
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 178.253.133.16

This content was downloaded on 31/07/2014 at 23:12

Please note that terms and conditions apply.

Fault-ignorant quantum search

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 073033

(http://iopscience.iop.org/1367-2630/16/7/073033)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/7
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Fault-ignorant quantum search

Péter Vrana1, David Reeb2, Daniel Reitzner2,3 and Michael M Wolf2
1 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
2Department of Mathematics, Technische Universität München, D-85748 Garching, Germany
3 Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
E-mail: vranap@math.bme.hu, david.reeb@tum.de, reitzner@savba.sk and m.wolf@tum.de

Received 6 May 2014
Accepted for publication 25 June 2014
Published 24 July 2014

New Journal of Physics 16 (2014) 073033

doi:10.1088/1367-2630/16/7/073033

Abstract
We investigate the problem of quantum searching on a noisy quantum computer.
Taking a fault-ignorant approach, we analyze quantum algorithms that solve the
task for various different noise strengths, which are possibly unknown before-
hand. We prove lower bounds on the runtime of such algorithms and thereby
find that the quadratic speedup is necessarily lost (in our noise models). How-
ever, for low but constant noise levels the algorithms we provide (based on
Groverʼs algorithm) still outperform the best noiseless classical search
algorithm.

Keywords: quantum search, algorithms, fault tolerance, Grover search,
computational complexity, error correction, runtime bounds

1. Introduction

Since the inception of quantum computing [1], a large effort has been devoted to making
quantum computers function in a noisy environment and securing them against imperfections in
the physical setup itself. The theoretical literature offers several ways to cope with such errors.
The leading idea is to encode quantum states into a larger system [2, 3] such that noise hits can
be recognized and subsequently corrected. A quantum computation can then be performed in a
fault-tolerant way directly on these encoding systems [4, 5], and nested levels of error
correction can make the computation error-free. The last statement assumes that the initial error

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 16 (2014) 073033
1367-2630/14/073033+37$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:vranap@math.bme.hu
mailto:david.reeb@tum.de
mailto:reitzner@savba.sk
mailto:m.wolf@tum.de
http://dx.doi.org/10.1088/1367-2630/16/7/073033
http://creativecommons.org/licenses/by/3.0/

rate is not too high and that the error hits are not too correlated, e.g. occur locally. Beyond these
assumptions, quantum error correction schemes require significant resources in terms of circuit
size and experimental control [6, 7]. Other approaches use decoherence-free subspaces,
employing for the quantum computation those parts of a systemʼs Hilbert space which are
relatively unaffected by the noise [8, 9]. The latter approach works only in more limited
circumstances and requires detailed knowledge of the noise.

Here, we follow a different idea which tries to avoid the disadvantages just mentioned.
Rather than devoting large efforts to eliminating the errors at all costs, we accept them in the
computation and try to design algorithms that eventually still find the desired result. The spatial
size of the quantum circuit should however not be enlarged much beyond the noiseless version
of the algorithm; one may e.g. allow only a number of extra qubits that remains bounded by a
constant as the problem size becomes large [7] (whereas it seems reasonable to allow for an
exponentially large noiseless classical memory).

Furthermore, the algorithms should find the desired result under any level of background
noise—this level may actually be unknown to the algorithm, hence the term fault-ignorant
computation. The algorithm is, however, allowed to take more time the larger the actual noise
gets. In this sense, we are trading spatial resources (circuit size) for temporal resources
(runtime). Still, when the actual noise level is low (but constant in the problem size), we want
our algorithms to produce the desired result faster than any classical algorithm even in a
noiseless environment—this indeed will be the case for the explicit algorithms we present. We
describe the fault-ignorant approach and these desiderata in more detail in section 1.1.

While under noise the resulting fault-ignorant algorithms may not give the full quantum
speedup for large problem sizes, they may still be useful for initial and medium-term
realizations of quantum computers, in particular in the non-scalable low-qubit number regime
which does not allow for full-blown quantum error correction schemes.

In this paper, we analyze the above fault-ignorant idea for the example of quantum search
on a noisy quantum computer. The unstructured search problem, i.e. the search for a marked
item in an unordered list with oracle access, can be solved on a noiseless quantum computer by
Groverʼs algorithm quadratically faster than by any classical algorithm [1, 10]. This quantum
speedup is optimal [11–13].

Good algorithms or optimality issues for the noisy case are however much less clear. Many
studies in this direction investigate how (different models of) background noise or a faulty
oracle affect specifically Groverʼs algorithm (e.g. [14–19]), and it is often found that the
quadratic speedup persists as long as the noise stays below a certain threshold depending on the
database size. Only the paper [20] by Regev and Schiff gives, for a specific model of a faulty
oracle, a general lower bound on the number of oracle invocations necessary to find the marked
item by any quantum algorithm; [21] proves the analogous result for any continuous-time
implementation of oracle search. A concrete algorithm that functions under a faulty oracle is
briefly suggested in [19], advocating the avoidance of active error correction as well, as we do.

In the quantum search part of this paper, we address the strengths and weaknesses of
general oracular search algorithms under noise in more detail. Notably, we state all our upper
and lower runtime bounds with explicit prefactors as e.g. in theorems 2–5, which in particular
allows a comparison with the performance of classical search algorithms already for ‘small’ (i.e.
non-asymptotic) database sizes N. On the one hand we give fault-ignorant algorithms, on the
other we investigate their optimality. More detailed comparisons to the works [19–21] are made
in section 3.3. The Hilbert space in our setup consists of a search space, possibly supplemented

2

New J. Phys. 16 (2014) 073033 P Vrana et al

by an ancillary quantum system and both suffering from noise; our constructive algorithms will
actually not use ancillary systems, but we allow for them in the proofs of our lower runtime
bounds, which strengthens these. Additionally, the algorithms may have access to a noiseless
classical memory, which is a technologically realistic assumption. The noise itself is modelled
as discrete hits of some noise channel that is to be applied between any two oracle invocations.

The problem of fault-ignorant quantum search is then as follows: devise a quantum
algorithm that, except for some specified maximal failure probability ε, returns the marked item
under any decoherence rate p, using as few oracle calls as possible. The fastest (noiseless)
classical algorithm needs ε⌈ − ⌉N(1) table lookups for this task, examining the database entries
one by one. We exhibit quantum algorithms which, under low but constant depolarizing level p,
require fewer oracle calls than this classical algorithm, see e.g. theorem 3.

The paper is organized as follows. We give a more detailed description of the fault-
ignorant idea in section 1.1, while referring to appendix A for a general and precise
mathematical definition of fault-ignorant algorithms. Those readers interested mainly in the
problem of quantum search on a noisy quantum computer are directed to the remaining
sections. In section 2 we introduce quantum search in the presence of decoherence, and develop
a fault-ignorant algorithm (algorithm 1) that consists of ‘quantum building blocks’ and uses the
noiseless classical memory merely to store the marked item in case of a previous successful
round. A matching lower bound on the runtime of such algorithms is given by theorem 2. We
expand this analysis in section 3 and allow for a noiseless classical memory that can store all
previously falsified items, which enhances search efficiency (algorithm 2). In appendix B we
discuss in more detail the noise models for which our results from the main text apply.

1.1. Fault-ignorant algorithms—definition and basic properties

Here we describe the main desiderata on fault-ignorant algorithms, with particular emphasis on
oracular algorithms that are the main topic of the following sections. For a precise mathematical
formalization of fault-ignorance, which also includes algorithms computing probabilistic
functions as in sampling problems and computational algorithms such as factoring, we refer the
reader to appendix A (in particular, definitions 1 and 2 therein).

The tasks we consider consist in the computation of a classical output ∈o O as a function
of an oracle index ∈x X and an input ∈i I , which we assume is given via a specified encoding
ρi in the quantum register at the start of the algorithm. The specification of the task contains
already the available size of the quantum register, i.e. the Hilbert space  on which the ρi acts
and which is assumed to be fixed throughout the computation; in early implementations of
quantum computers this size may be severely limited and is thus assumed to be part of the
problem specification. Besides the quantum register, we allow for a classical register that may
serve several purposes: (i) to be used during the computation, (ii) to store the output, (iii) to hold
a binary flag indicating whether the output has already been written into the register, such that it
can be read out by an outside agent without disturbing the (quantum) computation that may still
be ongoing (such an indication is necessary since the noise level and the algorithm runtime may
not be known in advance, see below).

For the task of oracle search among N items, we thus have ∈ …x N{1, , } and would like
to produce the output o = x, whereas the quantum register can be initialized in any fixed state ρ0
as there is no other input to the task, i.e. =I {0}. We can allow for any quantum register B ();

= N would for example enable us to perform Groverʼs algorithm using the oracle

3

New J. Phys. 16 (2014) 073033 P Vrana et al

equation (5) (see section 2.1), but we may also allow for additional quantum registers such that
e.g.  = ⊗ N M .

We have not yet specified in what way fault-ignorant algorithms should behave with
respect to noise. For this we need two more ingredients. The first is a family of noise channels,
denoted by Dp and acting only on the quantum register, that should model the effect of the noise
per unit time (see also appendix B), and we think of the index ∈p [0, 1] as a noise strength
parameter that is not known to the agent executing the algorithm. Classical registers are
assumed noise-free. For our results on noisy quantum search in the following sections, we will
for example choose the noise models in equations (7) or (8). The second ingredient is the
specification of the set S of operations that an algorithm can perform per unit time. S may be any
subset of all quantum channels acting jointly on the quantum and classical register. Actually, for
oracular algorithms, each element ∈T S also depends on the oracle index x that is not directly
accessible to the algorithm; rather, when an algorithm ‘calls’ the operation T, then the quantum
channel T(x) is executed. Again for the oracular search case below, we allow any

= ∘ ∘ ∈T x C O C x X() (for all) (1)x2 1

that calls the oracle Ox from equation (5) once, possibly preceded and followed by any quantum
channels C C,1 2 acting on the quantum and classical registers (and not depending on x). For
oracular problems, such a specification of the allowed operations per unit time is quite natural,
but other choices are possible; for computational problems one can for example impose locality
restrictions on the operations per time step, such as in example 3 in appendix A. The
specification of what constitutes one time step will be implicit in equation (2) below, saying that
the noise channel Dp is to be applied once between any two operations from S.

An algorithm is now simply a sequence ∈T()n n of operations ∈T Sn . Algorithms may
depend on an accuracy parameter ε ∈ (0, 1), denoting the maximum probability with which we
allow a wrong answer to be output.

Crucially however, for a fault-ignorant algorithm T()n n, we do not allow the operations Tn
to depend on the above noise level p, but still require that, for each noise level ∈p [0, 1], after
the execution of any number ⩾t t p() of time steps

ρ… ⊗− ()T x D T x D D T x D T x() () () () 0 0 , (2)t p t p p p i1 2 1 class

the classical output register holds the correct output o, up to failure probability ε (see also
figure A1 in appendix A for illustration). We call an algorithm T()n n fault-ignorant if t(p) can be
chosen finite for all ∈p [0, 1], and we will actually denote by t(p) the smallest time such that
the previous requirement is satisfied for all ⩾t t p() (see definition 2 in appendix A for an exact
statement). In other words, a fault-ignorant algorithm is ignorant of the noise level p, but should
nevertheless output the correct answer o irrespective of the noise p, within a time < ∞t p() that
may depend on the unknown noise level p.

