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Process-fidelity estimation of a linear optical quantum-controlled-Z gate: A comparative study
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We present a systematic comparison of different methods of fidelity estimation of a linear optical quantum-
controlled-Z gate implemented by two-photon interference on a partially polarizing beam splitter. We utilize a
linear fidelity estimator based on the Monte Carlo sampling technique as well as a nonlinear estimator based on
maximum likelihood reconstruction of a full quantum-process matrix. In addition, we evaluate the lower bound
on quantum-gate fidelity determined by average quantum-state fidelities for two mutually unbiased bases. In order
to probe various regimes of operation of the gate we introduce a tunable time delay between the two photons.
This allows us to move from high-fidelity operation to a regime where the photons become distinguishable and
the success probability of the scheme significantly depends on the input state. We discuss in detail possible
systematic effects that could influence the gate-fidelity estimation.
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I. INTRODUCTION

Most quantum-computation and quantum-information pro-
cessing schemes rely on devices that transform quantum
states while preserving their purity and quantum coherence.
For example, in the quantum-circuit model of computation
the elementary steps of the computation, quantum gates,
are intended to be unitary transformations. Ideally, the gates
should operate deterministically according to a given prescrip-
tion and the goal of the experimentalist is to approach this
regime as closely as possible. However, the experimentally
implemented gates always deviate somewhat from the ideal
ones due to various practical imperfections, thus creating some
general transformation, a quantum channel. In some types of
experiments, e.g., in quantum optics, the implementation of
the gate may even be probabilistic and as a consequence the
actually implemented transformation is a general probabilistic
quantum operation.

Motivated by the need to benchmark the experimentally
implemented quantum gates and to identify their errors and
imperfections, the development of tools for experimental
characterization of quantum operations has attracted consid-
erable attention in recent years. Several approaches have been
proposed that differ in terms of the required resources as well
as in the amount of information they provide. Often we want
to understand precisely how the gate operates and we want
to know exactly all of its imperfections. Quantum-process
tomography [1–4] serves exactly this purpose and provides
us with the full description of the gate, for example, in terms
of its Choi operator χ [5–7]. However, a complete quantum
tomography requires resources that grow exponentially with
the number of qubits unless one can assume that the Choi
matrix χ has a small rank r , in which case one can apply
compressed sensing [8,9]. This motivated the search for other
efficient methods of quantum-gate characterization, whose
goal is to determine only some specific features of the gate.
Typically, we wonder how close the actual gate is to the ideal
one and as a measure we use quantum-process fidelity.

It was shown by Hofmann that the quantum-process fidelity
can be efficiently bounded by measuring the average quantum-
state fidelities for two mutually unbiased bases [10,11]. This
procedure has received considerable attention and has been

utilized in several experiments to estimate the fidelity of a
quantum-CNOT gate [12–17], Toffoli gate [18], and multiqubit
unitary operations on qubits carried by trapped ions [19]. If
one wants to determine the exact value of the gate fidelity
without performing full quantum-state tomography, one can
resort to the Monte Carlo sampling techniques [20–24]. The
main advantage of Monte Carlo sampling is that the fidelity
estimation error depends on the number of measurements and
not on the size of the system, which makes this approach
particularly suitable for characterization of operations on
large numbers of qubits. However, even for small-scale
systems the Monte Carlo sampling may reduce the number
of measurements below that required for full quantum-process
tomography.

In this paper we present a systematic comparison of
different methods of fidelity estimation of a linear optical
quantum-controlled-Z (CZ) gate. In the computational basis,
this two-qubit gate introduces π phase shift if and only if both
qubits are in state |1〉,

UCZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|. (1)

Recall that the CZ gate is equivalent to the CNOT gate up to a
single-qubit Hadamard transform on the target qubit. We have
performed full quantum-process tomography of the gate and
we have also estimated the quantum-process fidelity by Monte
Carlo sampling and determined the Hofmann lower bound on
the process fidelity. A peculiar feature of the linear optical
quantum gates is that they are probabilistic [25], hence they
generally need to be described by trace-decreasing quantum
maps and the success probability of such a gate may depend on
the input state. Recently, we showed that the Hofmann bound
is applicable to such probabilistic operations, but the average
state fidelities have to be calculated as weighted means with
weights equal to the relative success probabilities for each
input probe state [18]. Here we explicitly demonstrate that by
using the ordinary state averages instead of the weighted ones
one could actually overestimate the gate fidelity. Since the
Hofmann bound has been applied in the past to characterize
probabilistic linear optical CNOT gates in several experiments,
we investigate in depth the influence of unequal success
probabilities on the fidelity bounds.
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FIG. 1. (Color online) Experimental setup: PPBS denotes par-
tially polarizing beam splitter; PBS, polarizing beam splitter; HWP,
half-wave plate; QWP, quarter-wave pate; D, single-photon detector;
and DL, tunable temporal delay line.

