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Optimal entanglement-assisted discrimination of quantum measurements
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We investigate optimal discrimination between two projective single-qubit measurements in a scenario where
the measurement can be performed only once. We consider general setting involving a tunable fraction of
inconclusive outcomes and we prove that the optimal discrimination strategy requires an entangled probe state
for any nonzero rate of inconclusive outcomes. We experimentally implement this optimal discrimination strategy
for projective measurements on polarization states of single photons. Our setup involves a real-time electrooptical
feed-forward loop which allows us to fully harness the benefits of entanglement in discrimination of quantum
measurements. The experimental data clearly demonstrate the advantage of entanglement-based discrimination
strategy as compared to unentangled single-qubit probes.
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I. INTRODUCTION

One of the characteristic traits of quantum mechanics is
the impossibility to perfectly discriminate two nonorthogonal
quantum states. This fundamental property of quantum sys-
tems has far reaching practical implications ranging from se-
curity of quantum key distribution protocols to limits on mea-
surement precision in metrologic schemes. Impossibility of
perfect discrimination also immediately triggers the question
what is the optimal approximate or probabilistic discrimination
strategy. Given their wide range of potential applications,
such strategies have been studied in great detail both theo-
retically [1–11] and experimentally [12–16]. More recently,
this concept has been extended to discrimination of quantum
operations [17–28] and measurements [29–31]. While sharing
many similarities with discrimination of quantum states,
discrimination of quantum devices admits intriguing novel
strategies and phenomena [32–38] such as using probes entan-
gled with auxiliary systems, or the perfect distinguishability of
any two unitary operations when a sufficiently large but finite
number of copies of the operation is available [17].

Here, we investigate the utility of entanglement for the
canonical task of optimal discrimination between two projec-
tive measurements M and N on a single qubit provided that
the measurement can be performed only once. We consider
general discrimination strategies involving a certain fraction
of inconclusive outcomes, PI , and we show that the optimal
discrimination procedure requires entangled probe state unless
PI = 0. As a benchmark, we also provide the optimal dis-
crimination scheme with no entanglement. We experimentally
implement the optimal discrimination for projective measure-
ments on polarization states of single photons. Our setup
is based on linear optics, real-time feed-forward-loop, fiber
interferometers, and single-photon detectors. Experimental
data unequivocally confirm the advantage of entanglement-
based discrimination strategies.

II. OPTIMAL ENTANGLEMENT-ASSISTED
DISCRIMINATION

The measurement bases M and N are illustrated in
Fig. 1(a). Without loss of generality, the projectors specifying

the measurements can be parametrized by a single angle θ ,

M0 = |φ〉〈φ|, M1 = |φ⊥〉〈φ⊥|,
(1)

N0 = |ψ〉〈ψ |, N1 = |ψ⊥〉〈ψ⊥|,
where

|φ〉 = cos θ |0〉 + sin θ |1〉, |φ⊥〉 = sin θ |0〉 − cos θ |1〉,
(2)

|ψ〉 = cos θ |0〉 − sin θ |1〉, |ψ⊥〉 = sin θ |0〉 + cos θ |1〉,
and 0 � θ � π

4 . The most general discrimination strategy is
depicted in Fig. 1(b). A two-qubit entangled state |�〉AB

is employed, the measurement that should be identified is
performed on qubit A, and the measurement outcome (0 or 1)
specifies which measurement is then performed on the other
qubit B.

In what follows we assume equal a priori probabilities of
the two measurements. In such a case we will show it is optimal
to employ a maximally entangled singlet Bell state |�−〉 =
(|01〉 − |10〉)/√2. If we observe measurement outcome 0 on
qubit A, then qubit B is prepared in the state |φ⊥〉 or |ψ⊥〉.
Similarly, outcome 1 heralds that qubit B is prepared in the state
|φ〉 or |ψ〉. The discrimination of quantum measurements is
in this way converted to discrimination of two nonorthogonal
quantum states. Since

|φ〉 = −σY |φ⊥〉, |ψ〉 = σY |ψ⊥〉, (3)

we can apply the unitary operation σY = |0〉〈1| − |1〉〈0| to
qubit B when the measurement outcome on A reads 0, and
we end up with the task to discriminate between two fixed
nonorthogonal states |φ〉 and |ψ〉.

