground state of H̃eff + Hξ [with H̃eff defined in Eq. (11) and
Hξ in Eq. (14)] evaluated at the final time of the protocol, and each horizontal line corresponds to a different realizations of ξj . The dash-dotted
black lines are the average concurrence over 1000 realizations, and the solid black lines indicate the maximum and minimum realizations.
The solid thick blue lines are found for ξj = 0. (b),(d) The horizontal solid black lines indicate the maximum and minimum concurrence of
the corresponding (a) and (c). The green lines and the magenta lines report, respectively, the evolution of the end-to-end concurrence, and of the
fidelity evaluated, with the total Hamiltonian in Eq. (8), for the values of ξj corresponding to the minimum (solid lines) and maximum (dashed
lines) realizations of (a) and (c).

degree of experimental control over the system parameters as
compared to the first protocol.

V. EXPERIMENTAL REALIZABILITY

The presented results demonstrate that superconducting
flux qubits can be used to simulate spin models which exhibit
LDE. In our analysis, we have completely disregarded the
effect of dephasing and relaxation on the system dynamics.
This is justified if the preparation time is much smaller than the
time scales for dephasing and relaxation of flux qubits which,
otherwise, would inevitably destroy the quantum coherences
that we aim to observe.

The largest dephasing and relaxation times reported to date
are of the order of a few μs [42,43]. Our results, on the other
hand, demonstrate that LDE can be prepared in a time of
the order of 10 ns, which is, hence, much shorter than the
typical dephasing times in standard flux qubits experiments.
The preparation time is mainly constrained by the value of
the spin-spin coupling constant J , where larger J allows
for faster preparation. We have obtained our results with
spin-spin coupling constants as large as J = 2π × 5 GHz,
which seems to be a very reasonable value already achieved
in experiments [38,39]. Larger J , which can be realized
by Josephson junction coupling [38], would allow one to
further reduce the preparation time. Moreover, speeding up the
preparation can also be achieved by optimizing the adiabatic
manipulation. One can, for example, employ techniques of
optimal coherent control [44] to find the optimal time profile of
the control parameters. Or one can also implement techniques

based on shortcuts to adiabaticity [45–47] to optimize the
effect of additional control parameters. These observations
seems to suggest that these protocols are not relevantly
affected by realistic noise and hence are very promising for
an actual preparation of LDE. We further remark that the
effect of dephasing can be, in principle, reduced by employing
decoherence control techniques such as dynamical decoupling
in a similar fashion to that discussed in Ref. [42].

We finally comment on the readout of the resulting entan-
glement. The preparation and measurement of up to three-qubit
entanglement has already been achieved in superconducting
circuits [48]. Similar detection techniques should be applied
in our case to analyze LDE. More generally, in order to prove
that the state of two spins is entangled, one can show, for
example, that it violates the Bell’s inequality [49]. One can
also provide a full characterization of the two-spin state by
quantum state tomography [50–52]. In any case, one should
identify strategies to measure various correlation functions of
spin operators along different directions. Specifically, LDE
can be probed by the measurement of only the first and last
qubits.

The measurement of the state of flux qubits can be realized,
for example, using a dc SQUID [41,42], by dispersive readout
using high-quality superconducting resonators coupled to
the qubit [37,53–56], or by their combination [57–59]. In
particular, the dispersive readout measures the observable σx ,
while the dc SQUID measures σz. Both techniques require
single spin rotations to reconstruct the spins state by quantum
state tomography [51]. On the other hand, their combination
allows one to select the measured observable by the control of
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FIG. 13. (Color online) Scheme of a chain of four flux qubits
with two rf SQUIDs, which perform the dispersive readout of end
qubits. The individual flux qubits are biased by dc currents Ibi ,
with i = 1,2,3,4. The rf currents flowing in the middle wires of
two λ/4 coplanar waveguide resonators are split into the currents
Iri← and Iri→ (with i = 1,2) flowing to the left and to the right
ground plane, respectively. The currents Ir1← and Ir2→ flow through
the superconducting wires, with inductance Lw , shared with the rf
SQUIDs, which are coupled to the end qubits 1 and 4, respectively.
The rf SQUIDs mediate an interaction between the qubits and the
resonator, whose resonance frequency is therefore sensitive to the
state of the qubits. The currents Ibs1,Ibs2 biasing the rf SQUIDs are
used to control the kind of coupling between qubits and rf SQUIDs,
and in turn they allow one to control the sensitivity of the resonance
frequency of the resonators to the observables σz and σx .

an external parameter (bias current or magnetic flux) [57].
In this way, one can avoid single-spin rotations, which
prolong the measurement time and would require very fast
pulses.

The detection devices, i.e., dc SQUID and/or supercon-
ducting resonators, should be included in the design of the
superconducting circuit and should be constructed in order
to allow for the detection of the two end spins. A possible
detection scheme which would allow one to perform quantum
tomography of the two end qubits state is reported in Fig. 13. In
this case, each qubit is probed by an rf SQUID which, in turn,
is coupled to a superconducting resonator. The dc-magnetic
fluxes produced by two independent wires bias the rf SQUIDs
to the working point, which determine the sensitivity of the
resonator to the observable σz and σx [57].