For this purpose we deliberately introduce a tunable
temporal delay between two photons whose polarization states
represent the qubits on which the gate acts. By changing
this delay we can move from high-fidelity operation, where
success probabilities for all input states are almost equal,
to a regime where the photons become distinguishable and
the success probabilities exhibit significant variations. We
find that our experimental results are generally in agreement
with theoretical expectations. Nevertheless, we observe certain
minor differences between the fidelity estimates determined by
full process tomography and by Monte Carlo sampling that are
larger than statistical uncertainty. Also, in the high-visibility
regime we find that the Hofmann lower bound apparently
slightly exceeds the estimated gate fidelity. We discuss possible
systematic effects that could influence the performance of the
gate and explain these discrepancies.

The rest of the paper is organized as follows. The exper-
imental setup is described in Sec. II. The quantum-process-
fidelity estimation methods are reviewed in Sec. III. In Sec. IV
we describe a simple theoretical model that shows how the
fidelity of a linear optical CZ gate depends on the visibility of
two-photon interference. Experimental results are presented
and discussed in Sec. V. Finally, Sec. VI contains a brief
summary and conclusions.

II. EXPERIMENTAL SETUP

We employ time-correlated photon pairs generated in
the process of frequency-degenerate spontaneous parametric
down-conversion in a 2-mm-long β barium borate crystal cut
for type-II phase matching and pumped with a continuous-
wave laser diode with a central wavelength of 405 nm and
110 mW of power [26]. The orthogonally polarized signal
and idler photons are spatially separated at a polarizing beam
splitter, coupled into single-mode fibers, and released back
into free space at the input of the experimental setup shown
in Fig. 1. Qubits are encoded into polarization states of the
photons and an arbitrary state of each qubit can be prepared
using a sequence of quarter-wave plates and half-wave plates.
Computational basis states are associated with horizontal and

vertical polarizations as |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉, respectively.
Besides the computational basis states we also use diagonally
and antidiagonally linearly polarized states

|D〉 = 1√
2

(|H 〉 + |V 〉), |A〉 = 1√
2

(|H 〉 − |V 〉), (2)

as well as the left- and right-hand circularly polarized states

|R〉 = 1√
2

(|H 〉 + i|V 〉), |L〉 = 1√
2

(|H 〉 − i|V 〉). (3)

The quantum CZ gate is implemented by two-photon
interference on a partially polarizing beam splitter (PPBS)
that fully transmits horizontally polarized photons (TH = 1)
while it partially reflects vertically polarized photons (TV =
1/3) [12,27–31]. The two-photon interference on the PPBS
results in a π phase shift if and only if both photons are
vertically polarized, i.e., in logical state |1〉. The scheme also
requires two additional PPBSs for balancing the amplitudes.
Since all three partially polarizing beam splitters in our setup
have the same splitting ratios, we use additional half-wave
plates rotated at 45◦ to flip the horizontal and vertical
polarizations. This ensures that the sequence of the central
PPBS and the auxiliary PPBS acts as a polarization-insensitive
filter with effective transmittance 1/3 for all polarizations.
This linear optical gate operates in the coincidence basis [30]
and its success is indicated by simultaneous detection of a
single photon at each output port. The gate is thus inherently
conditional and its theoretical success probability reads 1/9.

Polarization states of both output photons were analyzed by
standard polarization measurement blocks consisting of a half-
wave plate, a quarter-wave plate, a polarizing beam splitter,
and single-photon detectors. In order to avoid the need to
precisely calibrate relative detection efficiencies of the single-
photon detectors, we have used only two-photon coincidences
between a single pair of detectors D2 and D3 for further
data processing. Two-photon coincidences corresponding to
measurement in any chosen product two-qubit basis were
thus recorded sequentially and the measurement time of each
number of coincidences was set to 30 s.

III. FIDELITY ESTIMATION METHODS

For our purposes, a quantum operation E is most con-
veniently described using the Choi-Jamiolkowski isomor-
phism [5,6], which attributes to each completely positive map
E a positive semidefinite operator χ on a tensor product of
input and output Hilbert space. This operator can be intuitively
defined as a density matrix of a quantum state obtained by
applying the operation E to one part of a pure maximally
entangled state |�+〉 on two copies of an input Hilbert space

χ = I ⊗ E(�+), (4)

where I denotes the identity operation and �+ = |�+〉〈�+|
denotes a density matrix of the pure state |�+〉. For two-qubit
operations we explicitly have

|�+〉 =
1∑

j,k=0

|jk〉|jk〉. (5)
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An input density matrix ρin is transformed by E into ρout =
E(ρin), which can be expressed as

ρout = Trin
[
ρT

in ⊗ Ioutχ
]
, (6)

where T stands for the transposition in the computational basis
and I denotes an identity operator. For probabilistic operations,
ρout is normalized so that its trace is equal to the success
probability of E for input state ρin,

p = Tr
[
ρT

in ⊗ Ioutχ
]
. (7)

The Choi matrix of a unitary CZ gate (1) reads

χCZ = (I ⊗ UCZ)|�+〉〈�+|(I ⊗ U
†
CZ), (8)

hence it is proportional to a density matrix of a pure maximally
entangled state. The process fidelity of quantum operation χ

with respect to the unitary CZ gate is defined as a normalized
overlap of their Choi matrices,

Fχ = Tr[χχCZ]

Tr[χCZ]Tr[χ ]
. (9)

Sometimes Fχ is called entanglement fidelity [32] because it
is defined as an overlap of χ with a pure maximally entangled
state.