Note that any computation which can be performed in a noiseless classical register of
sufficient size alone constitutes a fault-ignorant algorithm, as we assume classical memory to be
unaffected by the noise.

As a further instructive example of a fault-ignorant algorithm, assume the following: (a)

=T()n
k

1n is a finite-step algorithm such that, after executing the sequence (2) for k time steps,
there is for any noise level ∈p [0, 1] a non-zero success probability >p p() 0s of obtaining the
correct output o in the classical register, (b) the set S contains operations that allow us to check
whether a tentative result ′o in the classical register is correct, (c) the input encoding ρi is

4

New J. Phys. 16 (2014) 073033 P Vrana et al

‘classical’ in the sense that there are operations in S which can extract from ρi the index i onto a
classical register, and conversely allow preparation of the quantum state ρi given the classical
value of i (requirement (c) is easy when | | =I 1, as in the search task). If these three conditions
hold, one can construct a fault-ignorant algorithm that solves the task for any fixed accuracy
parameter ε > 0, as follows:

• repeatedly run the k-step sequence =T()n
k

1n with noise interspersed as in (2) on the initial
state ρ ⊗ | 〉 〈 |0 0i class (note that, after the value i has been saved in a classical register at the
start, this initial state can be reproduced before each iteration due to condition (c)),

• after each iteration, check for the correctness of the answer proposed in this iteration
according to (b), and store the correct result in an overall output register once it has been
found.

If the actual noise level is p, then after r iterations of =T()n
k

1n , the failure probability equals
− p p(1 ())s

r , which will become smaller than any specified ε ∈ (0, 1) if only ⩾r r p() is large
enough. More precisely, since each round including verification consumes +k 1 time steps, the
composite check-and-repeat algorithm has a runtime

= + ε

−

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥t p k() (1)

log

log
. (3)

p p

1

1
1 ()s

For example, in searches using the quantum oracle (5), one can satisfy the above
conditions (a)–(c) by randomly selecting in each iteration an index ′ ∈ …o N{1, , } (see also the
beginning of section 3.1) and then using the oracle Ox once to check whether ′ =o x. In this
example, k = 0 and =p p N() 1s for all p. For another similar example, see the beginning of
section 2.4. In fact, all the constructive algorithms we present in this paper will be variations of
the above check-and-repeat algorithm, with possibly varying numbers kg of oracle uses in each
round g = 1,…, r (section 2.4, see figure 2 for illustration) and possibly leaving out previously
falsified items in future rounds (section 3, see also figure 3).

Due to this simple way of constructing fault-ignorant algorithms, the meaningful question,
which we investigate in the following sections for noisy quantum search, is about the efficiency
of fault-ignorant algorithms. Notice for example that the first algorithm proposed in the
previous paragraph has a runtime of ≈ εt p N() log 1 , proportional to the problem size N and
independent of ∈p [0, 1]. However, one might hope that there exist fault-ignorant algorithms
which for small actual noise level p need fewer oracle calls, because at least when the noise is
known to vanish (i.e. p = 0) then Groverʼs algorithm solves the problem with at most roughly
π

εN log
4

1 oracle calls (see section 2.1). Furthermore, both these runtimes diverge in the limit
of perfect accuracy, i.e. ε → 0, whereas the classical algorithm checking the N items one after
another needs only a finite number N of steps for perfect accuracy. In fact, in the following
sections we will develop a fault-ignorant quantum search algorithm which, under the noise
models (8) and up to a constant overall factor, for any N, p, ε requires fewer oracle calls than the
ones just mentioned (see theorem 4).

When given a fault-ignorant algorithm solving one specific task (e.g. one specified
problem of size N, of specified quantum register size dim(), noise model Np, and accuracy
goal ε), one can compare its runtime t(p) to the runtime of other algorithms that can be
implemented (e.g. to the classical search algorithm above, or to any algorithm that ‘knows’ the

5

New J. Phys. 16 (2014) 073033 P Vrana et al

noise level p as one of its inputs, or to any algorithm that may use a quantum register of some
larger size, etc). On the basis of this comparison one can then decide whether to consider this
fault-ignorant algorithm useful w.r.t. the competitor. Instead of solely the runtime, one may also
take into account other factors in this comparison, such as the size of the quantum register used
by either algorithm. It does not seem possible to give general criteria for such a decision.
However, due to the prefactors given in the runtime bounds for our concrete algorithms, one can
for example use our theorems 3 and 4 to compare these fault-ignorant algorithms in such a way
to other algorithms (which we for example do below in theorem 3 and section 3.3).

Instead of performing such a comparison for one specific task, one may consider a whole
family of tasks (e.g. one for each problem size ∈N and accuracy ε ∈ (0, 1), possibly also
allowing the size of the quantum register to vary independently of N, etc) and fault-ignorant
algorithms solving them. In this situation one can then investigate the scaling of the runtime t(p)
with these parameters N, ε, etc, as is usual in complexity theory, and investigate various
tradeoffs, e.g. between the runtime and the size of the quantum register. Again, the concrete
questions seem to depend highly on the tasks at hand.

Nevertheless, since the main feature of fault-ignorant algorithms is to find the correct
answer without knowing the noise level p in advance, we can introduce a distinguished notion
of efficient fault-ignorant algorithm: a family of fault-ignorant algorithms (each solving a task
from a given family of tasks) is called efficient if there exists a constant >C 0 such that for each
fixed ∈p [0, 1] the runtime t(p) (which depends on the member of the family) is at most a
factor of C larger than the runtime of any algorithm that solves the same task while knowing the
noise value p as one of its inputs (i.e. need not be fault-ignorant). In other words, we call a fault-
ignorant algorithm efficient if knowing the actual noise level p would shorten its runtime by at
most an overall factor C1 . Our theorem 5 can thus be seen as a statement that algorithm 2 is
efficient w.r.t. to the class of algorithms considered and, furthermore, an upper bound on the
constant C is apparent together with theorem 4. Independently of this efficiency notion, for low
enough (but unknown) noise level p, the runtime of algorithm 2 compares favorably with
noiseless classical search (see section 3.3).

2. Quantum search under noise—memoryless approach

2.1. Setup: noiseless and noisy quantum search

The quantum search problem [1, 11] asks for an algorithm of short runtime to identify (up to
some small error probability ε) one out of N oracles, i.e. to return the index x of the ‘black box’
implementing the unitary transformation

    δ⊗ → ⊗ ′ ↦ ′ ⊕∼
′O x b x b: , , , , (4)x

N N
xx

2 2

where ∈ …x N{1, , } and ⊕ denotes addition modulo 2. Here, we assume the oracle x to have
been chosen uniformly at random (often referred to as unstructured database). It is customary to
take the input of the oracle

∼
Ox at each step to be of the product form φ| 〉 ⊗ | 〉 − | 〉(0 1)1

2
so that

the output is also of this form with the sign of the coefficient of | 〉x flipped in the first tensor
factor φ| 〉. In this case one can neglect the second subsystem and concentrate on the effective
unitary transformation

6

New J. Phys. 16 (2014) 073033 P Vrana et al

 → ′ ↦ − ′δ ′O x x: , (1) . (5)x
N N xx

As usual, we measure the runtime of an oracular algorithm by counting the number of queries
(oracle uses), which are viewed as the expensive or time-consuming operations, and disregard
all the other quantum channels which are independent of the oracle.

Grover [10] found a solution to this problem which makes use of the equal superposition
state ψ| 〉 ≡ ∑ | 〉= xx

N
1N

1
—this state reflects the initial lack of knowledge about the oracle and

will be used frequently in the following. At the beginning of the algorithm the state ψ| 〉 is
prepared and then the oracle black box Ox and the unitary ψ ψ− | 〉〈 |I 2 are applied alternately.
(In this description, and in our whole paper, we disregard any subsystem structure of N; if, for
example,  = ⊗()N n2 , then the ‘inversion about the mean’ ψ ψ− | 〉〈 |I 2 can be implemented
efficiently in the number n of qubits [1, 10]). After k applications of both operators, a von
Neumann measurement is performed in the standard basis. The outcome of this measurement
will give the correct index x of the oracle with probability [1]

+
⎛
⎝⎜

⎞
⎠⎟k

N
sin (2 1) arcsin

1
, (6)2

independently of which oracle ∈ …x N{1, , } was implemented by the black box. In particular,
if we choose = π⎢⎣ ⎥⎦k N

4
, the success probability is − −O N1 ()1 2 . Alternatively, if we fix some

small maximal error probability ε ≳ −N 1 2, with which the algorithm may return an incorrect
oracle index, then we may stop after ε= −⎡⎢ ⎤⎥k N arccos(2 1)1

4
iterations. In fact, it can be

shown, for any ⩽ < πk N0
4

, that Groverʼs algorithm yields the highest probability of success
which can be achieved by any quantum algorithm using the oracle k times [13].

The above analysis is valid when the unitaries and measurements etc can be implemented
perfectly and the quantum computer is not subject to noise. In more realistic settings, however,
these idealizations have to be lifted, and some such extensions have been considered in the
literature before, cf section 1. In this work, we consider the specific case where the quantum
computer is continually affected by noise, e.g. coming from the environment.

Our aim is not to approach this problem by implementing quantum error correction, which
may be expensive in terms of the required control and size of the quantum computer. Rather, we
aim to find (optimal) algorithms which succeed even under the influence of—known, or ideally
even unknown—noise, in such a way that their runtime may depend on the noise level; see
section 1.

Throughout this paper the term ‘noise’ will mean the application of a certain quantum
channel to the state of the quantum register in discrete time steps. This is supposed to model,
within the discrete-time setting of oracle algorithms, that the quantum computer is continually
affected by noise. More precisely, we will impose that the noise channel has to act once between
any two invocations of the oracle.

Our paradigmatic example of noise will be the family of partial depolarizing channels

ϱ ϱ ϱ= + −D p
I

d
p() : Tr () (1) , (7)p

d

acting on states ϱ on a d-dimensional Hilbert space. We can interpret these channels as acting
on the system in a completely depolarizing way if a biased coin toss yields heads, which
happens with probability ∈p [0, 1], and otherwise leaving the quantum computer undisturbed.
Intuitively speaking, the partially depolarizing noise (7) discards the whole quantum register
with probability p between any two successive oracle invocations. In particular, quantum error

7

New J. Phys. 16 (2014) 073033 P Vrana et al

correction cannot be applied to this noise model (cf appendix B); but so it serves to illustrate our
idea of fault-ignorant computing, one of whose rationales actually is to avoid costly error
correction procedures. In appendix B we will further introduce partially dephasing noise (B2),
which has an additional interpretation as modelling the transitioning from quantum to classical
algorithms, and we relate the different noise models.

