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The existence of maximally incompatible quantum observables in the sense of a minimal joint
measurability region is investigated. Employing the universal quantum cloning device it is argued that
only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown
that two of the most common pairs of complementary observables (position and momentum; number
and phase) are maximally incompatible.
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1. Introduction

One of the peculiar features that one encounters when entering
the realm of quantum physics is the impossibility of measuring
certain observables jointly with a single measurement setup. This
incompatibility of observables has various manifestations, captured
for instance in the concept of complementarity [1] or the uncer-
tainty principle [2]. However, the formulation of these features is
not restricted to quantum theory and can be carried out also in
a more general framework [3]. This opens up the possibility of
exploring which, if any, of these features are characteristic of quan-
tum theory.

In a recent Letter [4] a new way of comparing the incompatibil-
ity of pairs of observables using the concept of joint measurability
region was introduced. The joint measurability region of a pair of
observables describes the amount of noise that needs to be added
in order to make the observables jointly measurable. This concept
is well-defined in any probabilistic theory, thus allowing the com-
parison even between pairs of observables in different theories. In
particular, we can define a maximally incompatible pair of observ-
ables to be a pair whose joint measurability region is as small as
it can be in any probabilistic theory.

It was demonstrated in [4] that quantum theory does contain
maximally incompatible observables, although the provided exam-
ple was based on a rather artificial construction. The purpose of
this Letter is to complement the earlier work [4] by shedding
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more light onto the maximally incompatible observables in quan-
tum theory. Firstly, we show that the infinite dimensionality of the
Hilbert space is a necessary condition for maximal incompatibility.
Secondly, we present physically relevant examples of maximal in-
compatibility by proving that the canonically conjugated position
and momentum observables, as well as the number and phase ob-
servables, constitute maximally incompatible pairs.

2. Joint measurability degree

An observable M in quantum theory is generally described by a
normalized positive operator valued measure (POVM) [5]. For the
purpose of our investigation, it is sufficient to consider observables
whose outcome space Ω is either Rn or some subset of Rn .

Two observables M1 and M2 with outcome spaces Ω1 and Ω2,
respectively, are jointly measurable if there exists a third observ-
able M with the product outcome space Ω1 × Ω2 such that M1
and M2 are the margins of M, i.e.,

M(X × Ω2) = M1(X), M(Ω1 × Y ) = M2(Y )

for all Borel sets X ⊆ Ω1 and Y ⊆ Ω2.
We say that an observable T is trivial if T(X) = μ(X)1 for some

probability measure μ. Hence the obtained measurement outcome
does not depend on the input state at all. The fact that a trivial
observable is jointly measurable with any other observable serves
as a motivation for the following definition [4]: For any two ob-
servables M1 and M2, the joint measurability region J (M1,M2) is
the set of all points (λ,μ) ∈ [0,1] × [0,1] for which there ex-
ist trivial observables T1 and T2 such that λM1 + (1 − λ)T1 and
μM2 + (1 − μ)T2 are jointly measurable. It was shown in [4] that
the triangle shaped set
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Fig. 1. (Color online.) The region � (dark) is always a subset of the joint mea-
surability region (colored) of two observables, and is equal to it for maximally
incompatible observables. The joint measurability degree is graphically obtained as
the λ-coordinate of the intersection (dot) of the boundary of the joint measurability
region and the symmetry line λ = μ (dashed blue line).

� ≡ {
(λ,μ) ∈ [0,1] × [0,1] ∣∣ λ + μ � 1

}
(1)

is always contained in J (M1,M2). This inclusion simply means
that once the added noise exceeds a certain bound, then all pairs
of observables become jointly measurable. Hence, it is natural to
say that two observables M1 and M2 are maximally incompatible if
their joint measurability region is precisely this minimal set �, i.e.,
J (M1,M2) = �.