A. Quantum-process tomography

In our experiment, the CZ gate is probed with 36 product
two-qubit states |�jk〉 = |ψj 〉|ψk〉, where the six different
single-qubit states |ψj 〉 form three mutually unbiased bases

|ψj 〉 ∈ {|H 〉,|V 〉,|D〉,|A〉,|R〉,|L〉}. (10)

The measurements on the output two-photon states are
products of single-qubit projective measurements, where each
qubit is measured in one of the three bases H/V , D/A, and
R/L and we perform two-qubit measurements for all nine
combinations of these bases. The probability of projecting the
output photons onto state |�lm〉 for input state |�jk〉 can be
expressed as

pjk,lm = Tr
[
�T

jk ⊗ �lmχ
]
. (11)

The preparation of input probe states together with the
measurement on the output states can be interpreted as a
quantum measurement on χ , described by a positive operator
valued measure (POVM) with 36 × 36 elements 	jk,lm =
�T

jk ⊗ �lm. This POVM satisfies the completeness relation

6∑
j,k=1

6∑
l,m=1

	jk,lm = 81I (12)

and the knowledge of all pjk,lm fully and unambiguously
determines χ . Note that Eq. (12) implies that

6∑
j,k=1

6∑
l,m=1

pjk,lm = 81 Tr[χ ]. (13)

The measured coincidences Cjk,lm exhibit Poissonian
statistics with mean equal to Npjk,lm, where N is the average
number of photon pairs generated by the source during the

measurement time of 30 s. We reconstruct the quantum
operation χ from the measured coincidences with the help
of maximum-likelihood estimation [33,34]. The likelihood
function representing the probability of measurement results
Cjk,lm for a given quantum operation χ can be expressed as

L =
6∏

j,k=1

6∏
l,m=1

(Npjk,lm)Cjk,lm

Cjk,lm!
e−Npjk,lm . (14)

It is convenient to work with the log-likelihood function lnL.
The terms that do not depend on χ can be omitted and using
Eq. (13) we obtain

lnL =
6∑

j,k=1

6∑
l,m=1

Cjk,lm ln pjk,lm − λ Tr[χ ], (15)

where λ = 81N . The actual pair generation rate N is unknown
due to various losses and imperfect photon collection and
detection efficiency. Therefore, Tr[χ ] can be effectively con-
sidered as a free parameter and we can set Tr[χ ] = 1 during the
maximization of the log-likelihood function (15). Maximum-
likelihood estimation of probabilistic quantum operation then
becomes completely equivalent to quantum-state estimation.
The quantum operation χ that maximizes L satisfies the
extremal equation [33]

Rχ = λχ, (16)

where

R =
6∑

j,k=1

6∑
l,m=1

Cjk,lm

pjk,lm

	jk,lm, (17)

and the Lagrange multiplier λ that fixes the trace of χ

is proportional to the total number of coincidences λ =
Ctot/Tr[χ ], where

Ctot =
6∑

j,k=1

6∑
l,m=1

Cjk,lm. (18)

The operation χ that maximizes L can be calculated by
repeated iterations of the symmetrized extremal equation,
which preserves the positive semidefiniteness of χ [34],

χ = RχR

Tr[RχR]
. (19)

As a starting point of the iterations we choose a full-rank
operator χ0 = I/16 and the iterations are terminated when
|Rχ − λχ |1/Ctot < 10−5, where |A|1 = ∑

j,k |Ajk|.

B. Monte Carlo sampling

Here we review the estimation of quantum-process fidelity
by Monte Carlo sampling as proposed in Refs. [22,23], paying
special attention to the fact that we deal with probabilistic
trace-decreasing operations. The operator χCZ defined in
Eq. (8) can be expanded in the operator basis formed by tensor
products of Pauli matrices

χCZ =
3∑

a,b,c,d=0

sabcdσa ⊗ σb ⊗ σc ⊗ σd. (20)
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TABLE I. Nonzero coefficients sabcd in the expression (23) for
process fidelity of a quantum CZ gate.

a b c d sabcd a b c d sabcd

0 0 0 0 0.25 2 0 2 3 −0.25
0 1 3 1 0.25 2 1 1 2 0.25
0 2 3 2 −0.25 2 2 1 1 0.25
0 3 0 3 0.25 2 3 2 0 −0.25
1 0 1 3 0.25 3 0 3 0 0.25
1 1 2 2 0.25 3 1 0 1 0.25
1 2 2 1 0.25 3 2 0 2 −0.25
1 3 1 0 0.25 3 3 3 3 0.25

It will be helpful to express the Pauli operators in terms of
projectors onto the probe states |ψj 〉,

σ0 = |H 〉〈H | + |V 〉〈V |,
σ1 = |D〉〈D| − |A〉〈A|,

(21)
σ2 = |R〉〈R| − |L〉〈L|,
σ3 = |H 〉〈H | − |V 〉〈V |.