The lower bounds on the runtime of noisy quantum search algorithms which we prove
(theorems 2 and 5) rely on partial depolarizing (7), which is a very drastic and in some
implementations quite pessimistic noise model, as it acts in a strongly correlated way across the
whole quantum register (somewhat similar to a noisy oracle [19–21], see also section 3.3). For
initial implementations of quantum computing this may in some cases indeed be a reasonable
assumption, e.g. when p denotes the occurrence probability of a noise event requiring the
restarting of the whole quantum computer. The noise strength p could for example be related to
the timescale of a drifting laser or of collective hits by external stray magnetic fields.
Nevertheless, it would be desirable to prove similar lower runtime bounds for weaker noise
models, in particular incorporating some kind of locality, but for now our bounds provide at
least a (pessimistic) point of comparison.

On the other hand, the concrete algorithms we provide will function with the guaranteed
upper runtime bounds given in theorems 3 and 4 even under any more general noise of the form

ϱ ϱ ϱ= + −D pT p(): () (1) , (8)p

with T being an arbitrary quantum channel; i.e. it is necessary only with probability − p(1) that
at each step no fatal noise event occurs. Partial depolarizing and partial dephasing are special
cases of this.

2.2. Building block for noisy search algorithms

Let us see how the probability of a successful measurement, i.e. returning the correct oracle
index x, looks when we include an application of the noise channel after each query. As a
preparation, we first consider Groverʼs algorithm under noise. Introducing the channel

ϱ ψ ψ ϱ ψ ψ= − | 〉〈 | − | 〉〈 | †G I O I O() ((2)) ((2))x x x , the final state can be written as
ψ ψ| 〉〈 |D G() ()p x

k , so that the success probability is then

∑ ψ ψ=
=

()p N k p
N

x D G x(, ,) :
1

() , (9)s
x

N

p x
k

1

where we take an average over the N possible oracles, since the search is unstructured and we
assume equal a priori probabilities. In this paper, we choose to consider the average success
probability of algorithms, i.e. averaged over all possible oracles with equal weight (see e.g.
[13]), as opposed to the minimal success probability, i.e. minimized over all oracles (e.g.
[1, 12]). Both figures of merit agree for ‘symmetric algorithms’, e.g. for Groverʼs algorithm [13]
and for the constructive algorithms we propose in this paper. But our choice strengthens the
lower bounds derived in the following on the required number of oracle invocations.

Now, for all above noise models = + −D pD p(1)idp 1 (see equation (8)), the evolution
D G()p x

k can be written as a sum of 2k histories. Since each term gives a non-negative
contribution to the sum, we can find a lower bound by keeping only the noise-free term
− p(1)id in each factor:

8

New J. Phys. 16 (2014) 073033 P Vrana et al

⩾ − +
⎛
⎝⎜

⎞
⎠⎟p N k p p k

N
(, ,) (1) sin (2 1) arcsin

1
, (10)s

k 2

which is quite sharp unless ≫kp 1, cf appendix B; compare this also to noiseless case,
equation (6). (The convention =0 10 is understood throughout this paper.)

We are now interested in how well this simple algorithm, and other algorithms that we
shall consider below (i.e., not necessarily consisting of Grover steps), perform. That is, we
would now like to derive upper bounds on the success probability ps depending on N, k, and p.
As the starting point we use the implicit bound on ps derived by Zalka [13] for the average
success probability ps after k oracle calls:

− − − − ⩽N N p N N p k2 2 2 1 1 4 . (11)s s
2

This bound has been established in [13] for the following situation: we start from any pure state
ϕ| 〉 ∈ K; the oracle Ox (⩽ ⩽x N1) inverts the coefficients of the basis states within a subset

⊆ …S K{1, , }x where ∩ = ∅S Sx y for ≠x y; we let arbitrary unitaries … ∈ ×U U, , k
K K

1 act
after each oracle use; in the end we perform a von Neumann measurement in some basis, and
our guess for x is an arbitrary function of the measurement outcome.

The same bound (11) holds thus when we start from any mixed state over  ⊗N M

(⩾M 1), apply arbitrary channels between the oracle uses, and our guess for x comes from
measuring a POVM =E()x

N
1x . This holds because mixed states, quantum channels and POVM

measurements can be dilated to pure states, unitary evolutions and von Neumann measurements
on a larger system [1], and the oracles (5) tensored by the identity on all other subsystems still
invert coefficients of disjoint sets of basis states.

Even for the more general algorithms described above, we can thus use inequality (11)
together with lemma 1 (see appendix D), to prove the following explicit upper bound on the
average success probability ps of any quantum algorithm using k oracle calls (with or without
noise):

⩽ +
p

k

N

(2 1)
. (12)s

2

This bound does not depend on the noise strength p, and thus gives no further restrictions
on noisy search compared to the noiseless case. But it does enable us to prove a result on the
limitations of algorithms employing a noisy quantum register  ⊗N M for computation, with
the oracle acting on the first subsystem. Note that the computational steps Ti, ′Ti in any
algorithm covered by the following upper bounds on the success probability are nowhere
assumed to be necessarily unital. If they all were unital, then after the occurrence of a noise hit
of partial depolarizing (corresponding to the term ϱp I dTr () d in (7)) the success probability of
finding the marked item would be fixed at N1 , whereas non-unital actions might try to correct a
partial depolarizing error and increase the success probability (we will comment on a particular
non-unital error-detection-and-correction strategy below equation (30)). And, actually, the
following result holds even for noise channels τDp that may be somewhat more general than the
partial depolarizing given in equation (7):

Theorem 1. (Bound on success probability of building block). Let  ϱ ∈ ⊗()N M
0 be the

initial state of the algorithm,    ⊗ → ⊗ O : () ()x
N M N M defined by

σ σ| 〉〈 ′| ⊗ = − | 〉〈 ′| ⊗δ δ+ ′O y y y y() (1)x
xy xy be the quantum channels implementing the oracles

9

New J. Phys. 16 (2014) 073033 P Vrana et al

on the first subsystem, and ϱ τ ϱ ϱ= + −τD p p() : Tr (1)p the noise channel that is to be applied
between any two oracle calls, with ∈p [0, 1] and  τ ∈ ⊗()N M any quantum state. Let

   … ⊗ → ⊗′ ′ ′  T T T T T T, , , , , , : () ()k1 2 k
N M N M

1 2 denote steps in the algorithm, such that
the state after k uses of the oracle Ox is

ϱ ϱ= …τ τ τ τ′ ′ ′  T O T D D T O T D T O T D (), (13)k
x

k p p p p2 1x k x x2 1 0

and let the final measurement be given by the POVM =E()y
N

1y . Then the average success
probability of this algorithm is upper bounded as follows:

∑ ϱ= ⩽ +
=

⎡⎣ ⎤⎦p
N

E
N Np

:
1

Tr
1 8

, (14)k
x

s
x

N

x

1
2

and

⩽ +
p

k

Np
8

1
. (15)s

Proof. Introduce the following states:

σ τ= …′ −′ − +′− − +
  T O T T O T T O T: () (16)i

x
k k k i1 1x k x k x k i1 1

for ⩽ <i k1 , and σ ϱ= …′ ′ T O T T O T: ()k
x

k 1x k x 1 0 . With these we can write

∑ϱ σ σ= − + −
=

−p p p(1) (1) , (17)k
x

i
x

k
x

i

k
i k

1

1

and hence

∑ ∑ ∑ ∑ϱ σ σ= = − + −
=

−⎡⎣ ⎤⎦ [] []Np E p p E p ETr (1) Tr (1) Tr . (18)k
x

i
x

k
x

s
x

x

i

k
i

x

x
k

x

x

1

1

As the ‘computation’ of σi
x involved i oracle calls, from (12) we have

σ∑ ⩽ +E iTr [] (2 1)i
x

x x
2, and thus

∑⩽ − + + − +

= + − − − −

=

−

()

Np p p i p k

p
p

p
k p

(1) (2 1) (1) (2 1)

1
8

1 (1)
8

(1) , (19)

s
i

k
i k

k k

1

1 2 2

2

which trivially leads to (14). Furthermore, we can use − ⩾ −p kp(1) 1k from the Bernoulli
inequality to obtain (15):

⩽ + ⩽ +
Np

p
kp

k

p
1

8
8

1
. (20)s 2

□

In the following text we shall address a sequence of operations as in (13) acting on an
initial state ϱ0 as Algorithm 0 (or Alg0), which is also depicted in figure 1.

It is worthwhile to mention two ways of using bounds as in theorem 1:

10

New J. Phys. 16 (2014) 073033 P Vrana et al

(i) one can consider the noise level p to be fixed and examine the scaling behaviour (e.g. of
the algorithm runtime) with respect to the number N of search items, or

(ii) one can consider p to scale in some way with N.

Point (ii) provides a way to compare the results with other works (e.g. [19]) where this
kind of scaling was analyzed. Our results, however, apply to any values of N and p (and later, of
ε) in the stated ranges, but we are implicitly often imagining the case → ∞N , =p const (and
ε = const), which is a sensible limit as explained in appendix B.

Theorem 1 has two important implications. The first is that, for any fixed >p 0, the
growth of the success probability is at most linear in the number k of queries, as opposed to the
quadratic growth in the noiseless case (cf (6) for ≪ πk N

4
). This may come as a surprise as one

might have guessed that the quadratic speedup of Groverʼs algorithm may persist for small
enough noise levels >p 0 (i.e., fixed p and → ∞N). In other words, theorem 1 says that there
exists no algorithm with success probability ∼p ks

2 whenever partial depolarizing acts. The
inequality (15) in particular implies that quantum error correction cannot be done for partially
depolarizing noise Dp with >p 0.

The second implication is that the success probability is bounded by +
N Np

1 8
2 independently

of k, cf (14). For growing → ∞N , this goes to 0 unless = −p O N()1 2 ; in general we cannot
reach a prescribed success probabilty ε−1 with an algorithm as described in theorem 1. The
straightforward solution to this problem is that we repeat the algorithm (including the final
measurement) until the probability of failure in all the repetitions combined drops below ε. This
strategy is detailed in the following section and shows the basic structure for all further
algorithms.

2.3. Search algorithm by repeating the basic building block—known noise level p

Now we consider algorithms that consist of a number of repetitions (rounds) of the basic
building block described in the previous section: repeatedly preparing states like (13), using the
oracle Ox a number of times, and trying to infer the oracle index x by a measurement. In our
concrete constructions we shall, as in Groverʼs algorithm [1, 10], specify the channels ′Ti in (13)
to perform unitary inversions (ψ ψ− | 〉〈 |I 2) about the mean, and Ti to equal the identity channel
(whereas for our lower bounds Ti, ′Ti remain arbitrary).