For two observables M1 and M2, we denote by j(M1,M2) the
greatest number 0 � λ � 1 such that (λ,λ) ∈ J (M1,M2), and we
call it the joint measurability degree of M1 and M2 (see Fig. 1). The
joint measurability degree can be seen as another expression of the
incompatibility of two observables, coarser than the joint measur-
ability region [6]. (Related concepts have been used also in [7,8].)
Note that 1

2 � j(M1,M2) � 1 since � ⊆ J (M1,M2) ⊆ [0,1] × [0,1],
and the convexity of J (M1,M2) implies that M1 and M2 are maxi-
mally incompatible if and only if j(M1,M2) = 1

2 .
In a finite d-dimensional Hilbert space Hd a natural candidate

for a maximally incompatible pair is the canonically conjugated
pair corresponding to two mutually unbiased bases that are con-
nected via finite Fourier transform [9]. Fix an orthonormal basis
{ϕ j}d−1

j=0 of Hd and define

ψk = 1√
d

d−1∑
j=0

e2π i jk/dϕ j . (2)

It is immediate to check that {ϕ j}d−1
j=0 and {ψk}d−1

k=0 are mutu-

ally unbiased, i.e., |〈ϕ j |ψk〉| = 1/
√

d for all j,k. The corresponding
observables A( j) = |ϕ j〉〈ϕ j | and B(k) = |ψk〉〈ψk| are thus com-
plementary in the sense that if tr[�A( j)] = 1 for some state �,
then tr[�B(k)] = 1/d, and vice versa. However, it has been proved
in [10] that

j(A,B) = 2 + √
d

2(1 + √
d )

, (3)

so that A and B are not maximally incompatible. Nevertheless, this
does not rule out the existence of a maximally incompatible pair
of observables for finite dimensional systems.

3. Bounds for the joint measurability degree of finite
dimensional observables

If perfect cloning of quantum states would be possible, then ob-
viously all observables would be jointly measurable. Even if this is
not the case, we may try to use an imperfect but realizable cloning
device as a way of performing approximate joint measurements.
The method is very simple; we make two approximate clones �̃ of
the initial state �. Then we perform measurements of M1 and M2

Fig. 2. (Color online.) A quantum cloning device (QCD) can be employed for per-
forming an approximate joint measurement of an arbitrary pair of observables by
making two approximate clones of the initial state and then performing measure-
ments separately on these clones.

separately on these two approximate clones; see Fig. 2. The result-
ing total measurement is not a joint measurement of M1 and M2,
but of their noisy versions. The additional noise clearly depends on
the performance of the quantum cloning device.

We consider the cloning device C of the form [11]

C(�) = 2

d + 1
S(� ⊗ 1)S, (4)

where S is the projection from Hd ⊗Hd to the symmetric subspace
of Hd ⊗Hd . The state �̃ of each approximate clone is obtained as
the corresponding partial trace of C(�) and we get

�̃ = c(d)� + (
1 − c(d)

)1
d

, (5)

where the number c(d) depends only on the dimension d and is
given by

c(d) = 2 + d

2(1 + d)
. (6)

For any two observables M1 and M2 we can now define an ob-
servable M by the formula

tr
[
�M(X × Y )

] = tr
[
C(�)M1(X) ⊗ M2(Y )

]
,

required to hold for all states � and all outcome sets X and Y . By
evaluating tr[�M(X ×Ω2)] = tr[�̃M1(X)] we obtain the first margin
of the observable M as

M(X × Ω2) = c(d)M1(X) + (
1 − c(d)

)
T1(X)

where the trivial observable T1 is given by T1(X) = tr[M1(X)/d]1.
Similarly,

M(Ω1 × Y ) = c(d)M2(Y ) + (
1 − c(d)

)
T2(Y )

with T2(Y ) = tr[M2(Y )/d]1. We have thus proved the following re-
sult.