As shown by Ivanovic, Dieks, and Peres (IDP) [2], perfect
error-free discrimination between |φ〉 and |ψ〉 is possible if we
allow for a certain probability of inconclusive outcomes PI =
|〈ψ |φ〉|. Explicitly, we have PI = cos(2θ ). Unambiguous
discrimination requires a generalized three-component POVM
which can be interpreted as a quantum filtering followed by
projective measurement on the filtered state. The required
filter has the form F = tan θ |0〉〈0| + |1〉〈1| and the filtered
states become orthogonal, F |φ〉 = √

2 sin θ |+〉, and F |ψ〉 =√
2 sin θ |−〉, where |±〉 = (|0〉 ± |1〉)/√2. The square of the
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FIG. 1. (Color online) (a) Single-qubit measurements M and N
on a Bloch sphere. (b) General measurement discrimination scheme
involving entangled probe state. (c) Simple discrimination scheme
with single-qubit probe.

norm of the filtered states is equal to the success probability of
unambiguous discrimination, PS = 2 sin2 θ , and PS + PI = 1.

Due to the various experimental imperfections, we will
in practice encounter also erroneous conclusive results oc-
curring with probability PE . This motivates us to consider a
general discrimination scheme where we maximize PS (hence
minimize PE) for a fixed fraction of inconclusive outcomes
PI . The optimal filter then reads F = f |0〉〈0| + |1〉〈1|, where
f =

√
1 − PI/ cos2 θ , and a projective measurement in basis

|±〉 should be performed after successful filtration similarly
as before. This intermediate strategy optimally interpolates
between IDP [2] and Helstrom [1] schemes, and we get [4,5]

PS = 1

2

(
1 − PI + sin(2θ )

√
1 − PI

cos2 θ

)
. (4)

It is convenient to consider also a relative probability of suc-
cessful discrimination for the subset of conclusive outcomes,
P̃S = PS/(1 − PI ). The probability P̃S increases with PI and
P̃S = 1 when PI = cos(2θ ).

The optimality of the above protocol can be proved with the
help of the formalism of process POVM [32,33]. We associate
ith output of the measurement device with quantum state |i〉,
i = 1,0, and associate measurement X with operator EX =
XT

0 ⊗ |0〉〈0| + XT
1 ⊗ |1〉〈1|, where X ∈ {M,N}. An arbitrary

test that discriminates between the measurements M and N
and is allowed by quantum mechanics is described by a three-
component process POVM {TM,TN,TI } on a Hilbert space of
two qubits, where Tk � 0 and TM + TN + TI = ρ ⊗ I. Here ρ

denotes a density matrix of a single qubit, ρ � 0 and Tr[ρ] =
1, and I represents an identity operator. Results TM and TN

correspond to guessing measurement M and N , respectively,
while TI represents the inconclusive outcomes. Within this
formalism, the probabilities PS , PE , and PI can be expressed
as follows,

PS = 1
2

(
Tr

[
TMET

M

] + Tr
[
TNET

N

])
,

PE = 1
2

(
Tr

[
TMET

N

] + Tr
[
TNET

M

])
, (5)

PI = 1
2 Tr

[
TI

(
ET

M + ET
N

)]
.

Thanks to the block-diagonal structure of EM and EN it
suffices to consider Tk = Hk,0 ⊗ |0〉〈0| + Hk,1 ⊗ |1〉〈1| and
the constraint on Tk can be rephrased as

HM,i + HN,i + HI,i = ρ, i = 0,1. (6)

Furthermore, due to the property (3) it suffices to consider
only covariant Tk , where Hk,1 = σY Hk,0σ

†
Y and ρ = σY ρσ

†
Y .

This can be seen by noting that the following substitutions
do not alter the value of probabilities (5) while making Tk

covariant,

Hk,0 → 1
2 (Hk,0 + σY Hk,1σ

†
Y ),

Hk,1 → 1
2 (Hk,1 + σY Hk,0σ

†
Y ).

(7)

Finally, since the projectors (1) are real, one can also choose
Hk,i to be real and set their imaginary parts to zero without
changing the probabilities (5). This means that ρ is real as
well, which together with ρ = σY ρσ

†
Y implies that ρ = I/2.