Note that these repetitions require a noiseless classical memory in order to reliably store
the correct result x after one of the rounds has been successful (any noisy classical register may
be part of the subsystem M in theorem 1 and is subject to noise Dp). Furthermore, in order to
test whether the measurement after any one of the repetitions has returned the correct index x

Figure 1. Algorithm 0, performing k steps of quantum search. Noise is acting between
any two oracle invocations Ox (see equation (5)), before and after which one may
however apply arbitrary channels Ti, ′Ti . The computation uses a quantum register of
dimension N, on which the oracle acts, and an ancillary (quantum) register M , both
noisy. A measurement, described by some POVM E()y , is applied to the final state ϱk

x to
guess the marked element x.

11

New J. Phys. 16 (2014) 073033 P Vrana et al

and in order not to overwrite the correct result in subsequent rounds, one needs to perform a
verification of the measurement outcome—using one oracle call or classical table lookup—
immediately after each measurement.

In this section we will first develop and analyze an algorithm that finds, except for some
specified failure probability ε > 0, the marked element x among N elements, on a noisy
quantum computer. Secondly, we will prove (theorem 2) that, up to a constant, the runtime of
this algorithm is optimal among a certain class of algorithms, when the noise level p is known in
advance.

Our algorithm will consist of m rounds of the procedure described in theorem 1, each time
checking whether the concluding measurement gave the correct x and, if so, storing the result in
a noiseless classical register. Specifically, in each round we perform Groverʼs algorithm for
some number k (to be determined) of steps—this has been described at the beginning of
section 2.2. We now first give a motivating ‘derivation’ of the algorithm.

Clearly, the events ‘the noise did not hit and the measurement was unsuccessful in the ith
round’ and ‘the noise did not hit and the measurement was unsuccessful in the jth round’ are
independent for ≠i j when we use Grover iterations, and similarly for more than two rounds,
since Groverʼs algorithm is symmetric with respect to permutation of the oracles (the
probability for the complement of each such event is given by (10), which we will substitute
below for − p1 s). This means that if we perform m rounds with k Grover iterations in each
round, then the probability of failure and the total number of queries will be − p N k p(1 (, ,))s

m

and +k m(1) , respectively (including the verification step after each of the m measurements). If
we are to reach the target error bound ε in the least number of steps, we need to minimize
+k m(1) subject to the condition ε− ⩽p N k p(1 (, ,))s

m . The latter gives a lower bound on m
depending on N, k and p, namely

ε
+ ⩾ +

− −()
k m

k

p N k p
(1)

1

log 1 (, ,)
log

1
. (21)

s

This means that for given values of N and p one needs to minimize

= +
− −()

R N k p
k

N p N k p
(, ,) :

1

log 1 (, ,)
, (22)

s

i.e. the number of queries per decrease of error probability by a factor of e, where the factor −N 1

is included for normalization. Let the optimal k be denoted by k N p(,)opt . Note that minimizing
the rate function R from (22) originates from minimizing the number of oracle calls from
independent rounds to get the failure probability below ε. This is different than optimizing the
expected number of oracle calls, cf [12, 13] for a comparison.

Then our new algorithm consists of ε= ⌈ − ⌉m p N k N p p(log)/log (1 (, (,),))s opt repeti-
tions of rounds with k N p(,)opt Grover steps each, measurement in the standard basis plus
verification step and storing the result in the classical output register when successful. The
discussion in the following example will motivate an easy-to-compute quantity to be used
instead of k N p(,)opt .

Example 1. (Asymptotically optimal number of Grover iterations). If we are interested in large
databases, we can simplify by taking → ∞N , yielding, with (10) instead of (B5) (giving
virtually identical results):

12

New J. Phys. 16 (2014) 073033 P Vrana et al

∞ = = +
− +→∞

R k p R N k p
k

p k
(, ,) : lim (, ,)

(1)

(1) (2 1)
. (23)

N k 2

To find the optimal = ∞k k p(,)opt , we compare (⩾k 1):

∞ −
∞

= +
+ −

−R k p

R k p

k k

k k
p

(, 1,)

(, ,)

(2 1)

(1)(2 1)
(1). (24)

2

2

This is a decreasing function of p, so ∞ −R k p(, 1,) and ∞R k p(, ,) intersect at

∞ = + −
+

= + −()p
k k

k k k
O k() :

4 4 1

(2 1)

1
, (25)k

2

2
3

which is appropriate for large k, and we have ∞ =k p k(,) whenever ∞ < ⩽ ∞+p p p() ()k k1

with the convention ∞ =p () : 10 . By inverting the series expansion around = ∞k one can get
an explicit approximate expression for ∞k p(,)opt : the inverse is + O p()

p

1 , and thus
∞ ≈ ⌊ ⌋k p(,)

popt
1 is a good approximation especially for small p.

Intuitively, this behaviour of the optimal length kopt of a quantum round can be understood
by noting that the quantum register remains undisturbed with reasonably high probability (of
orderO (1)) for time∼ p1 , whereas with a probability approaching 1 exponentially the quantum
register will be disturbed by noise when ≳k const p() . This is because the noise will hit at each
step independently with probablity p (see equation (7)). Thus, roughly ∼ p1 Grover steps
provide an advantage (see also, e.g., [19]). Plugging = ⌊ ⌋ = +k O (1)

p p

1 1 into ∞R k p(, ,) and
considering small noise level ≪p 1, we see

∞ + = + +
⎛
⎝⎜

⎞
⎠⎟ ()R

p
O p

e
p

e
p O p,

1
(1),

4 4
, (26)2 3

so ∞ ∞R k p p(, (,),)opt vanishes linearly in p around p = 0. The fact that this is non-zero and
finite for >p 0, means that the normalization by N1 in (22) was the ‘correct’ one. This
suggests that the number of steps +m k(1) necessary is proportional to εNp log (1), i.e. linear
in N for any fixed >p 0 and ε ∈ (0, 1), meaning that the quadratic speedup is lost under
depolarizing noise (7); see theorem 2 for a more rigorous and general lower bound on the
runtime.

Example 1 motivates a more rigorous analysis of the case of finite < ∞N . In this finite
case, one has to be careful for small values of p, since it is clearly not a good idea to do more
than π N

4
Grover iterations in one round. Let us first assume that > πp

N

4 1 , and suppose we
perform ε= ⌈ ⌉−m cNp log2 1 rounds with = ⌊ ⌋k

p

1 Grover steps in each round, for some >c 0
(this ansatz is motivated by example 1, and will below turn out to be good). Then the
probability of failing in all rounds can be bounded as (see 10)

13

New J. Phys. 16 (2014) 073033 P Vrana et al

δ

δ
ε

ε

− ⩽ − − +

⩽ − − −

⩽ − − − −

⩽ − − − −

=

ε ε

ε

ε

δ− − −

⎪ ⎪

⎪ ⎪

⎡
⎣
⎢⎢

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜
⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥

⎡
⎣
⎢⎢

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎡⎢ ⎤⎥ ⎢⎣ ⎥⎦

⎡⎢ ⎤⎥

⎡⎢ ⎤⎥

⎡⎢ ⎤⎥

p N
p

p p
p N

p
p N

p
p N

c p
p

p

1 ,
1

, 1 (1) sin 2
1

1 arcsin
1

1 (1) sin
2

1 arcsin
1

1 (1) (1)
2

1
1

exp (1) (1)
2

1 log
1

(27)

s

cNp

p

cNp

p

cNp

p

cNp

p

c p p

log 1

1 2

log 1

1 2

log 1

1
2 log 1

1
2

2

(1)(1) (2)p

2 2

2

2

1 2

for some δ π< ⩽ −0 1 4 2 depending on N and p.
As we want to guarantee a failing probability of at most ε, we need to choose c such that

the exponent in the final expression (27) is at least 1—independently of p for the following
statements to be valid. However, for large values of p the exponent goes to 0, which is a
consequence of vanishing (10) for large p and = ⌊ ⌋ ⩾k 1

p

1 Grover steps; this can be avoided by
introducing a cutoff ∈*p (0, 1) into the specification of the algorithm, such that for ⩾ *p p we
use k = 0 iterations in each round, i.e. only perform verification steps on randomly chosen
elements. The failure probability in this range is

ε− ⩽ − ⩽
*

*
ε ε

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎢ ⎤⎥

N N
1

1
1

1
. (28)

cNp cNp
cp

log 1 log 12
2

2

Numerically one finds that viable values for c and *p in the specification of a concrete
algorithm, i.e. such that both (27) and (28) do not exceed ε, are, for example, c = 5 and
=*p 1/2 (even when setting δ π= −1 4 2). We have not optimized these constants, as our

main interest for now is in the scaling for large N, small ε, and all noise levels p. The number of
oracle invocations during such an algorithm is upper bounded by

ε ε
π

ε
+ ⩽ + ⩽ +⎜ ⎟

⎛
⎝⎜
⎢
⎣⎢

⎥
⎦⎥

⎞
⎠⎟

⎡
⎢⎢

⎤
⎥⎥

⎛
⎝

⎞
⎠p

cNp
p

cNp N cNp
1

1 log
1 2

log
1

1
2

2 log
1

, (29)2 2

where we used > πp
N

4 1 .
For small noise levels = βp

N
(where β π< ⩽0 4), one can do⌊ ⌋π N

4
Grover iterations

in each of the m rounds, i.e. before each measurement, which gives a success probability of at
least roughly βπ−e 4 by the lower bound (10); therefore, = ⌈ ⌉ ⩽ ⌈ ⌉βπ

ε εm e elog log4 1 1 rounds
are sufficient to get the failure probability below ε, putting an upper bound on the number of
oracle calls similar to (29) with a term proportional to ε∼ N log (1) instead of the
term ε∼Np log (1).

Summing up, our algorithm finds the marked element x, except with probability ε ∈ (0, 1],
on a quantum computer with noise level ∈p [0, 1] using the oracle at most

14

New J. Phys. 16 (2014) 073033 P Vrana et al

ε
+ +c N c Np N() log

1
(30)1 2

times, e.g. for (non-optimal) constants = =c c2, 101 2 . We omit here a formal statement of the
algorithm, which should have become resonably clear from the description above, but will
remedy this in section 2.4 for the more general case of an unknown noise level.

The algorithm just described performs a number m of quantum rounds, each of identical
length k given by an ansatz that is based on example 1. A cleverer algorithm might try to detect
when a noise event has happened and then immediately abort the present round in such a case
and start a fresh round in order not to ‘waste’ oracle uses. One way to accomplish this would be
to adjoin to the quantum register N used above another quantum register  ⊗() r2 of r qubits that
is initialized to | 〉⊗0 r at the beginning of each round and is left untouched by the above
algorithm. In case of a partial depolarizing noise event, given by the term ϱpI N(Tr) (2)N

r
2r in

(7), the r-qubit register will then be reset to a computational basis state other than | 〉⊗0 r which
can be detected by a projective measurement on this auxilliary system with probability − −1 2 r.
Thus, by expending a small number r of extra qubits (e.g. a number r that is constant in the
problem size N, or chosen as ε∼r log (1)) one can detect a noise hit with high probability and
abort the present round to gain a saving in the number of oracle calls compared to the algorithm
outlined above.