Theorem 1. Let Hd be a d-dimensional Hilbert space with 2 � d < ∞.
For any two observables M1 and M2 on Hd we have

1

2
<

2 + d

2(1 + d)
� j(M1,M2). (7)

In particular, there are no maximally incompatible observables in a finite
dimensional Hilbert space.

It is interesting to note that this kind of a restriction is not
a common feature of general probabilistic theories. It was shown
in [4] that there exist theories for which a maximally incompatible
pair of observables exists even for the simplest finite system.

Even though Theorem 1 gives us a lower bound for the joint
measurability degree, it does not tell us whether or not it can ac-
tually be reached by any pair of observables. Comparison of Eq. (3)
and Eq. (7) immediately implies (see Fig. 3) that this is not the
case for the canonically conjugated pair of observables. That is, the
smallest possible joint measurability degree in a fixed dimension
remains an open question.
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Fig. 3. (Color online.) The joint measurability degree of two canonically conjugated
observables (upper curve) and the lower bound obtained by employing a quantum
cloning device (lower curve) as functions of the Hilbert space dimension d. Both
of these sequences approach to 1

2 when d goes to infinity, but they are always
separated. The smallest joint measurability degree for two observables in dimension
d is somewhere between these curves.

4. Maximal incompatibility of position and momentum

Our first example of a pair of maximally incompatible quantum
observables is given by the position and momentum of a particle
moving in a single spacial dimension. Consider the Hilbert space
H= L2(R) and the canonical position and momentum observables
Q and P:

〈ψ |Q(X)ψ〉 =
∫
X

∣∣ψ(x)
∣∣2

dx, (8)

〈ψ |P(Y )ψ〉 =
∫
Y

∣∣ψ̂(y)
∣∣2

dy, (9)

where ψ̂ is the Fourier transform of ψ . Similar to the finite di-
mensional canonical pair A and B, also position and momentum
are (probabilistically) complementary in the sense that for any
bounded intervals X, Y ⊂ R and any state �, tr[�Q(X)] = 1 im-
plies 0 < tr[�P(Y )] < 1 and vice versa. It follows that any positive
operator A satisfying A � Q(X) and A � P(Y ) is necessarily zero
[12, Sections IV.2.3, IV.2.4]. Using complementarity and the spe-
cific structure of Q and P, we can prove the following result.

Theorem 2. The position and momentum observables are maximally in-
compatible.

Before going into the details of the proof of this result, we
will explain the used main tool. The starting point is the fact that
position and momentum share specific symmetry properties with
respect to phase space translations as represented by the Weyl op-
erators W (q, p) = ei qp

2 e−iqP eip Q where Q and P are the selfadjoint
position and momentum operators:

W (q, p)Q(X)W (q, p)∗ = Q(X + q), (10)

W (q, p)P(Y )W (q, p)∗ = P(Y + p). (11)

If one wishes to add noise to Q and P while keeping these
symmetry properties, then instead of mixing with trivial observ-
ables one should convolve them with probability measures [13].
These smeared position and momentum observables are jointly
measurable if and only if they have a joint observable M which
is covariant with respect to phase space translations [14], i.e.,
W (q, p)M(Z)W (q, p)∗ = M(Z + (q, p)). The proof of this result is
based on averaging the joint observable with respect to phase
space translations. However, since R2 is not compact one needs
to be careful how to perform this averaging. Indeed, one should do
this using an invariant mean [15], which is also the main tool in
our proof of Theorem 2.

An invariant mean on B(Rn), the space of bounded complex
valued functions on Rn , is a positive linear functional m : B(Rn) →

C which is normalized to m(1) = 1 and which is invariant with re-
spect to translations (for the existence of invariant means, see [16,
Theorem 17.5]). More explicitly, if f x denotes the translate of f ,
i.e., f x(y) = f (y + x), then m( f x) = m( f ).