If we combine together all the above results, we find that the
probabilities (5) can be expressed as

PS = Tr[HM,0M0] + Tr[HN,0N0],

PE = Tr[HN,0M0] + Tr[HM,0N0], (8)

PI = Tr[HI,0(M0 + N0)],

and the operators Hk,0 satisfy the conditions Hk,0 � 0, and
HM,0 + HN,0 + HI,0 = I/2. This shows that the optimization
of discrimination of two projective qubit measurements be-
comes equivalent to optimization of the discrimination of two
quantum states M0 and N0 by a three-component POVM with
elements 2HM,0, 2HN,0, and 2HI,0.

III. OPTIMAL DISCRIMINATION WITH
SINGLE-QUBIT PROBES

To elucidate the importance of entanglement for mea-
surement discrimination and to provide a benchmark for the
experiment, we now determine the optimal discrimination
strategy with unentangled single-qubit probes [see Fig. 1(c)].
In this case one has to guess M or N solely based on the
measurement outcome on the probe qubit. We shall show that
the optimal strategy for a fixed probe state can be constructed
such that for observation 0 we always guess M while for
observation 1 we guess N with probability q and provide an
inconclusive outcome with probability 1 − q. Let ρ denote
density matrix of the probe state and define PM,i = Tr[Miρ],
PN,i = Tr[Niρ]. We can always relabel the measurements and
outcomes such that

PM,0

PN,0
� PN,1

PM,1
� 1. (9)

Note that PM,0 � PN,0 implies PN,1 � PM,1 because PM,0 +
PM,1 = PN,0 + PN,1 = 1. First observe that it does not help to
produce inconclusive outcomes for both observations 0 and 1,
because this only increases PI while not further improving
P̃S with respect to the strategy where inconclusive results
are declared only for outcome 1. The inequalities (9) then
imply the optimality of the above defined strategy and we can
write

PS = 1
2 (Tr[M0ρ] + qTr[N1ρ]),

(10)
PI = 1

2 (1 − q)Tr[(M1 + N1)ρ],

and PE = 1 − PS − PI . It is easy to verify that for a fixed PI

the probability PS is maximized when the probe state is pure
with real amplitudes, ρ = |ϑ〉〈ϑ |, where |ϑ〉 = cos ϑ |0〉 +
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sin ϑ |1〉. Explicitly, we get

PS = 1

2
[1 + sin(2θ ) sin(2ϑ) − (1 − q) sin2(θ + ϑ)],

(11)

PI = 1 − q

2
(1 − cx),

where c = cos(2θ ) and x = cos(2ϑ).
Using Eq. (11) we can express q as a function of PI ,

q = 1 − 2PI

1 − xc
. (12)

If we insert this formula for q into Eq. (11), we obtain

PS = 1

2
(1 − PI ) + 1

2

√
(1 − c2)(1 − x2)

[
1 − PI

1 − xc

]
.

(13)

The optimal ϑ that maximizes PS for a given PI can be
determined from the condition,

∂PS

∂x
= 0, (14)

which leads to a qubic equation for x,

c2x3 − 2cx2 + (1 − PI )x + PIc = 0. (15)

This construction is applicable only if q > 0, which is equiva-
lent to PI < PI,B , where the boundary PI,B can be determined
from the condition that x satisfies Eq. (15) and, simultaneously,
q = 0. After some algebra, this yields a quadratic equation
8P 2

I,B − 6PI,B + 1 − c2 = 0, whose solution reads

PI,B = 1
8

(
3 +

√
1 + 8c2

)
, (16)

If PI � PI,B , then it is optimal to set q = 0. This implies
x = (1 − 2PI )/c and

PS = 1

2
(1 − PI ) + 1

4
sin(2θ )

√
1 − (1 − 2PI )2

cos2(2θ )
. (17)

Explicit numerical calculations reveal that the resulting de-
pendence of PS on PI is a convex function for PI < PI,B

(see the appendix). Equation (13) therefore does not deter-
mine the optimal discrimination strategy with single-qubit
probes. The situation is depicted in Fig. 2. The blue crosses
represent the dependence of PS on PI specified by Eqs. (13)
and (17). Since PS is a convex function of PI for PI < PI,B ,
the area below the curve PS(PI ) does not form a convex set.