While this is a viable strategy in the noise model used above, it is actually extremely
dependent on the noise model (7). If, for example, the noise would replace the whole quantum
state with probability p by | 〉 ⊗ | 〉⊗0 0N

r (instead of I N(2)N
r

2r), then the exact strategy would not
work anymore. In particular, any such strategy relies strongly on the fact that the noise is
correlated across the whole quantum register. While we allow such strongly correlated noise as
a pessimistic assumption from the outset, in particular to prove our lower runtime bounds, one
would probably not want the actual constructive algorithms to rely on this assumption. In
contrast, our algorithm developed below example 1 as well as the upper runtime bound (30)
work for any noise model ϱ ϱ ϱ= + −D pT p() () (1)p

T with T any quantum channel T (see
appendix B). This is because we only use equation (10), which merely relies on the fact that
with probability − p1 the quantum register remains undisturbed. Furthermore, even when
relying on an exactly known noise model as e.g. in equation (7), one would at most save a
constant factor of order 1 by the error-detection-strategy compared to the runtime (30) of the
algorithm outlined above. This is due to the exponential first factor in (10), which implies that
only with small probability ∼ − −e1 C will the noise hit occur before executing C p steps in one
round (where <C 1 here, such that there would be a saving).

We would like to point out that there are at least two different interpretations of runtime
complexity results like equation (30). Firstly, one can run the algorithm indefinitely (i.e.,without
any a priori bound on the number of rounds) until the marked element is found. Then we can
guarantee that the algorithm gives the correct result with probability 1, and the number of oracle

calls required is at most + + εc N c Np N() log1 2
1 except with probability ε. Alternatively,

one can decide in advance to use the oracle + + εc N c Np N() log1 2
1 times before

terminating the above algorithm, and after any successful measurement store the result in a
classical memory; then, in the end, the marked element will have been found with probability at
least ε−1 .

With the runtime bound (30) at hand, one can look at the case where p is fixed and
independent of N. Then we see that, unless p = 0, the leading term is εc Np log (1)2 , i.e.

15

New J. Phys. 16 (2014) 073033 P Vrana et al

proportional to N. On the other hand, if one supposes that p scales decreasingly with N, the
other terms may dominate. In particular, if ≲p N1 , the leading term is εc N log (1)2 .

Next we show that our algorithm presented above is essentially optimal within a certain
class of algorithms (a wider class of algorithms will be considered in section 3). Namely, we
assume that the algorithms employ a quantum register  ⊗N M (as above in theorem 1),
consist of several ‘rounds’ where in each round we prepare some state, apply arbitrary channels
and use the oracle an arbitrary number of times (possibly different for each round, but applying
the noise channel between any two consecutive queries), do any measurement yielding an
element of … N{1, , }, and verify the result with one oracle use, writing it into a (noiseless)
classical register reserved for storing the output if correct. Crucially, we assume that the events
of success in each round are independent of each other. This assumption is valid in particular if
the noise is symmetric (under permutations of the basis vectors | 〉x of N , which partial
depolarizing from equation (7) satisfies) and if the steps between measurements are Grover
iterations (as for example in our algorithm above).

Theorem 2. (Lower runtime bound on memoryless algorithms). Consider a sequence of
algorithms, one for each size of the search space = …N 1, 2, 3, , satisfying the assumptions
just stated and subject to partial depolarizing noise (equation (7)). If the success probabilities
are ε−1 N , then, asymptotically, the number of queries qN in the Nth algorithm is lower
bounded by the level ∈p [0, 1] of depolarizing noise:

ε
⩾

→∞ ()
q

N

p
lim inf

log 1 8
. (31)

N

N

N

More precisely, for any ε ∈p, (0, 1] and any finite >N p9 2, the number of queries qN
satisfies:

ε⩾ − −
−⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥q

Np Np

Np

log (1)

8 9
log 1

9
. (32)N

2

2

1

Proof. Suppose that the Nth algorithm consists of mN rounds with …k k, ,N N
m1 queries in each

round (abbreviating ≡m mN), with failure probability εiN in the ith round. Then
= + + … + +q k k(1) (1)N N

m1
N , and by the independence condition

ε ε ε

ε
ε

ε
ε

ε ε

=
+ + … + +

…

=

+
+ … +

+

+ … +

()
()

()

() ()

()

()

() ()

()

()
q

N

k k

N

k

N

k

N

log 1

1 1

log 1

1

log 1
log 1

1

log 1
log 1

log 1 log 1
, (33)

N N
m

N N
m

N

N
N

N
m

N
m N

m

N N
m

1

1

1

1
1

1

N

N

which is a weighted average of expressions of type
ε
+k

N N k p

1

log (1 (, ,))
. Lower-bounding this

expression thus automatically lower-bounds (33), and therefore it is enough to consider the
m = 1 case only.

16

New J. Phys. 16 (2014) 073033 P Vrana et al

Since, from (14), ε− ⩽ + →N k p1 (, ,) 0
N Np

1 8
2 as → ∞N (for any >p 0), one has

ε δ ε⩽ −N k p N k plog (1 (, ,)) (1 (, ,))N for some positive sequence δ → 1N . Using that, from
(15), also ε− ⩽ +N k p k Np1 (, ,) 8(1) () we get

ε δ
+ ⩾ +

· +
=

→∞ →∞

k

N N k p

k

N k Np

p
lim inf

1
log (1 (, ,))

lim inf
1

8(1) () 8
. (34)

N N N

The finite-N bound follows from ε− ⩽N k p1 (, ,)
Np

9
2 and setting δN equal to the quantity

inside the square brackets in (32). □

Theorem 2 shows that, under any non-zero noise >p 0 (and ε ∈ (0, 1)), our algorithm
from above has asymptotically optimal runtime, up to a constant factor: in our algorithm,
ε ε≡N was chosen independent of N and (30) shows that asymptotically ε≲q Np10 log (1)N ,
which matches (31) up to a factor of 80. In the noiseless case p = 0, our algorithm reduces to
repeated Grover searches, whose optimality for p = 0 was shown in [11–13].

One other implication is noteworthy: on the one hand, theorem 2 says that, at fixed positive
noise >p 0 and asymptotically for → ∞N , the number of oracle queries ε≳Np log (1) has to
grow at least linearly in N, so that the quadratic speed of noiseless Grover search is lost (at least
for the class of algorithms considered above, and for the depolarizing noise model, equation (7).
On the other hand, however, the prefactor in this linear growth is O(p), which is actually
achieved by the explicit algorithm above, see equation (30); thus, for small enough noise p, the
number of oracle calls to solve the search task by a quantum algorithm is much less than the
minimal number ε∼ −N (1) of oracle calls required by any classical algorithm, even in a
noiseless environment.

In the following section, we will extend the above algorithm so that it works in a noisy
environment even when its noise level p is not known beforehand (algorithm 1 and theorem 3).

2.4. Fault-ignorant search composed from basic building blocks

We are now ready to turn to the ‘fault-ignorant’ setting—the algorithm should be ignorant of
the actual noise level under which the quantum computer operates. More precisely, the goal is
to find an algorithm for which not the ability to give the correct result depends on the level of
noise, but rather only its runtime may depend on the actual noise level. Actually, the algorithm
described in the previous section has this property for any fixed number k of oracle calls per
round; however, the runtime can then become large unless ≈k k N p(,)opt . For example, if we
choose ≈ πk N

4
in order to get a quadratic speedup for p = 0, then for ≈p 1 the number of

oracle calls grows as fast as N 3 2, which is clearly unsatisfactory.
In order to overcome this problem we allow the number of queries to change from round to

round. Thus, for each N and ε, we need to find a sequence ε ε …k N k N(,), (,),1 2 , where
εk N(,)i denotes the number of Grover iterations performed in the ith round. Again, for our

constructive algorithm, we employ the usual Grover iterations; and again, theorem 2 will later
show that this algorithm is nearly optimal.

One idea can be as follows. In the first round, we do a Grover search with
ε = ≈ πk N k N N(,) : (, 0)1 opt 4

oracle calls (for the definition of kopt see below (22)). For
ε≳ −N 2 this is enough to get the error probability below ε as long as p = 0; the set

ε∈ | > −{ }p p N k N p[0, 1] (, (, 0),) 1s opt is open and therefore

17

New J. Phys. 16 (2014) 073033 P Vrana et al

ε= ∈ − ⩾{ }()p p p N k p: inf [0, 1] 1 , , (35)s2 1

exists and is larger than 0 (if the set is empty, e.g. when ε ≪ −N 1 2, we set the infimum to
=p : 02). Suppose that the measurement after the first round fails to find the marked element x.

There are now two possibilities: either the actual noise level was below p2, in which case the
probability of this failure was at most ε (i.e., as required); or the actual noise level exceeded p2,
in which case the function kopt gives an upper bound on the optimal number of Grover iterations
to perform in the next round, so we set ε =k N k N p(,): (,)2 opt 2 . We then proceed similarly by

iteratively setting ε= ∈ | ∏ − ⩾=
−{ }()p p p N k p: inf [0, 1] 1 (, ,)j

i
1
1

i s j and =k k N p: (,)i iopt ,

giving the number of Grover iterations to be performed in the ith round.
The sequences k{ }i i obtained this way are difficult to analyze, but by examining the results

of numerical simulations for various values of N and ε one can get an idea about their
behaviour. This turns out to be enough to get an approximation which still achieves the
asymptotically optimal performance, up to a multiplicative factor in the runtime (see below).
Specifically, we arrive at the following algorithm (see also figure 2) for fault-ignorant quantum
search:

Algorithm 1. (Quantum search from basic building blocks). For suitably chosen >c 0, define

α ε =
+ ε

() :
1

1
. (36)g g

c log (1)

Repeat the following steps for = …g 0, 1, 2, :

1. Prepare the equal superposition state ψ| 〉 = ∑ | 〉= xx
N

1N

1 on a quantum register N ,

2. Perform α ε= π⎢⎣ ⎥⎦k N: ()g g 4
Grover iterations,

3. Measure in the standard basis, verify the result using one oracle invocation; if correct then
store in classical output register.

The following theorem proves that algorithm 1 is fault-ignorant, i.e. finds the marked
element independently of the actual noise level (in particular, the algorithm does not need p as
an input), and gives a bound on its runtime which, however, depends on the actual noise level.

Figure 2. The fault-ignorant algorithm 1 searches the marked element x in consecutive
rounds of …k k k, , ,0 1 2 Grover steps plus one verification step each. Each round starts
by preparing the equal superposition state ψ, which is follwed by Grover steps (a special
case of algorithm 0, see figure 1), and a measurement in the computational basis; finally,
the output is checked against the oracle (possibly by list lookup) and, in case of success,
stored (by Vx) in a noiseless classical register with N states, so that the result is ready for
readout by an external agent (the algorithm may however continue). No ancillary
system M is used by the algorithm (M = 1).