Any observable M on R2 can be averaged by the following
procedure: For any state � and any f ∈ Cb(R2), the space of
bounded continuous functions on R2, we define the bounded func-
tion Θ[ f ;�] by

Θ[ f ;�](q, p) = tr
[
�W (q, p)M

[
f (q,p)

]
W (q, p)∗

]
where M[ f ] = ∫

f dM. Now let m be an invariant mean on B(R2).
Then by the duality T (H)∗ � L(H) between the trace class and
the bounded operators, the formula

tr
[
�Mav( f )

] = m
(
Θ[ f ;�]) (12)

defines a positive linear map Mav : Cb(R2) → L(H) which is nor-
malized to Mav(1) = 1. By the analogue of the Riesz–Markov the-
orem for operator measures [17, Theorem 19], the restriction of
this map to the subspace Cc(R2) ⊂ Cb(R2) of compactly sup-
ported functions corresponds to a unique POVM M0 on R2 via
Mav( f ) = M0[ f ] for all f ∈ Cc(R2). Note that M0 is phase space
translation covariant since Mav( f (q,p)) = W (q, p)∗Mav( f )W (q, p).
However, the equality Mav( f ) = M0[ f ] does not need to hold for
all f ∈ Cb(R2), although in general one has M0[ f ] � Mav( f ) for all
positive f ∈ Cb(R2). Indeed, for such functions,

M0[ f ] = sup
{
M0[g f ] ∣∣ g ∈ Cc

(
R2), 0 � g � 1

}
= sup

{
Mav(g f )

∣∣ g ∈ Cc
(
R2), 0 � g � 1

}
� Mav( f ).

Thus, M0 need not be normalized to M0(R2) = 1, although we al-
ways have M0(R2) � 1.

The weight at infinity of the map Mav is defined as

Mav(∞) = 1 − sup
{
Mav( f )

∣∣ f ∈ Cc
(
R2), 0 � f � 1

}
= 1 − M0

(
R2).

Hence, the averaged covariant POVM M0 is normalized, and thus
an observable, if and only if Mav(∞) = 0. However, in our proof
of Theorem 2 the averaging does not lead to a normalized POVM,
but instead the constructed map will have full weight at infinity,
i.e., Mav(∞) = 1. This just means that M0(X) = 0 for all X , or that
the “measure part” of Mav is zero. Let us now turn to the proof of
Theorem 2.

Proof of Theorem 2. Fix 0 < λ � j(Q,P) and let M be a joint ob-
servable for the corresponding noisy versions of Q and P, i.e.,

M(X × R) = λQ(X) + (1 − λ)μ1(X)1, (13)

M(R × Y ) = λP(Y ) + (1 − λ)μ2(Y )1, (14)

where μ1 and μ2 are some probability measures. Let Mav :
Cb(R2) → L(H) be the averaged map constructed from M as
explained earlier. The margins of Mav are defined in the obvi-
ous manner: For any f ∈ Cb(R) the functions f1(q, p) = f (q)

and f2(q, p) = f (p) are in Cb(R2), and we set Mav
i ( f ) = Mav( f i).

Similarly, we can define the margins mi( f ) = m( f i) of the invari-
ant mean m, which themselves turn out to be invariant means
on B(R). Now, e.g., we have M[ f1] = λQ[ f ] + (1 − λ)μ1[ f ]1, so
that, for any state �,

Θ[ f1;�](q, p)

= λ tr
[
�W (q, p)Q

[
f q]W (q, p)∗

] + (1 − λ)μ1
[

f q]
= λ tr

[
�Q[ f ]] + (1 − λ)μ1

[
f q]
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by Eq. (10). Denoting ( f ∗ μ−
1 )(q) = μ1[ f q], Eq. (12) then yields

Mav
1 ( f ) = λQ[ f ] + (1 − λ)m1

(
f ∗ μ−

1

)
1. (15)

If f ∈ Cc(R), then f ∗ μ−
1 is a continuous function vanishing

at infinity and hence m( f ∗ μ−
1 ) = 0 [16, Example 17.20]. Hence,

we have Mav
1 ( f ) = λQ[ f ] for all f ∈ Cc(R), and by similar reason-

ing Mav
2 ( f ) = λP[ f ] for all f ∈ Cc(R). In other words, the unique

POVMs corresponding to the margins of Mav are scalar multiples of
the position and momentum observables.