Due to the orthogonality relations Tr[σaσb] = 2δab, the
coefficients in the expansion (20) can be determined as

sabcd = 1
16 Tr[χCZσa ⊗ σb ⊗ σc ⊗ σd ]. (22)

For the CZ gate one finds that only 16 of the coefficients (22)
are nonzero [24] and these coefficients are listed in Table I. On
inserting the expansion (20) into the formula for Fχ we obtain

Fχ = 1

4 Tr[χ ]

∑
a,b,c,d

sabcdTr[σa ⊗ σb ⊗ σc ⊗ σdχ ]. (23)

If we insert the expressions (21) into Eq. (23) and make use of
the identity (13), we find that Fχ can be written as a ratio of
linear functions of probabilities pjk,lm,

Fχ = 81

4

∑6
j,k,l,m=1 ujk,lmpjk,lm∑6

j,k,l,m=1 pjk,lm

, (24)

where the coefficients ujk,lm are certain linear combinations of
sabcd . Note that the expression (24) for Fχ is not unique because
the single-qubit identity operator σ0 can be expressed in dif-
ferent ways in terms of the projectors onto |ψj 〉. For instance,
instead of formula (21) we can use σ0 = |D〉〈D| + |A〉〈A| or
σ0 = |R〉〈R| + |L〉〈L|. Also the normalization factor Tr[χ ]
can be expressed in terms of the probabilities pjk,lm in
many different ways. Since the (mean values of) measured
coincidences Cjk,lm are proportional to pjk,lm, we can replace
the probabilities with coincidences in Eq. (24) to obtain an
estimator of the process fidelity

FMC = 81

4

∑6
j,k,l,m=1 ujk,lmCjk,lm∑6

j,k,l,m=1 Cjk,lm

. (25)

Since we are able to collect enough data to estimate all
terms in the expansion (24), we do not need to perform
random sampling of only some of those terms as prescribed
by the generic Monte Carlo sampling procedure [22,23]. Note,
however, that such random sampling is extremely useful for

large systems because it ensures that the total number of
measurements that need to be carried out depends only on
the required precision of fidelity estimation and not on the
system size [22,23].

C. Hofmann bounds

As shown by Hofmann [10], a lower and upper bound on
the process fidelity Fχ can be obtained from average state
fidelities evaluated for two mutually unbiased bases. In the
case of the CZ gate it is particularly suitable to use the product
basis {|DH 〉,|DV 〉,|AH 〉,|AV 〉} and a dual basis obtained
from the first basis by a Hadamard transform on each qubit,
{|HD〉,|V D〉,|HA〉,|V A〉}. In what follows we shall label
these bases as 1 and 2 and we denote by |ωj,k〉 a j th state of
basis k. The unitary CZ gate transforms all input states |ωj,k〉
onto output product states

UCZ|DH 〉 = |DH 〉, UCZ|HD〉 = |HD〉,
UCZ|DV 〉 = |AV 〉, UCZ|V D〉 = |V A〉,
UCZ|AH 〉 = |AH 〉, UCZ|HA〉 = |HA〉,
UCZ|AV 〉 = |DV 〉, UCZ|V A〉 = |V D〉,

(26)

hence the state fidelities can be directly determined by
measurements in product two-qubit bases.

The normalized output state of the quantum operation χ for
the input |ωj,k〉 reads

ρj,k = 1

pj,k

Trin
[
ωT

j,k ⊗ Ioutχ
]
, (27)

where pj,k = Tr[ωT
j,k ⊗ Ioutχ ] is the success probability of χ

for input |ωj,k〉 and ωj,k = |ωj,k〉〈ωj,k|. The fidelity of the
output state ρj,k is defined as overlap with the pure state
UCZ|ωj,k〉 produced by the unitary CZ gate,

fj,k = 〈ωj,k|U †
CZρj,kUCZ|ωj,k〉. (28)

The average output state fidelity for the kth basis is defined
as a weighted mean of fj,k with weights equal to the success
probabilities pj,k [18,35],

Fk =
∑4

j=1 pj,kfj,k∑4
j=1 pj,k

. (29)

Note that in order to determine Fk we do not need the absolute
success probabilities but only the relative probabilities Pj,k =
pj,k/

∑
j ′ pj ′,k .

Let Ck
j,j ′ denote the number of coincidences corresponding

to projections onto a product state UCZ|ωj ′,k〉 for input
probe state |ωj,k〉. The state fidelities and relative success
probabilities can be estimated as [18]

fj,k = Ck
j,j

Sk
j

, Pj,k = Sk
j∑4

j=1 Sk
j

, (30)

where Sk
j = ∑4

j ′=1 Ck
j,j ′ . On inserting these expressions into

Eq. (29) we finally obtain

Fk =
∑4

j=1 Ck
j,j∑4

j=1 Sk
j

. (31)
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In the case of perfect gate operation only Ck
j,j would be nonzero

and Ck
j,j ′ = 0 if j 
= j ′. The average fidelity (31) is thus given

by a ratio of the sum of the “good” coincidences Ck
j,j and the

sum of all the coincidences Ck
j,j ′ .