18

New J. Phys. 16 (2014) 073033 P Vrana et al

Theorem 3. (Fault-ignorance of algorithm 1). Let ∈p [0, 1] be the actual noise level (i.e.
noise ϱ ϱ ϱ= − +D p pT() : (1) ()p with any quantum channel T) acting on the quantum register
when executing algorithm 1, and let ⩾N 100 and ε ∈ (0, 1 2]. Then algorithm 1, with c = 10,
finds the marked element after at most

ε
+Np N100() log

1
(37)

oracle queries except with probability at most ε.

If one wants algorithm 1 to be fault-ignorant only for noise levels ∈p [0, 0.1], and if one
presupposes reasonable values ⩾N 1000 and ε ∈ (0, 0.1], then one can guarantee the constant
prefactor to be 20 instead of 100 as in (37), when using c = 4.5; cf appendix C.

As the proof of theorem 3 is rather technical, we present here only a sketch; for details, see
appendix C.

Proof. Sketch of the proof. As the noise acts symmetrically with respect to the different oracles
and since the Grover steps of algorithm 1 are symmetric as well, the success events for different
rounds g are independent, so that we will be able to upper bound the failure probability after
round *g :

∏ ∑= − ⩽ − − +
* *

= =
⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

()() ()p p N k p p k
N

1 , , exp (1) sin 2 1 arcsin
1

. (38)
g

g

s g

g

g
k

gfail
0 0

2g

When the sum∑ =
*

g
g

0 in the last expression is greater than εlog (1) then we can guarantee the
failure probability to be at most ε, as desired. To get the statement about the number of oracle
calls, we upper bound it by

∑ π π
ε ε

+ ⩽ + + + +*
**

=

⎜ ⎟⎛
⎝

⎞
⎠()k g N N c

g

c
1 1

4 2
log

1
1

log (1)
. (39)

g

g

g

0

The proof of theorem 3 now consists in showing that there exists a number *g (of rounds)
such that the failure probability (38) is at most ε, while the number of oracle calls (39) is at most
(37). Similar to our analysis leading up to (30), this argument will be split into three different
cases: for π⩽p N(4) the first few rounds (= …g 0, 1, 2,) are the important ones; for
⩾p 0.3 we take into account only the rounds with kg = 0 (i.e., large g); and for

π ⩽ ⩽N p(4) 0.3 our proof relies on an intermediate regime of g. Details are given in
appendix C. □

Theorem 2 actually shows that the runtime of algorithm 1 (which we just proved to be at
most equation (37)) is optimal up to a constant: to see this, note that algorithm 1 is contained in
the class of algorithms to which the bound from theorem 2 on the number of oracle queries
≳ εq Np logN

1

8

1 applies. For any fixed noise level >p 0 and up to a constant factor, this equals
the upper bound (37) on the number of queries needed by algorithm 1. In particular, even if one
does not know the actual noise level in advance, one only loses a constant factor in the number
of queries, compared to the runtime in case of known p (given in equation (30)).

19

New J. Phys. 16 (2014) 073033 P Vrana et al

We re-emphasize here the last point from section 2.3, that for small enough but constant
noise levels p and in the limit → ∞N , the quantum algorithm 1 needs fewer oracle calls than
even the best classical algorithm in a noiseless environment.

As the runtime depends on an unknown parameter, it is necessary to have the ability to
stop the algorithm as soon as the result is found. Theorem 3 then states a ‘probabilistic bound’
on the number of oracle uses up to the point when the element is found; this bound is
probabilistic in the sense that in a fraction of at most ε of all runs of algorithm 1, the actual
runtime may exceed this bound.

When considering more general algorithms, namely for which the events of failure in
different rounds are not independent, the derivation of the lower bound on the necessary
number of queries from theorem 2 is no longer valid. This dependency can arise either from
asymmetric noise or from an asymmetry in the algorithm itself. Indeed, it is useful to consider
such ‘asymmetric algorithms’: already classically one can find the marked element using

ε⌈ − ⌉N (1) queries, except with error probability ε, by simply testing a subset of ε⌈ − ⌉N (1)
elements using one oracle call each. This feature of not considering previously falsified items
again is absent from algorithm 1 whose runtime may therefore exceed that of classical search,
through the factor εlog (1) in theorem 2.

The algorithms considered in section 3 will make use of this asymmetry, which can also be
conceived of as conditioning the actions in future rounds on previous measurement outcomes
that are being stored in a classical memory. This will be done by incorporating a noiseless
classical memory which we will allow the algorithms to use in a limited way, namely by
excluding oracle indices that have been falsified in previous rounds.

3. Search algorithms employing noiseless classical memory

3.1. Search with exclusion

Classical search algorithms can find the marked element with maximal failure probability ε
using at most ε⌈ − ⌉N (1) steps, by excluding falsified oracle indices. Here we aim to achieve an
upper bound of N on the runtime—independently of ε and of p—for our quantum algorithms as
well, whereas in section 2 we have only presented algorithms whose runtime may exceed N
parametrically due to the factor εlog (1), e.g. in (37).

On a quantum computer a random choice may be implemented by preparing the equal
superposition state ψ| 〉 over a subset of basis states followed by a measurement in that basis.
This in turn can be viewed as a Grover search with zero iterations (cf section 2.1). This leads to
the idea of replacing the uniform random choices by proper Grover searches (each including
several Grover steps plus a concluding measurement) over decreasing subsets, i.e.
… ⧹ … ′N i i{1, , } { , , }m1 after round ′m . For this, the classical noiseless memory that previously

stored only the correct search outcome will be exanded by a register of 2N states (N bits) to mark
the previously excluded items.

We shall now develop and sketch a search algorithm based on this idea of excluding
previously tested elements; the following procedure is applicable if the noise level p is known
beforehand. If one fixes the number N of database entries, the noise parameter p and the target
error bound ε, then the question is how to choose the number of iterations in each round in order
to consume the least number of queries. Suppose that in the ith round we perform ki queries and
we do m rounds in total. Then the number of queries is∑ += k(1)i

m
1 i , while the probability of

20

New J. Phys. 16 (2014) 073033 P Vrana et al

not finding the marked element is at most∏ − − += p N i k p(1 (1, ,))i
m

1 s i ; thus, the minimal
number of queries for which one can guarantee success (up to failure probability ε) in the
general noise model is

 ∑ ∏ ε+ ∈ … ∈ − − + ⩽
= =

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭()() ()k m i i p N i k pmin 1 , , , , 1 1, , , (40)

i

m

i m

i

m

s i

1

1

1

e.g. letting ≡ − +p N k p p k N(, ,) (1) sin ((2 1)arcsin(1))s
k 2 equal the lower bound in (10)

(alternatively, (B5)). For given εN p(, ,), the minimum (40) and the corresponding sequence
k{ }i of Grover steps can be found by dynamic programming. Clearly, ε⌈ − ⌉N (1) is an upper
bound on the number of oracle calls and for any fixed >p 00 we can bound this as

ε ε− ⩽ −⎡⎢ ⎤⎥N Np p(1) (1) 0 for all ⩾p p0. Similarly, by (30) or theorem 3, for ε ε⩾ > 00

there is also an upper bound of the form ε−cNp (1), since ε ε⩽ −clog (1) (1) where c is
determined by ε0. Hence, an upper bound on the runtime of the form ε′ −c Np (1) holds for the
complement of any neighbourhood of ε = ∈p(,) (0, 0) [0, 1]2, at least asymptotically
for → ∞N .

In the following section we simplify the above algorithm, based on typical behaviour of
the sequences k{ }i i found in numerical experiments.

3.2. Fault-ignorant quantum search with exclusion

In this section we present a more explicit algorithm to solve the search problem in the fault-
ignorant setting, i.e. an algorithm which can be specified and works even for unknown noise
level p, using the exclusion described above to obtain faster runtime (cf also figure 3):

Algorithm 2. (Quantum search with exclusion). For suitably chosen >c 0, define
= …S N: {1, , }0 and

α ε =
+ ε

() :
1

1
. (41)g g

c log (1)

Repeat the following steps for = …g 0, 1, 2, :

1. Prepare the equal superposition state ψg over the set Sg,

Figure 3. algorithm 2 uses exclusion in searching for an element in consecutive rounds
of …k k k, , ,0 1 2 Grover steps each, supplemented by one verification query. Each round
starts by preparing the equal superposition state ψg of the previously not excluded
elements, noted in the classical memory [2]N , and is concluded by a measurement in the
computational basis. The output is then verified against the oracle (list lookup) and
stored in the classical noiseless memory N[] if the element is found and marked in the
memory [2]N if the round was unsuccessful (Wx).

21

New J. Phys. 16 (2014) 073033 P Vrana et al

2. Perform kg Grover iterations (with ψ ψ− | 〉〈 |I 2 g g as reflection), where

α ε π ε= − + + ⋯ + + ⩽ −−

⎧
⎨⎪
⎩⎪

⎢
⎣⎢

⎥
⎦⎥k

N g k k k g N
:

()
4

, if (1) ,

0 , otherwise ,
(42)g

g g0 1 1

3. Measure in the standard basis, verify the result rg using one oracle invocation, store if
correct,

4. Let = ⧹+S S r: { }g g g1 .

Similarly as theorem 3 for algorithm 1, the following theorem proves fault-ignorance of
algorithm 2 and provides a bound on its runtime:

Theorem 4. (Fault-ignorance of algorithm 2). Let ∈p [0, 1] be the actual noise level (i.e.
noise ϱ ϱ ϱ= − +D p pT(): (1) ()p with any quantum channel T) acting on the quantum register
when executing algorithm 2, and let ⩾N 100 and ε ∈ (0, 1 2]. Then algorithm 2, with c = 10,
finds the marked element after at most

ε
ε+ − +{ }Np N N Nmin 100() log

1
, 2(1) (43)

oracle queries except with probability at most ε.

Proof. The success probability in each round of algorithm 2 is at least as large as in algorithm 1
because we are excluding elements; thus, the runtime of algorithm 1 puts an upper bound on the
runtime by (37). Before that, however, algorithm 3 may switch to testing (and excluding)
elements in random order (the second selector in (42)); this switch happens after at most

ε π− + +N N(1) (4) 1 oracle calls, and after the switch algorithm 2 needs at most
ε− +N(1) 1 additional calls to find the marked element except with probability ε. □

The constant 100 in (43) can be improved to 20 for a restricted range of parameters,
following the remark below theorem 3.

Again, similar to theorem 2, we can show that, despite restricting it to Groverʼs specific steps,
algorithm 2 is essentially optimal within a wider class of algorithms. Namely, we extend the class of
algorithms considered in and before theorem 2 in such a way that, instead of requiring independence
of the failure probabilities in different rounds, we assume that after each unsuccessful round we
exclude the tested element and thereby reduce the search space as well as the state space of the
computation. We also need to ensure that failure probabilities are multiplicative, which is the case
e.g. if both the noise and the algorithm treat the search elements uniformly (this in particular applies
to Grover iterations and partial depolarizing noise, see equation (7)).

This wider class of algorithms is qualitatively different from the algorithms considered in
theorem 2, as it now contains algorithms succeeding with ε− ⩽N N(1) oracle calls,
independently of p, for example the classical verification-and-exclusion algorithm described at
the beginning of section 3.1. This is reflected in the fact that the lower bound in the following
theorem never exceeds N, unlike the bounds on qN in the memoryless setting from theorem 2.