Now let us consider the margins of M0. For any f ∈ Cc(R)

we have M0[ f i] � Mav( f i) = Mav
i ( f ) from which it follows that

M0(X × R) � λQ(X) and M0(R × Y ) � λP(Y ). In particular,
M0(X × Y ) � λQ(X) and M0(X × Y ) � λP(Y ). The complementar-
ity of Q and P then implies, in particular, that M0(X × Y ) = 0
for all compact sets X and Y . Since R2 is σ -compact, we have
M0(R2) = 0 and thus Mav(∞) = 1.

Consider next the weight at infinity of the margins. Since
mi( f ∗ μ−

i ) = 0 for all f ∈ Cc(R), we have

Mav
1 (∞) = 1 − sup

{
λQ[ f ] ∣∣ f ∈ Cc(R), 0 � f � 1

}
= (1 − λ)1,

and similarly Mav
2 (∞) = (1 − λ)1. However, we also have

Mav(∞) � Mav
1 (∞) + Mav

2 (∞) (16)

(see Ref. [15, Proof of Lemma 2]) so that

1 � (1 − λ)1 + (1 − λ)1 (17)

from which it follows that λ � 1/2. Since this is true for all
λ � j(Q,P), we conclude that j(Q,P) = 1/2. Therefore, Q and P are
maximally incompatible. �
5. Maximal incompatibility of number and phase

As a second example we consider another pair of observ-
ables which is usually given the status of a complementary pair,
namely, the quantum optical photon number and phase observ-
ables. Let H be the Hilbert space spanned by the orthonormal ba-
sis {|n〉 | n ∈ N0 = {0,1,2, . . .}} consisting of the number states and
let N({n}) = |n〉〈n| denote the number observable, i.e., the spectral
measure of the number operator N = ∑∞

n=0 n|n〉〈n|. The canonical
phase observable [18] is then defined as

Φ(X) =
∞∑

m,n=0

1

2π

∫
X

ei(m−n)θ dθ |m〉〈n| (18)

for all Borel sets X ⊆ [0,2π). In particular, Φ transforms covari-
antly under the phase shifts generated by the number operator, i.e.,
eiθ NΦ(X)e−iθ N = Φ(X + θ) where we regard [0,2π) as a group
with addition modulo 2π . The number observable, on the other
hand, is obviously phase shift invariant.

The complementarity of N and Φ can be expressed by look-
ing at their eigenstates and approximate eigenstates, respectively.
First, for a number state |n〉 the number distribution is peaked, but
the phase distribution is uniform. Second, for coherent states |z〉
the canonical phase distribution approaches the delta distribution
concentrated at arg(z) as |z| → ∞ [19], while the number distribu-
tions get increasingly uniform, i.e., |〈z|n〉|2 → 0 as |z| → ∞. Using
the complementarity and the specific structure of N and Φ , we can
prove the following result.

Theorem 3. The number and phase observables are maximally incom-
patible.

The core of the method for proving Theorem 3 is the same as
for position and momentum, although some care needs to be paid
to certain mathematical details. Again, before going into the details
of the proof of this result, we will explain some general facts.

First of all, since the value space N0 of the number observ-
able N is not a group but merely a semigroup, it is convenient
to consider instead the extension Next on Z obtained by setting
Next({n}) = 0 for n < 0. The important observation now is that
j(Φ,N) � j(Φ,Next). Indeed, if some noisy versions of Φ and N
with a given λ are jointly measurable, then by trivially extend-
ing the joint observable M into an observable Mext on [0,2π) × Z
we obtain a joint observable of noisy versions of Φ and Next with
the same λ.