In order to obtain the optimal discrimination strategy with
single-qubit probes, we must construct a convex hull of
the discrimination strategies represented by blue crosses in
Fig. 2. The result is indicated by red circles. Geometrically,
we must construct a tangent line to the curve specified by
Eq. (17), which passes through the point A that corresponds
to the optimal minimum error discrimination: ϑ = π/4,
PI,0 = 0, PS,0 = [1 + sin(2θ )]/2. This tangent line touches
the curve (17) at point T , which is specified by

PI,T = 1 + 3c2 + 2c2
√

1 + 3c2

2(1 + 4c2)
. (18)

Note that PI,T � PI,B . In the interval 0 < PI < PI,T the
optimal discrimination strategy is thus a mixture of two

FIG. 2. (Color online) Blue crosses show the dependence of PS

on PI as specified by Eqs. (13) and (17); c = 0.9. The red circles
indicate the convex hull, points A and U correspond to minimum
error and unambiguous discrimination with single-qubit probes,
respectively, and point T is specified by Eq. (18).

strategies corresponding to points A and T with weights
1 − PI/PI,T and PI/PI,T , respectively. This means that
with probability 1 − PI/PI,T we should perform the optimal
minimum-error discrimination with probe state |ϑ〉 = |+〉 and
q = 1, which results in PS,0 = [1 + sin(2θ )]/2 and PI,0 = 0.
With probability PI/PI,T we should use the probe state with
x = (1 − 2PI,T )/c, which yields PS = PS,T given by Eq. (17),
where PI is replaced with PI,T . The overall success probability
then reads

PS =
(

1 − PI

PI,T

)
PS,0 + PI

PI,T

PS,T . (19)

If PI � PI,T , then it is optimal to use only one single-qubit
probe specified by x = (1 − 2PI )/c. In this case, the optimal
PS is given by Eq. (17); see also the red circles in Fig. 2.
The endpoint U corresponds to unambiguous discrimination
with a single-qubit probe: ϑ = π/2 − θ , PS = (1 − c2)/2, and
PI = (1 + c2)/2.

To verify the validity of our analytical construction, we
have performed extensive numerical analysis of the convex
hulls for various values of c using the MATLAB function
convhull. For each chosen c, we have generated 104 pairs
(PI ,PS) corresponding to discrimination strategies described
by Eqs. (13) and (17), and we have numerically calculated the
convex hull. In all cases, the convex hull constructed in this
way had the structure illustrated in Fig. 2 and the position of
point T agreed with the analytical formula (18).

IV. EXPERIMENT

Our experimental demonstration of entanglement-assisted
discrimination of quantum measurements is based on linear
optics and qubits encoded into states of single photons.
The scheme of our experimental setup is shown in Fig. 3.
Time-correlated orthogonally polarized photon pairs were
generated by the process of collinear frequency-degenerate
type-II spontaneous parametric down-conversion in a 2-mm-
thick BBO crystal pumped by a continuous wave laser diode
at 405 nm. A postselected two-photon polarization singlet Bell
state |�−〉 was prepared by interfering the vertically polarized
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FIG. 3. (Color online) The scheme of the experimental setup.
Bulk beam splitter (BS) 50:50; fiber beam splitter (FBS) 50:50;
polarizing beam splitter (PBS); half-wave plate (HWP); collimating
lens (C), phase modulator (PM), and single-photon detector (D).

signal photon and horizontally polarized idler photon at a
balanced beam splitter (BS). The state was characterized by
quantum state tomography and we observed purity >98% and
fidelity >99%.