Theorem 5. (Lower runtime bound on exclusion algorithms). For any quantum search
algorithm (that may or may not have the noise level p as an input) satisfying the above

22

New J. Phys. 16 (2014) 073033 P Vrana et al

constraints and whose quantum register is subject to depolarizing noise (see equation (7)) with
fixed strength ∈p (0, 1), the number qN of queries to find the marked element up to fixed
failure probability ε ∈ (0, 1) is lower bounded as

⩾
+ ε

q
N

1
, (44)N C

p

8

log (1)
N

for some sequence ε=C C p(,)N N with =→∞Clim 1N N .

Proof. We can assume that ε⩽ −→∞q Nlim sup 1N N , because there does exist an algorithm
with this limit being ε−1 (see above). For now, fix N, and by letting → ∞N later we will
make sure that all following expressions are well-defined (e.g. no logarithms of negative
arguments occur, etc).

Let the number of queries in round g (⩽ ⩽g r0) be +k 1g (i.e., including the verification-
exclusion step), so < = ∑ +=r q k(1)g

r
0N g . For the success probabilty in round g we have by

(14) and (15)

− ⩽
−

⩽ + ⩽
+

() ()

() ()

p N g k p
h p k

N g
h p k

p
h p k

k

p

, ,
,

with (,)

1
8

and ,
8 1

, (45)

s g

g

g

g

2

where the latter inequality implies that h p k(,) is bounded independently of k (and of N), since p
is given. Thus we can lower bound the failure probability (using − ⩾ − −x x xlog (1) (1)):

∑

∑

∑

ε ⩾∏ − − ⩾ −
−

⩾ −
−

−
−

⩾ −
+
−

−
−

+

⩾ −
−

=
=

=

=

−

⎪

⎪

⎪

⎪

⎪ ⎪
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

⎧⎨
⎩

⎫⎬
⎭

()() ()

()
()

()

p N g k p
h p k

N r

h p k

N r h p k

N r

k

N r p N r p

p

q

N q
C

1 , , exp log 1
,

,

exp
, 1

1
,

,

exp
8 1

()
1

1
1

8
,

exp
8

, (46)

g

r

s g

g

r
g

g

r
g

g

g

r
g

N

N

N

0
0

0

0
2

1

where we used ⩽ ⩽g r qN from above and defined = − +−

−⎡⎣ ⎤⎦()C : 1 1N N q p

1 8
1

N
2 , which

converges to 1 as → ∞N . Inverting (46) to get an explicit bound on qN finally gives (44). □
With the usual conventions in treating1 0 and ∞1 , theorem 5 is valid for all ε ∈p, [0, 1].

Similar to equation (32) in theorem 2, one could explicitly specify a sequence CN in the bound
(44) which would however complicate the expression.

23

New J. Phys. 16 (2014) 073033 P Vrana et al

In summary, algorithm 2, which uses the exclusion strategy and Grover iterations, is fault-
ignorant and theorem 4 provides an upper bound on its runtime. Conversely, theorem 5
provides a lower bound on the number of oracle calls for any symmetric fault-ignorant
algorithm using the exclusion strategy. And the inequalities from lemma 2 (see appendix D)
show that algorithm 2 is basically optimal within this class of algorithms, in the sense that for
any ε ∈p, (0, 1) its runtime is at most a constant factor (independent of p and ε) above the
lower bound from theorem 5.

And even stronger, the lower bound on the runtime in theorem 5 is proven for algorithms
that may ‘know’ the noise level p as one of their inputs (such as the algorithm resulting from
(40)), whereas our algorithm 2 basically saturates this lower bound without actually being
dependent on the actual noise level p; the latter feature is the characteristic of fault-ignorant
algorithms. Thus, not knowing the noise level inflicting upon the quantum computation extends
the runtime at most by a constant factor, which was observed in the memoryless setting
following theorem 3 as well.

3.3. Our search algorithms, and comparision to other work [19–21]

In section 2 we did not allow for a classical memory (except to store the correct output),
whereas in section 3 we allowed a noiseless classical register in order to exclude falsified items
from future search rounds. This is obviously not the most general class of algorithm. One may
for example perform non-projective measurements which could result in a non-uniform
distribution over oracles (cf [22]) after the measurement. Or one may abandon the division into
‘rounds’ altogether, and rather use the noisy quantum register and noiseless classical memory in
a more general way (cf appendix A). While these possibilities are rather vague, at least in the
noiseless case (p = 0) Groverʼs algorithm is exactly optimal [13]. A similar general proof eludes
us in the noisy case considered in this paper; theorems 2 and 5 give such a bound under more
restrictive qualifications.

Nevertheless, the results obtained here may suggest that any non-zero noise level >p 0 (in
our noise models, cf appendix B) prolongs the runtime beyond the noiseless lower bound (in
[13]), necessitating it to be proportional to the number of search items as → ∞N . However, for
small but constant noise level >p 0, the runtime bound ε≲Np log (1) on our algorithms (cf
theorems 3 and 4) can be far below the ε−N (1) oracle calls required by the best noiseless
classical algorithm. In this regard, see [23] for a treatment of locally acting noise and questions
about optimality in this case.

Similar in spirit to our theorems 1, 2 and 5, a lower bound of ≳ −Np p(1) on the runtime
of general noisy quantum search algorithms was obtained in [20], whose faulty oracle model is
somewhat similar to our partial depolarizing noise (7) (with roughly the same noise parameter
p; they fixed ε ≃ 1 10); see also [21] for a continuous-time analogue of this result. One
difference is that, in theorems 2 and 5, we allow error-free (e.g. classical) verification steps,
whereas every oracle use in [20] is potentially faulty, leading to a diverging bound as →p 1.
Also, [20, 21] does not include a noiseless classical memory. Due to these extensions, our lower
bounds are restricted to ‘symmetric’ algorithms consisting of ‘rounds’, whereas [20, 21] applies
to all algorithms within their memoryless setting. These works do not consider achievability of
the bound.

The work [19] specifically investigated Groverʼs algorithm under phase noise (see also
[21]), again somewhat analogous to our noise model (7). It was observed that Groverʼs

24

New J. Phys. 16 (2014) 073033 P Vrana et al

algorithm gives an advantage only if it runs for ≲k p1 steps, and it was hinted that at this time
one may perform a measurement and start a new Grover round. In sections 2.2 and 2.3, we give
more rigorous arguments (and prefactors) for the scaling ∼k p1 , also for algorithms not
necessarily consisting of Grover steps. Our algorithms 1 and 2 do indeed use the division into
Grover rounds, but they even function fault-ignorantly. The avoidance of active error correction
[6] is advocated by [19] as well.

A more technical difference of our work to most of the literature is that we consider the
average success probability of an algorithm, i.e. averaged over all N oracles with equal weight,
whereas the literature most often only investigates the minimum success probability of any of
the N oracles. This makes our lower bounds stronger than the ones obtained in the literature. (As
our constructive algorithms are symmetric, the minimum and average success probabilities
coincide for those.)

4. Conclusion

In this paper we have investigated the idea of fault-ignorant quantum algorithms. Such
algorithms should output the correct result even in the presence of noise of potentially unknown
strength, in such a way that the actual noise level p may affect the runtime it takes to arrive at
the correct answer (up to some specified failure probability ε), but should not affect that fact that
the correct answer is found eventually. This approach allows us to reduce the required spatial
circuit sizes, for example in comparison to using full-scale quantum error correction, however at
the expense of increased runtime.

Following this general idea, we have provided fault-ignorant algorithms for quantum
searching that function under depolarizing or dephasing noise of unknown strength p. We find
the ‘quadratic speedup’ to be achievable only for low decoherence rates ≲p N1 . Otherwise,
our best algorithmʼs runtime scales asymptotically like ε ε−Np Nmin { log 1 , (1)} as
→ ∞N . This is linear in N, but for low enough noise levels p it nevertheless outperforms the

optimal classical search algorithm. Our algorithms may thus be useful for initial uses of
quantum computing, when unlimited scalability of the size of quantum computers is not yet
achievable due to technological limitations.

We moreover proved that, up to a constant factor, our algorithms’ runtimes are optimal
within wide classes of noisy quantum search algorithms. Remarkably, for the searching task, it
turned out that ignorance of the actual noise level will extend the runtime by only a constant
factor compared to the case of known noise level p.

Due to the novelty of the approach, our algorithms and lower bounds leave questions for
further research. On the side of concrete algorithms, one may ask for them to be independent
not only of the noise level p but also of the desired accuracy ε; then one could continue running
the algorithm for longer to increase the success probability or accuracy.

Concerning lower bounds on the complexity of noisy quantum search, it would be
worthwhile to establish an analogue of theorem 1 for the case of local noise models or even
partial dephasing or general partial entanglement-breaking noise. The latter would immediately
extend the validity of our lower bound in theorem 5 to the class of quantum algorithms that use
a noiseless classical register in an arbitrary way and need not be divided into ‘quantum rounds’.
In a similar vein, it may also be possible to prove that the essentially optimal runtime for
quantum searching under partial depolarizing noise, which we mainly investigated, can always

25

New J. Phys. 16 (2014) 073033 P Vrana et al

be achieved by an algorithm divided into such rounds (see section 3.3). If not, it would be very
interesting to find fault-ignorant algorithms that are not of this simple check-and-repeat form.

Finally, it would be desirable to investigate whether and how the fault-ignorant idea
could possibly be applied to computational models other than the quantum circuit model.
This would in particular be desirable in computational models for which quantum error
correction techniques are less developed, such as adiabatic quantum computing, and where
other methods to achieve fault tolerance are needed. Generally, we hope that, beyond
unstructured search, the fault-ignorant idea will be fruitfully applied to algorithmic tasks, such
as sampling algorithms.

Acknowledgments

We thank the two anonymous referees for their insightful comments which helped to improve
the paper. This research was initiated at a workshop of the FP7 project COQUIT, which also
supported P Vrana and D Reitzner. D Reeb was supported by the Marie Curie Intra-European
Fellowship QUINTYL. MWolf acknowledges support from the CHIST-ERA/BMBF project
CQC and the Alfried Krupp von Bohlen und Halbach-Stiftung.

Appendix A. Fault-ignorance—a mathematical framework

The aim of this appendix is to provide a rigorous mathematical definition of fault-ignorant
computing (see section 1.1 for a less formal discussion). We do this in a way which enables us
to include a fairly broad class of algorithmic problem into this framework in a unified manner,
while keeping the definition reasonably simple. The definitions are supposed formalize
algorithms that do not need to know the actual noise level in order to accomplish their task—
they should be ignorant of the noise. A fault-ignorant algorithm should be robust enough to
provide the answer (up to some specified failure probability) under any level of noise, the latter
affecting only its runtime.