An alternative possibility is to use a joint qubits readout
scheme for the direct detection of the state of the two qubits
[37,60,61]. This kind of measurement can be realized with a
device similar to the one shown in Fig. 14. The two weakly
coupled qubits at the ends of the chain are coupled to a single
superconducting resonator. The resonance of the resonator is
detuned from the qubits transition frequency in order to achieve
the dispersive regime.

In this regime, the detuning of the resonance frequency of
the combined resonator-qubit system depends on the state of
the coupled qubits according to the following relation [37,61]:

�ωr

ωr

= κ2Rge

LqI
2
q

�E
, (15)

FIG. 14. (Color online) Scheme of a chain of four flux qubits
with joint dispersive readout of the end qubits with one resonator.
The individual flux qubits are biased by dc currents Ibi , with i =
1,2,3,4. The rf current flowing in the middle wire of a λ/4 coplanar
waveguide resonator is split into the currents Ir← and Ir→ flowing
to the left and to the right ground plane, respectively. These currents
flow through the superconducting wires, with inductance Lw , shared
with end qubits 1 and 4, respectively. It provides the coupling constant
κ ≈ Lw/

√
LqLr between the resonator with inductance Lr and end

qubits with inductance Lq .

where �E is the energy gap between the ground state and the
first excited energy level, κ is the coupling constant between
qubits and resonator, Lq is the inductance of the qubit, Iq is
the persistent current of the qubit, and Rge is the real matrix
element defined as

Rge = 〈g|σ z
1 |e〉〈e|σ z

1 |g〉 + 〈g|σ z
4 |e〉〈e|σ z

4 |g〉
− 〈g|σ z

1 |e〉〈e|σ z
4 |g〉 − 〈g|σ z

4 |e〉〈e|σ z
1 |g〉. (16)

If the qubits are not entangled, the shift of the resonance
frequency is only determined by the first two terms in Eq. (16),
which are clearly positive and nonvanishing. On the other hand,
an entangled state gives additional contributions to the shift
expressed by the last two terms. These describe a coherent flip-
ping of both qubits, which is possible only for nonfactorizable
eigenstates. Thereby, one can probe the entanglement between
the qubits by comparing the transmission of microwaves with
angular frequency ωr through the resonator before and after
the adiabatic preparation of LDE.

In this kind of measurement, the measurement time is
determined by the quality factor Q of the resonator and can be
estimated along the lines put forward in Ref. [62],

tmeas ∼ max

{
kBTN

LqI 2
q

1

κ2Q2ωr

,
Q

ωr

}
, (17)

where kB is the Boltzmann constant and TN is the noise
temperature of the amplifier. For typical parameters of su-
perconducting qubits Lq ≈ 25 pH, Iq ≈ 0.25 μA, κ ≈ 0.01,
microwave cryogenic amplifiers TN ≈ 5 K, and supercon-
ducting resonators ωr = 2π × 7.5 GHz, the measurement
time is minimized for Q ≈ 75 [see Eq. (17)], providing the
measurement time tmeas ≈ 1.5 ns. This value is much shorter
than the preparation time. It is, therefore, promising for an
actual detection of LDE also in the nonoptimal conditions, in
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which the final state of the system is not stationary, as that
described in Figs. 7 and 11.

VI. CONCLUSIONS

We have demonstrated that the ground-state long-distance
entanglement (LDE) featured in certain one-dimensional
quantum spin models with open boundaries can be efficiently
realized with linear arrays of superconducting flux qubits. We
have analyzed two protocols corresponding, respectively, to
two different quantum spin chains featuring LDE. The first
one requires only the use of dc currents to engineer the system
dynamics and realizes the quantum simulation of an open
Ising chain in a transverse field. The second protocol exploits
microwave fields to simulate open XX chains with competing
interactions along two different components of the spin.
Indeed, under comparable preparation times, the latter results
in a larger end-to-end concurrence. For both protocols, we
have shown that, assuming realistic parameters, the preparation
time is relatively short. Specifically, it is much shorter than
the typical dephasing time in this type of system. This
suggests that the protocols are, to a large extent, insensitive to
realistic sources of noise. A very challenging, but fascinating,
future research direction would be the generalizations of these
protocols to the simulation of symmetry-protected topological
order in more complex one-dimensional systems and the
quantum simulation of surface entanglement, i.e., the quite
rich two-dimensional analog of one-dimensional long-distance
entanglement [17].
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APPENDIX: CONCURRENCE

The concurrence is a measure of the entanglement between
two qubits, directly related to the entanglement of formation.
Concurrence is maximum (reaches unity) in the pure, maxi-
mally entangled Bell states.

Given a density matrix for two spins ρ, the corresponding
concurrence C(ρ) is computed by applying the definition

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (A1)

where λ1, . . . ,λ4 are the eigenvalues in decreasing order of the
matrix � = √

ρ ρ̃, with

ρ̃ = σy ⊗ σy ρ∗ σy ⊗ σy, (A2)

and where σy is the Pauli spin matrix and the symbol ∗ indicates
the complex conjugations of the elements of ρ.
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