In the main experiment, the measurement that should be
identified was performed on the first photon of the entangled
pair |�−〉. The measurement basis (M or N ) was set by
rotating a half-wave plate HWP1 in front of the polarizing
beam splitter PBS1. We associated the basis states |0〉 and |1〉
with diagonal |D〉 and antidiagonal |A〉 linear polarizations,
respectively. Namely, |φ〉 = cos θ |D〉 + sin θ |A〉 and similarly
for other measurement-basis states. Measurement outcomes
0 and 1 were indicated by clicks of detectors D0 and D1,
respectively. The polarization state of the second photon
was transformed to path encoding with the help of PBS2
and the photon was coupled into the first of two serially
connected fiber-based Mach-Zehnder interferometers (MZI1).
Thus, polarization states |V 〉 = (|D〉 + |A〉)/√2 ≡ |+〉 and
|H 〉 = (|D〉 − |A〉)/√2 ≡ |−〉 were then represented by a
photon propagating in the lower and upper interferometer
arm, respectively. We employed polarization maintaining
fibers which suppressed unwanted changes of the photon’s
polarization state during its propagation in the fibers. Both
interferometers MZI1 and MZI2 were thermally isolated and
actively stabilized to reduce phase drifts caused by temperature
fluctuations and air flux. If detector D0 registered a photon then
an electronic feed-forward [39] conditionally changed the state
of the second photon in MZI1 by applying a π -phase shift in
the lower interferometer arm. This resulted in transformation
|φ⊥〉 → |ψ〉 and |ψ⊥〉 → |φ〉 which is equivalent to the
conditional application of unitary operation σY in Eq. (3) up
to an exchange of the role of |φ〉 and |ψ〉.

The discrimination problem was thus reduced to a discrim-
ination between two single-qubit states |φ〉 and |ψ〉. Behind
the balanced fiber coupler FBS1 propagation of a photon
through the upper (lower) arm corresponded to the state |0〉
(|1〉). A variable-ratio coupler (VRC) placed in the upper arm
of MZI2 was used as a variable attenuator of the amplitude
of the basis state |0〉, hence it implemented the filter F .
Projection onto the superposition states |±〉 was achieved
using the final balanced fiber coupler FBS2 and detectors

DA and DB . To determine the probability of inconclusive
events, additional detector DI was used to monitor the output
of the tunable fiber coupler VRC. For each basis X = M,N we
have measured six two-photon coincidences CX

ik represented
by simultaneous clicks of pairs of detectors Di and Dk ,
where i = 0,1, and k = A,B,I . We had measured the relative
detection efficiencies ηi , ηk of the detectors, and their influence
was compensated by rescaling the measured coincidence rates
as CX

ik → CX
ik/(ηiηk). The measurement time was the same

for both bases which corresponds to equal a priori prob-
abilities of M and N . The probabilities PS and PI were
then determined as PS = (CM

0A + CM
1B + CN

1A + CN
0B)/Ctot and

PI = (CM
0I + CM

1I + CN
0I + CN

1I )/Ctot, where Ctot denotes the
sum of all 12 measured coincidence rates.

V. RESULTS

We have performed measurements for seven values of θ =
jπ/30, j = 1,2,3,4,5,6,7. For each fixed θ , the transmittance
of VRC was varied from 1 to 0.1 with the step of 0.1. The
resulting dependence of P̃S on PI is plotted in Fig. 4 by
circles together with the theoretical curves representing the
maximum P̃S achievable by the optimal entanglement-assisted
protocol (solid lines) and by using the single-qubit probes
(dashed lines). The statistical errors of the results are smaller
than the size of the symbols. We can see that for certain θ

and PI the experimental entanglement-based discrimination
indeed outperforms the best strategy without entanglement.
The slight reduction of the experimentally observed P̃S with
respect to the theoretical prediction could be attributed to
various experimental imperfections such as phase fluctuations
inside MZIs, arm disbalance, slight deviations in phase and
polarization settings, slightly unbalanced splitting ratios of
beam splitters, and small imperfections in the input singlet
state. As indicated by the theoretical curves, the entanglement-

FIG. 4. (Color online) Dependence of relative success probabil-
ity P̃S on probability of inconclusive results PI is plotted for seven
values of θj = jπ/30, j = 1,2,3,4,5,6,7. The value of j increases
from bottom to top. Shown are the experimental data (circles) as well
as the maximum P̃S achievable by the optimal scheme using entangled
state (solid lines), and using single-qubit probes only (dashed lines).
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FIG. 5. (Color online) Unambiguous discrimination of quantum
measurements. The probabilities PS (blue circles), PI (red squares),
and PE (black crosses) are plotted as functions of the VRC splitting
ratio T . The lines represent theoretical predictions.