Second, since [0,2π) is a compact group, the averaging with
respect to phase shifts can be done directly without using an in-
variant mean. Indeed, suppose that M is a joint observable for
noisy versions of number and phase, i.e.,

M(X × Z) = λΦ(X) + (1 − λ)μ1(X)1, (19)

M
([0,2π

) × Y ) = λNext(Y ) + (1 − λ)μ2(Y )1. (20)

Then, by defining

M′(X × Y ) = 1

2π

∫
e−iθ N M

(
(X + θ) × Y

)
eiθ N dθ

we get an observable which satisfies M′((X + θ)× Y ) = eiθ N M′(X ×
Y )e−iθ N , i.e., it is phase shift covariant. The margins of M′ differ
from those of M only by the fact that the probability measure μ1
is replaced by the uniform distribution u on [0,2π). Therefore,
without loss of generality we can always assume that the joint
observable, if it exists, is phase shift covariant and hence the noise
in the first margin is uniform.

One final difference when compared to the position-momentum
case arises when we consider the generation of number shifts. In-
deed, since Φ is not a spectral measure, we do not directly get
a unitary representation as a suitable candidate for this. However,
we can define for any k ∈ N0 the operator

V (k) =
∫

eikθ Φ(dθ) =
∞∑

n=0

|n〉〈n + k|, (21)

so that the map V : N0 → L(H) is a (nonunitary) representa-
tion of the semigroup N0, which satisfies the commutation re-
lation eiθ N V (k) = e−ikθ V (k)eiθ N . It is associated to number shifts
as can be seen from the covariance condition V (k)Next(Y )V (k)∗ =
Next(Y −k). Note that this representation leaves the phase distribu-
tion invariant, i.e., V (k)Φ(X)V (k)∗ = Φ(X). With this machinery,
we are now ready to prove Theorem 3.

Proof of Theorem 3. Fix 0 < λ � j(Φ,Next) and let M be a phase
shift covariant joint observable of noisy versions of Φ and Next

so that the margins of M are given by Eqs. (19) and (20) with
the uniform noise in the first margin, i.e., μ1 = u. Now for any
f ∈ Cb([0,2π) × Z) and k ∈ N0 we set

Θ[ f ;�](k) = tr
[
�V (k)M

[
f (0,−k)

]
V (k)∗

]
(22)

so that Θ[ f ;�] ∈ B(N0). Hence, by defining

tr
[
�Mav( f )

] = m
(
Θ[ f ;�]) (23)

where m is a semigroup invariant mean on B(N0) with the prop-
erty that m( f ) = limn→+∞ f (n) whenever this limit exists [16,
Theorem 17.5 and Example 17.20], we obtain a positive linear map
Mav : Cb([0,2π) × Z) → L(H) which satisfies the covariance con-
dition Mav( f (θ,k)) = e−iθ N V (k)Mav( f )V (k)∗eiθ N .

Using the number shift invariance of the noisy phase ob-
servable, we see that Mav

1 ( f ) = λΦ[ f ] + (1 − λ)u[ f ]1 so that
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Mav
1 (∞) = 0, and the same argument as in the proof of Theorem 2

shows that Mav
2 ( f ) = λNext[ f ] for all f ∈ Cc(Z). In particular, if M0

again denotes the POVM on [0,2π) × Z corresponding to the re-
striction of Mav to Cc([0,2π) × Z), then

M0
(

X × {n}) � M0
([0,2π) × {n}) = Mav(χ[0,2π)×{n})

= Mav
2 (χ{n}) = λNext({n}), (24)

where χE denotes the indicator function of a set E . Note that
in the first and third equality we have used the facts that
χ[0,2π)×{n} ∈ Cc([0,2π) × Z) and χ{n} ∈ Cc(Z), respectively. In par-
ticular, M0(X × {n}) = 0 for all n < 0 and for n � 0 we have
M0(X × {n}) � λ|n〉〈n|. It follows that there exists a number 0 �
ω(X,n) � 1 such that