Since
∑4

j=1 ωj,k = I for all k, it holds that
∑4

j=1 pj,k =
Tr[χ ] and we can express the mean fidelities defined in Eq. (29)
in a compact matrix form Fk = Tr[Qkχ ]/Tr[χ ], where

Qk =
4∑

j=1

ωT
j,k ⊗ (

UCZωj,kU
†
CZ

)
. (32)

The gate fidelity Fχ can be bounded by the average state
fidelities as [10,18]

min(F1,F2) � Fχ � F1 + F2 − 1 ≡ FH . (33)

With the help of the above expressions one can rewrite the
lower bound condition as

Tr[Qχ ]

Tr[χ ]
� 0, (34)

where Q = 1
4χCZ − Q1 − Q2 + I. It can be shown by explicit

calculation that the operator Q is positive semidefinite, which
proves that the inequality (34) holds for both deterministic and
probabilistic quantum operations χ [18].

If all success probabilities pj,k are equal then the
weighted means can be replaced by the ordinary means F̄k =
1
4

∑4
j=1 fj,k and we obtain the Hofmann bound as originally

formulated for deterministic operations

Fχ � F̄1 + F̄2 − 1 ≡ FD. (35)

We emphasize that this latter bound does not hold for
probabilistic operations and F̄1 + F̄2 − 1 may be larger than
Fχ if χ is a trace-decreasing map. In order to compare the two
bounds (33) and (35) we write

fj,k = F̄k + �fj,k, pj,k = p̄ + �pj,k, (36)

where p̄ = ∑
j pj,k/4 = Tr[χ ]/4. Since

∑
j �fj,k = 0 and∑

j �pj,k = 0 by definition, we have

F1 + F2 = F̄1 + F̄2 + 1

4p̄

4∑
j=1

(�pj,1�fj,1 + �pj,2�fj,2).

(37)
This formula reveals that the bounds (33) and (35) will
differ considerably only if the state fidelities fj,k and success
probabilities pj,k exhibit significant variations.

IV. MODEL OF A LINEAR OPTICAL CZ GATE

To experimentally probe various regimes of the gate oper-
ation including the situation where the success probabilities
significantly depend on the input states, we deliberately
introduce a variable time delay between the photons with
the help of a delay line (see Fig. 1). The time delay makes
the photons partially or even fully distinguishable and it thus
reduces the visibility of their interference [36]. In this section
we analyze theoretically the impact of the reduced visibility of
two-photon interference on the behavior of the gate. We will
model this situation in a simple way: We assume that the two

photons either interfere with probability q or behave as per-
fectly distinguishable particles with probability 1 − q. A more
detailed model including also errors in the transmittance of the
partially polarizing beam splitters can be found in Ref. [37].

It is instructive to relate the value of the parameter q to the
visibility of Hong-Ou-Mandel (HOM) interference that can
be directly measured experimentally. If we prepare a signal
photon in state |V 〉 and an idler photon in state |H 〉 and set
the waveplates in the second qubit analysis block such that
it performs a measurement in the D/A basis, then a HOM
dip can be observed by measuring the coincidences between
detectors D3 and D4. The observed coincidence rate C will be
proportional to the photons’ distinguishability C = C∞(1 −
q), where C∞ is the rate outside the dip. Visibility of two-
photon interference is defined as V = (C∞ − C)/(C∞ + C)
and after some algebra we obtain the relation

q = 2V
1 + V . (38)

The operation of the gate can be seen as a probabilistic
mixture with probability q of a perfect operation of the CZ gate
(when the photons perfectly interfere and the gate succeeds
with probability 1/9) and of an incoherent transformation χinc

occurring otherwise. Thus, the Choi-Jamiolkowski operator
corresponding to the gate reads

χ = q

9
χCZ + (1 − q)χinc. (39)

If the photons are distinguishable then the gate operation
still succeeds if both photons are either transmitted through
or reflected from the central PPBS, but these two contribu-
tions become distinguishable and have to be added together
incoherently. After some algebra we thus find that χinc is a
mixture of an identity channel and an operation corresponding
to projection onto state |V V 〉,

χinc = 1
9 |�+〉〈�+| + 4

9 |V V V V 〉〈V V V V |, (40)

where we recall that

|�+〉 = |HHHH 〉 + |HV HV 〉 + |V HV H 〉 + |V V V V 〉
(41)

in our current notation. The dependence of the gate fidelity on
visibility V can be determined using Eqs. (38) and (39) and
we get

Fχ = 1 + 3V
4

. (42)

We can see that the gate operates perfectly for V = 1 (or
equivalently q = 1) and has fidelity 1/4 if we operate it out of
the HOM interference (V = q = 0).