based protocol in theory outperforms the single-qubit scheme
for all PI > 0. The entanglement thus does not help only in the
regime of minimum error discrimination (PI = 0) where the
optimal success probability [1 + sin(2θ )]/2 can be achieved
by a single-qubit probe prepared in state |+〉. Unambiguous
discrimination with the single-qubit probe is possible only
if the probe is prepared in a state orthogonal to one of
the projectors (1), say |ϑ〉 = |ψ⊥〉. The resulting probability
of inconclusive outcomes PI = [1 + cos2(2θ )]/2 is larger
than the probability cos(2θ ) achieved by the entanglement-
based scheme and the difference increases with θ . We have
carried a separate test of unambiguous discrimination for 11
different θj = arctan(

√
Tj ) corresponding to transmittances

of the VRC, Tj , varied from 0 to 1 with step 0.1. The
experimental results, plotted in Fig. 5, are in good agreement
with theory and the probability of errors PE does not
exceed 3.2%.

VI. CONCLUSIONS

In summary, we have determined theoretically and im-
plemented experimentally optimal strategies for discrimi-
nation between two projective single-qubit quantum mea-
surements. The experiment demonstrates that the quantum
optical technology is mature enough to harness the benefits
of entanglement in quantum device discrimination, although
the entanglement-based scheme is much more demanding
than the single-qubit probe scheme, as the former requires
a real-time feed-forward to fully exploit the potential of
entangled probes. The techniques and results reported here
can be extended to unequal a priori probabilities of M and
N , noisy measurements, and POVMs containing more than
two elements [40]. Our findings provide fundamental insight
into the structure of optimal probabilistic discrimination
schemes for quantum measurements and they pave the way
towards potential applications of such techniques in quantum
information science and beyond.
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APPENDIX: PROPERTIES OF PS IN THE PROTOCOL
WITH SINGLE-QUBIT PROBES

Here we discuss in detail the properties of the probability
of successful discrimination PS in a scenario where the two
projective single-qubit measurements are discriminated using
one pure single-qubit probe. In particular, we prove that the
success probability PS given by Eq. (13) is a convex function
of PI on the entire interval 0 < PI < PI,B , i.e.,

d2PS

dP 2
I

> 0. (A1)

It is convenient to introduce a new variable y = cx. It follows
from Eq. (15) that y is a root of a cubic equation,

y3 − 2y2 + (1 − PI )y + PIc
2 = 0, (A2)

which defines y as an implicit function of PI . If we make the
substitution x = y/c in Eq. (13) we get

PS = 1

2
(1 − PI ) +

√
1 − c2

2c

√
c2 − y2

[
1 − PI

1 − y

]
, (A3)

where y depends on PI through Eq. (A2).
After some algebra we arrive at

d2PS

dP 2
I

=
√

1 − c2

2c
(αy ′ + βy ′2 + γy ′′), (A4)

where

y ′ = dy

dPI

, y ′′ = d2y

dP 2
I

, (A5)

d2PS

dP 2
I

cPI/PI,B

FIG. 6. (Color online) The second derivative d2PS/dP 2
I given by

Eq. (A4) is plotted as a function of PI and c.
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and

α = 2(y − c2)√
c2 − y2(1 − y)2

, β = PI (3c2y2 + c2 − 2c4 − 2y3) − c2(1 − y)3

(c2 − y2)3/2(1 − y)3
, γ = (y − c2)PI√

c2 − y2(1 − y)2
− y√

c2 − y2
. (A6)

The derivatives y ′ and y ′′ can be determined by repeatedly differentiating Eq. (A2) with respect to PI , which yields

y ′ = y − c2

3y2 − 4y + 1 − PI

, (A7)

y ′′ = 2
y ′ + y ′2(2 − 3y)

3y2 − 4y + 1 − PI

. (A8)

When evaluating the second derivative (A4), we should use the root of the cubic equation (A2) which maximizes the probability
of success (A3). The dependence of d2PS

dP 2
I

on PI and c is plotted in Fig. 6. We can see that the second derivative is non-negative
for all 0 � c � 1 and 0 � PI � PI,B .

When PI > PI,B , then it is optimal to set q = 0 and PS is given by Eq. (17), which is a concave function of PI . In this case
the second derivative can be explicitly calculated, and we get

d2PS

dP 2
I

= −c
√

1 − c2[c2 − (1 − 2PI )2]−3/2 < 0. (A9)
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