M0
(

X × {n}) = ω(X,n)λNext({n}). (25)

Note that we can set ω(X,n) = 0 for all n < 0 but for n � 0 the
map ω(·,n) is actually a positive measure. By the covariance of Mav

we have

e−iθ N V (k)M0(X × Y )V (k)∗eiθ N = M0
(
(X − θ) × (Y − k)

)
so that by applying this to Eq. (25) we get

ω(X,n)λ|n − k〉〈n − k| = ω(X − θ,n − k)λ|n − k〉〈n − k|
for all n � k � 0. Hence, we have ω(X − θ,n − k) = ω(X,n) so by
uniqueness of the Haar measure on [0,2π) there exists a posi-
tive constant c, independent of n, such that ω(X,n) = cu(X) for all
n � 0. Eq. (25) then gives us M0([0,2π) × Z) = cλ1. On the other
hand, we know by Eq. (24) that M0([0,2π) × {n}) = λNext({n}) so
that M0([0,2π)×Z) = λ1. By comparison, we have c = 1 and thus

M0
(

X × {n}) = λu(X)Next({n}). (26)

Therefore, for any f ∈ Cb([0,2π)) we have M0[ f1] = λu[ f ] and
the inequality M0[ f1] � Mav

1 ( f ) = λΦ[ f ] + (1 − λ)u[ f ]1 implies
that

λΦ(X) + (1 − 2λ)u(X)1 � 0 (27)

for all Borel sets X ⊆ [0,2π). Since for coherent states |z〉 the
canonical phase distribution approaches the delta distribution con-
centrated at arg(z) as |z| → ∞, by setting arg(z) = 0 and X =
[π/2,π ] we obtain

0 � lim|z|→∞
(
λ〈z|Φ(X)|z〉 + (1 − 2λ)u(X)

) = (1 − 2λ)
1

4
.

This means that λ � 1
2 , so that j(Φ,Next) = 1

2 and thus also
j(Φ,N) = 1

2 . �
6. Conclusion

The concepts of joint measurability region and joint measura-
bility degree are ways of quantifying the incompatibility of two
observables in any probabilistic theory. One can even go a step fur-
ther and take the joint measurability region or degree of the most
incompatible pair of observables in a given theory to describe the
degree of incompatibility inherent in the theory [4]. Therefore, in
order to gain a better understanding of the incompatibility inher-
ent in quantum theory as compared to other probabilistic theo-
ries, we need to have better knowledge of maximally incompatible
quantum observables.

Using a quantum cloning device to implement approximate
joint measurements, we have derived a dimension dependent
lower bound for the smallest possible joint measurability degree
in a finite dimensional Hilbert space. For any finite dimension this

bound is strictly greater than the joint measurability degree of a
maximally incompatible pair, and therefore our result shows that
in quantum theory maximal incompatibility requires an infinite
dimensional Hilbert space. What still remains an open question
is whether or not in a fixed finite dimension the correspond-
ing bound can actually be reached by some pair of observables.
Indeed, one might expect that two canonically conjugated observ-
ables would be as incompatible as any two observables can be, but
as we have demonstrated, their joint measurability degree never
coincides with the derived lower bound. Therefore we only know
that the joint measurability degree of the most incompatible pair
lies somewhere between these two values.

In the case of an infinite dimensional Hilbert space we have
shown that two of the most common pairs of complementary ob-
servables (position and momentum; number and phase) constitute
maximally incompatible pairs. In both cases the complementarity
is explicitly used in the proof, and therefore it is natural to ask if
there is in general some connection between maximal incompati-
bility and other formulations of the incompatibility of observables.
We leave this as a possible topic for future investigations.
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