Let us now investigate the dependence of the Hofmann
bound on the interference visibility. Our goal is to calculate
the mean state fidelities Fk and F̄k and for this purpose we
need to evaluate pj,k and fj,k as defined in Sec. III C. It is
convenient to rewrite the expression for success probability as
pj,k = Tr[ωT

j,kX], where

X = Trout[χ ] = 1
9I + 4

9 (1 − q)|V V 〉〈V V |. (43)

The four probe states |HD〉, |HA〉, |DH 〉, and |AH 〉 have
|0〉 ≡ |H 〉 as one of the qubits and the ideal CZ gate would act
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as an identity on them. Moreover, all these states are orthogonal
to |V V 〉. Therefore, we have for all these states

pj,k = 1
9 , fj,k = 1, (44)

irrespective of the value of visibility V . On the other hand, the
remaining four input states |VD〉, |VA〉, |DV 〉, and |AV 〉 have
an overlap 1/

√
2 with |V V 〉 and we get

pj,k = 3 − 2q

9
, fj,k = 1

3 − 2q
(45)

for all of them.
At this stage we are ready to evaluate Fk and F̄k . Since each

basis contains two states from the first and two states from the
second above-mentioned groups of states, we get

F1 = F2 = 1 + V
2

, F̄1 = F̄2 = 2

3 − V . (46)

The Hofmann bound (33) implies that the gate fidelity should
satisfy

V � Fχ � 1 + V
2

, (47)

hence the lower bound on Fχ is directly equal to the visibility
of two-photon interference V . It is easy to see that the true
fidelity (42) indeed satisfies the inequalities (47) as it should.
In Fig. 2 we plot the true process fidelity as well as the Hofmann
lower bound in dependence on the interference visibility V .

If we use the ordinary average state fidelities F̄k instead of
the weighted averages Fk , then we get

FD ≡ F̄1 + F̄2 − 1 = 1 + V
3 − V , (48)

which is larger than the true fidelity Fχ when V < 1
3 (see

Fig. 2). This explicitly demonstrates that the lower bound (35)
is guaranteed to work only for deterministic operations
and its application to probabilistic operations may lead to
overestimation of the process fidelity. Since FD − FH = (1 −
V)2/(3 − V), the two bounds become very similar for high

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V

FD

Fχ

FH

F

FIG. 2. (Color online) Dependence of the gate fidelity Fχ (solid
red line), lower bound on gate fidelity FH (blue dashed line), and
lower bound valid for deterministic operations FD (green dot-dashed
line) on two-photon interference visibility V .

interference visibilities and the difference becomes significant
only for relatively low visibility (see Fig. 2).

V. RESULTS

The tomographically complete measurements specified in
Sec. III were performed for three different values of visibility
of the two-photon interference V . The first measurement was
carried out at the Hong-Ou-Mandel dip where V = 0.953,
which is the maximum visibility that we achieved with
our setup. The second measurement was carried out with
partly distinguishable photons (V = 0.50) and for the third
measurement the temporal delay between the photons was
increased such that they became completely distinguishable
(V = 0.022).

The quantum-process matrices determined by the
maximum-likelihood estimation procedure are plotted in
Fig. 3. We can see that the shape of the reconstructed
process matrices is in good agreement with the theoretical
predictions for all the visibilities. In Table II we summarize
the quantum-process fidelities Fχ determined from the recon-
structed quantum-process matrices. The table also contains
process fidelities FMC estimated by Monte Carlo sampling and
the Hofmann lower bound (33) on process fidelity FH . For
comparison, the table also includes a lower bound on process
fidelity FD that is valid only for deterministic operations [see
Eq. (35)]. The coincidences and relative success probabilities
required for evaluation of FH and FD are plotted in Fig. 4.
The data are in good agreement with the prediction of the
theoretical model described in Sec. IV. In particular, all the
success probabilities are almost identical at the dip, while well
outside the dip the states split into two groups whose success
probabilities differ almost by a factor of 3.

The statistical uncertainty of FMC, FH , and FD was
estimated assuming Poissonian statistics of the measured
coincidences and using standard error propagation. After some
algebra we find that the statistical uncertainty of the Monte
Carlo fidelity estimate FMC can be expressed as

(�FMC)2 = 1

Ctot

6∑
j,k,l,m=1

Cjk,lm

Ctot

(
81

4
ujk,lm − FMC

)2

(49)

and the statistical uncertainty of the Hofmann bounds is given
by

(�FH )2 =
2∑

k=1

Fk(1 − Fk)∑4
j=1 Sk

j

,

(50)

(�FD)2 = 1

16

2∑
k=1

4∑
j=1

fj,k(1 − fj,k)

Sk
j

.

In order to estimate the statistical uncertainty of fidelity Fχ

determined from the reconstructed process matrix χ , we have
performed repeated simulations of the experiment followed
by maximum-likelihood reconstruction of the process matrix.
For each V this procedure yielded an ensemble of 100
reconstructed quantum-process matrices and a corresponding
ensemble of process fidelities whose spread as quantified by
one standard deviation was consistently lower than 10−3. The
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FIG. 3. (Color online) (a)–(c) quantum-process matrices χ of a linear optical CZ gate determined by maximum-likelihood reconstruction
from experimental data and (d)–(f) theoretical process matrices determined from the model presented in Sec. IV. The results are shown for
three values of two-photon interference visibility (a) and (d) V = 0.953, (b) and (e) V = 0.50, and (c) and (f) V = 0.022. Imaginary parts
of reconstructed χ represent a small noise background and are not plotted. To facilitate comparison, all matrices are normalized such that
Tr[χ ] = 4.

statistical uncertainty of Fχ indicated in Table II therefore
represents a conservative upper bound.

The experimentally determined process fidelities Fχ and
FMC are somewhat smaller than the fidelity (1 + 3V )/4
predicted by the theoretical model. This can be partly explained
by the imperfections of the three partially polarizing beam
splitters [37] whose measured transmittances TH1 = 0.983,
TV 1 = 0.348, TH2 = 0.983, TV 2 = 0.344, TH3 = 0.984, and
TV 3 = 0.324 differ slightly from the ideal values TH = 1 and
TV = 1/3. Note also that the differences between maximum-
likelihood and Monte Carlo estimates are larger than statistical
uncertainty. Moreover, in the high-visibility regime V = 0.95
the Hofmann lower bound FH exceeds both Fχ and FMC by an
amount that is larger than the statistical error. All these features
indicate the influence of some effects that introduce systematic
errors. To further investigate this aspect of our experiment,

TABLE II. Experimentally determined quantum-process fideli-
ties Fχ and FMC, Hofmann lower bound on process fidelity FH , lower
bound FD valid for deterministic operations, and upper bound on
process fidelity provided by the minimum of average state fidelities
F1 and F2. The results are shown for three values of visibility V .

V FD FH Fχ FMC min(F1,F2)

0.953 0.875(2) 0.877(2) 0.860(1) 0.871(2) 0.934(1)
0.500 0.465(2) 0.372(2) 0.531(1) 0.539(1) 0.676(1)
0.022 0.253(2) −0.034(2) 0.232(1) 0.252(1) 0.479(1)

we have determined Monte Carlo estimates of the process
fidelity using three different estimators. These estimators were
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FIG. 4. (Color online) (a)–(f) Normalized coincidences Ck
j,j ′/S

k
j

and (g)–(i) relative success probabilities Pj,k used for determination
of the Hofmann bound on the quantum-process fidelity. The results
are shown for the three visibilities (a), (d), and (g) V = 0.953, (b),
(e), and (h) V = 0.500, and (c), (f), and (i) V = 0.022.
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M. MIČUDA et al. PHYSICAL REVIEW A 89, 042304 (2014)

TABLE III. Monte Carlo estimates of quantum-process fidelity
determined from the original and renormalized coincidences are listed
for the three considered values of interference visibility V and three
different expansions of the single-qubit identity operator σ0 leading
to different Monte Carlo estimators.

V σ0 FMC F̃MC

0.953 H/V 0.871(2) 0.861(2)
0.953 D/A 0.882(2) 0.870(2)
0.953 R/L 0.833(1) 0.846(1)
0.500 H/V 0.539(1) 0.533(2)
0.500 D/A 0.521(1) 0.518(2)
0.500 R/L 0.515(1) 0.520(1)
0.022 H/V 0.252(1) 0.240(1)
0.022 D/A 0.245(1) 0.240(1)
0.022 R/L 0.242(1) 0.235(1)

obtained following the procedure described in detail in
Sec. III B, where the single-qubit identity operator was
expressed in three different ways as a sum of projectors σ0 =
|H 〉〈H | + |V 〉〈V |, σ0 = |D〉〈D| + |A〉〈A|, or σ0 = |R〉〈R| +
|L〉〈L|. The results are summarized in Table III. We can
see that the three estimators lead to fidelity estimates that
differ by amounts exceeding the statistical uncertainty and
the differences are largest in the high-visibility regime of
operation.

Given the long duration of data acquisition (almost 17 h
for each fixed V), the measurements can be affected by
long-term fluctuations of the rate of our source of correlated
photon pairs. In order to track these fluctuations, we have
performed additional coincidence measurements that can be
used for data calibration. For each of the 36 input states
|�jk〉 we have measured the 36 coincidences Cjk,lm and then
we measured reference coincidences Djk for a fixed setting
that did not depend on j,k (input state |HH 〉, projection
onto |HH 〉). The dependence of the reference coincidences
Djk on time is plotted in Fig. 5. The observed long-term
fluctuations are indeed non-negligible and should be accounted

0 5 10 15
10 000

11 000

12 000

13 000

14 000

15 000

16 000

t (h)

D

FIG. 5. (Color online) Reference coincidences Djk plotted as a
function of time for the three considered two-photon visibilities V =
0.953 (solid blue line), V = 0.50 (red dotted line), and V = 0.022
(green dashed line).

for in data processing. We therefore renormalize the measured
coincidences

C̃jk,lm = Cjk,lm

Djk

. (51)

Monte Carlo estimates of process fidelity F̃MC obtained from
the renormalized coincidences are listed in the last column
of Table III. The data calibration leads to a reduction of
the spread of the three estimates for each fixed visibility
V . The calibration (51) modifies the statistical uncertainty
of the estimates because the reference coincidences Djk are
fluctuating quantities. Following the same procedure as before,
we find that the statistical error of F̃MC is given by

(�F̃MC)2 = 1

C̃2
tot

6∑
j,k,l,m=1

C̃jk,lm

Dj,k

(
81

4
ujk,lm − F̃MC

)2

+ 1

C̃2
tot

6∑
j,k=1

1

Djk

[
6∑

l,m=1

C̃jk,lm

(
81

4
ujk,lm − F̃MC

)]2

. (52)

Explicit calculations reveal that the contribution due to
fluctuations of Djk is almost negligible and the statistical
uncertainty of F̃MC is of the order of 10−3, similar to that
for FMC (see Table III).

Using the renormalized coincidences (51), we have also
evaluated the Hofmann bounds FH and FD and the process
fidelity Fχ obtained from the process matrix χ determined
by maximum-likelihood reconstruction. It turns out that,
in contrast to Monte Carlo sampling, the renormalization
has a negligible impact on these fidelity values. The largest
difference occurs for Fχ at the high-visibility regime
(V = 0.95) where we get Fχ = 0.860 before renormalization
and Fχ = 0.858 after renormalization. In all other cases, the
difference between fidelities obtained from the original co-
incidences and the renormalized coincidences is smaller than
0.002. Let us outline a possible explanation of this robustness
with respect to fluctuations of the pair generation rate. Since
all measurements for any given input state were performed
in a row in a relatively short time span of approximately
30 min, the long-term fluctuations of the source rate have
only a small impact on the estimation of state fidelities fj,k

that appear in expressions for FH and FD . On the other hand,
the maximum-likelihood estimation combines together all the
data that form a significantly overcomplete set and therefore
it in a sense averages over the long-term fluctuations of the
source.

This analysis shows that the long-term fluctuations of the
pair generation rate do not completely explain the observed
discrepancies between the fidelities. We therefore conclude
that these discrepancies are caused by other systematic effects.
One such phenomenon could be a change of the visibility
of two-photon interference during the measurement. This is
supported by the fact that the observed fidelity discrepancies
are largest in the high-visibility regime. In this case the setup
is initially tuned to maximum visibility and thermal drifts and
other effects cause a reduction of the visibility in the course of
the measurement. By contrast, if the setup is operated with
large temporal delay between the two photons then small
random changes of this delay do not have any impact on
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the performance of the scheme. Another possible source of
systematic errors consists in imperfections of the waveplates
and polarizing beam splitters that serve for state preparation
and analysis.

VI. CONCLUSION

In summary, we have compared several methods of
quantum-process-fidelity estimation using the linear optical
CZ gate as a suitable testing platform. We have considered a
linear fidelity estimator based on the Monte Carlo sampling as
well as a nonlinear estimator based on maximum-likelihood
reconstruction of the full process matrix χ . In addition, we have
also evaluated lower bounds on quantum-process fidelity pro-
vided by average quantum-state fidelities. Since we have used
the same data set to evaluate all the fidelities, the results admit
direct comparison. We have observed good agreement between
the Monte Carlo and maximum-likelihood estimates and also
the fidelity bounds FH and FD behaved according to theoretical
predictions. The observed small discrepancies between FMC

and Fχ can be partly attributed to fluctuations of the photon-
pair generation rate in the course of measurement, which were
tracked by performing reference measurements and compen-
sated for by renormalization of the measured coincidences.

The remaining residual discrepancies between fidelity
estimates can be attributed to various systematic effects such
as change of the two-photon interference visibility during the
measurement or small imperfections of the waveplates and
polarizing beam splitters that are used for state preparation
and analysis. In this context it is worth mentioning that it
was shown very recently that fidelity estimation based on
maximum-likelihood reconstruction may lead to systematic
underestimation of the fidelity [38]. This underlies the impor-
tance of other more direct fidelity estimation techniques such
as Monte Carlo sampling or fidelity bounds based on average
state fidelities.

By tuning the time delay between the two photons, we were
able to control the visibility of the two-photon interference and
operate the gate in different regimes. In particular, when oper-
ated far outside the dip, the gate exhibits very low fidelity and
a significant dependence of success probability on the input
state. This flexibility allowed us to probe experimentally the
influence of the varying success probabilities on the Hofmann
lower bound on quantum-process fidelity. For probabilistic
gates, a valid lower bound FH can be obtained with the
help of weighted averages of state fidelities with weights
represented by the relative success probabilities. In contrast,
the bound based on ordinary averages of state fidelities is
valid only for deterministic operations and may fail to provide
a lower bound for probabilistic operations. This is clearly
demonstrated by our theoretical calculations and confirmed
also by our experimental data. Well outside the dip we observe
FD = 0.253(2), while Fχ = 0.232(1) and F̃MC � 0.240(1).
On the other hand, when the CZ gate is operated at the
dip (V = 0.95), then the success probabilities are almost the
same for all inputs and FD and FH practically coincide. This
confirms that the lower bounds on process fidelity of linear
optical quantum gates reported in previous works [12–17] are
reliable even if they were determined using ordinary averages
of the state fidelities.
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