In our formalization, we want to allow the desired and the actual output of the algorithm to
be probabilistic (as is usual in sampling and quantum simulation problems), and to depend on
an input (as for example in computational problems) and on an oracle (as in search problems).
Given the discrete-time nature of the computation as well as of our noise models (cf
appendix B), it is necessary to explicitly refer to an allowed class of quantum operations (the set
S in the following definition). This can be done most conveniently if one also specifies the
(spatial) resources available for performing the computation, i.e. the size of the quantum
computer available or of any accompanying classical register. We thus view the specification of
the size of the available quantum register as part of the task to be solved; and indeed, since early
realizations of quantum computers will be limited in the number of qubits, it will be a part of the
challenge to solve a desired task on the available hardware, esp. under noise influence because
full-scale quantum error correction may be prohibited. Further, we consider only the quantum
register to be noisy, whereas noiseless classical memory is today a reasonable technological
assumption.

In light of this, we propose the following definitions, which we explain and supplement
with examples afterwards.

26

New J. Phys. 16 (2014) 073033 P Vrana et al

Definition 1. (Noisy quantum computational task). A noisy quantum computational task is a
tuple ϱX I O f D s S(, , , , , , , ,) where

• X, I, O are sets,

• ∈ × ×f X I O is a stochastic matrix, i.e. has non-negative entries and for any ∈x X and ∈i I
we have ∑ =∈ f 1o O xio ,

•  is a Hilbert space,

• ϱ →·  I: () is a function with density operators as values,

• →·  D : [0, 1] CPT(()) is a function with quantum channels on  () as values,

• ∈s ,

•      ⊆ ⊗ ⊗ ⊗ = → ⊗ ⊗ ⊗   { }S T XCPT(()) : CPT(())s O X s O2 2 .

We interpret X as the set labelling the different oracles, I and O as the sets of possible
inputs and outputs, respectively (see also figure A1). For a task which does not make use of an
oracle, we let X be any singleton set, and similarly, if the computation does not need an input,
we let | | =I 1. The stochastic matrix f describes the desired distribution on the output set
depending on the input and the oracle. The computation is performed using the Hilbert space
and a classical memory of s states, with the output being written into an additional classical
register with | |O states, corresponding to the possible output states in O. The additional classical
bit 2 is to have value 1 iff the algorithm wants to signal that the result is available in the
register O. The reason for this is that in the fault-ignorant setting the runtime depends on an
unknown parameter (namely p, see below), and therefore the algorithm needs a way to tell
whether the computation is already done, without destroying the quantum state.

The map ϱ →·  I: () plays the role of input encoding in the sense that the physical initial
state ϱi on the register  () represents the abstract input value ∈i I . The quantum register 
is subject to noise modeled by the quantum channels Dp (as specified in equation (A2) below)
depending on a parameter ∈p [0, 1], which we think of as a strength parameter.

Finally, the set   ⊆ ⊗ ⊗ ⊗ S CPT(())s O X2 represents the set of allowed
elementary steps. An element in this subset is understood as a quantum channel depending
on the oracle ∈x X , whereby the quantum channel acts on the quantum register  () as well
as on the classical (diagonal) registers s, O and 2 described above (our specification below
will be such that all these classical registers are initialized in the state | 〉〈 |0 0 at the start of an
algorithm). This gives a way to impose conditions on how ‘complicated’ the elementary

Figure A1. A fault-ignorant algorithm (definition 2), specified to solve a noisy quantum
computational task (definition 1): an input state ϱi is affected in turn by devised
operations Tj (which may include an oracle indexed by x, or other coherent operations,
or measurement/verification procedures that store information in noiseless classical
registers s, O, 2) and noise Dp acting on the quantum register. After some number of
steps, the probability distribution of the output ∈o O should approximate the desired
distribution fxi, up to error ε.

27

New J. Phys. 16 (2014) 073033 P Vrana et al

operations are, e.g. in terms of oracle use or locality requirements (see examples below), and at
the same time it maps the abstract oracle ∈x X to actual physical transformations T(x) it may
perform.

Definition 2. (Fault-ignorant algorithm). A fault-ignorant algorithm solving the noisy quantum
computational task ϱX I O f D s S(, , , , , , , ,) is a family ε

ε∈T(())n n (0,1) of finite or infinite
sequences with ∈εT Sn such that for all ε ∈ (0, 1) and for all ∈p [0, 1] the value

 ε= ∈ ∀ ⩾ ∀ ˆ − ⩽ε ε⎧⎨⎩
⎫⎬⎭t p t t t x i f s p() : min : , :

1
2

() (A1)xi xi
t

0 0
,

1

is finite, where ˆ ∈ × × ×f X I O {0,1} is defined by ˆ =f : 0xio0 and ˆ =f f:xio xio1 for ∈x X , ∈i I , ∈o O,
and



ϱ

=

… ⊗ ⊗ ⊗

ε

ε ε ε ε
−

⊗

⎡⎣ ⎤⎦
 

()
s p

T x D T x D D T x D T x

() : Tr

() () () () 0 0 0 0 0 0 (A2)

xi
t

t t

,

1 2 1p p p p i

() s

is a probability distribution on ×O {0, 1}.

Thus, the sequence of operations in (A2) models a t-step noisy quantum computation, in
the sense that between any two elementary operations from S a noise channel Dp is to be applied
on the quantum register  () (figure A1). The sequence εT()n n itself describes the algorithmic
operations, which may depend on the required accuracy ε, i.e. on the maximally tolerable
distance from the desired output distribution f̂xi, cf (A1).

The requirement for εt p() to be finite for any p, even though the algorithm ε
ε∈T(())n n (0,1)

does not depend on p, justifies the term fault-ignorant algorithm. The condition ‘∀ ⩾t t0’ in
(A1) requires the result to be available in the classical memory at any later time when the
outside agent, ignorant of the noise level p and thus of the necessary computation time εt p(),
may check the 2

flag to see whether the computation has already finished and wants to read out
the result. Note that definition 2 does not put any requirements on the efficiency of the
algorithm, which however in some circumstances may be quantified by εt p(), i.e. the minimal
number of invocations of εT x()k (e.g. oracle calls); see section 1.1.

We now illustrate the definitions above by two examples.

Example 2. (Quantum search). As an example we now show how the noisy quantum search
problem considered in sections 2 and 3 fits into this framework. In this case we have a set of N
oracles = …X N{1, , }, and the algorithm is required to identify the oracle, so O = X. Since no
input is needed, we set =I {0}. Now the function to be computed is deterministic, so f will be a
0-1 matrix, more specifically δ=fxio xo. The Hilbert space we use is   = ⊗ ⊗ N M 2 for
some M setting the size of the ancillary quantum system and 2 standing for the ancillary
system used by the oracle, cf equation (4). The noise acting on it is for example partial
depolarizing, ϱ ϱ ϱ= + −D p p() (Tr) (1)p

I

NM2
NM2 . Since there is no input, ϱ0 is just any fixed

initial state, e.g. we may take ϱ = I

NM0 2
NM2 . In the version without classical memory we set s = 1

(section 2), while if we are to exclude previously tested elements, we may set =s 2N

corresponding to an N-bit classical memory (section 3).

28

New J. Phys. 16 (2014) 073033 P Vrana et al

The set of allowed elementary operations to be applied between two noise hits is

  = ∃ ∈ ⊗ ⊗ ⊗ ∀ ∈

= ∘ ∘

 


{
}

()S T C C x X T x

C O C

, CPT () : : ()

, (A3)

s O

x

1 2
2

2 1

where Ox first prepares the pure state | 〉 − | 〉(0 1)1

2
on the 2-subsystem of  , and then acts

as δ| ′ 〉 ↦ | ′ + 〉′x b x b, , x x, on  (cf equations (4) and (5)) and as the identity on the
classical registers. This choice of S means that an elementary step consists of a single use
of the oracle, possibly applying an arbitrary (but oracle-independent) channel before and
afterwards.

Finally, half of the trace-distance in (A1) gives, when the ready-flag 2 has been set to
1, exactly the probability of not outputting the correct oracle index in the classical output
register, and it is this failure probability which we wanted to be smaller than ε in sections 2
and 3.

Example 3. (Binary addition). This example illustrates the possibility to introduce some kind of
‘locality structure’. The task is the addition of two n-bit numbers given their binary
representation using local gates on a n2 -bit quantum register with local dephasing noise. Such a
task is given by =X {0}, = … − × … −I {0, 1, , 2 1} {0, 1, , 2 1}n n ,

= … − ≃+ +O {0, 1, , 2 1} {0, 1}n n1 1, δ= +fx i i o i i o(,) ,1 2 1 2
, the Hilbert space is = ⊗ () n2 2

,

ϱ = | 〉i i,i i(,) 1 21 2
(with i i,1 2 considered as a n2 -bit string), = ⊗D d p

n2
p with  → d : () ()p

2 2 the

partial dephasing with strength p, s = 1, and   ⊆ ⊗ ⊗⊗S CPT(())n O2 2 2 consisting of 1-
and 2-(qu)bit gates, i.e. channels which act as the identity on all but at most two bits (quantum

or classical), remembering the subsystem structure of  ≃ ⊗ +()O n2 1
.

An algorithm that works only for known noise level p is not fault-ignorant; such algorithms
may be formalized by assuming a p-dependence εT()n

p
n

, in the family of sequences in definition
2. On the other hand, if these sequences do not depend on the desired accuracy ε, i.e.

≡εT T() ()n n n n, then the algorithm does have another feature: the level of accuracy ε need not be
specified before starting the algorithm; when higher accuracy is desired (i.e. smaller ε), one only
needs to continue running the algorithm for longer.

Returning to efficiency questions, one may call a fault-ignorant algorithm (or rather, a
family of fault-ignorant algorithms, parametrized by some ‘problem size’ N) efficient if, for
any p, any ε and any N, its runtime is within a constant factor times the runtime of the best
algorithm that may depend on ε and on p (see section 1.1). In this sense, our theorems 2 and
5 can be seen as statements that algorithms 1 and 2 are efficient (within restricted classes of
algorithm).

It should be clear that there is nothing special about the set [0, 1] parametrizing the noise
channels apart from the possibility to interpret it as ‘strength’ or to use it directly as a coefficient
in a convex combination. One could instead consider a family ∈D()p p P of noise channels indexed
by an arbitrary set P parametrizing wider classes of noise, and so allowing for ‘more’ ignorance
about the faults. Another obvious extension of definition 1 would be to allow for time-
dependent noise.

29

New J. Phys. 16 (2014) 073033 P Vrana et al

Appendix B. Noise models

Here we elaborate on different kinds of noise which may be acting on the quantum
computer during its runtime, and in particular on the noise models to which our results
apply.

Partial depolarizing,

ϱ ϱ ϱ= + −D p
I

d
p() Tr () (1) (B1)p

I d

for noise level ∈p [0, 1], has been defined in equation (7), and corresponds to erasing the state
of the quantum register with probability p (between any two oracle calls). Somewhat similar is
partial dephasing,

∑ϱ ϱ ϱ= + −φ

=

D p x x x x p() : (1) , (B2)p
x

d

1

acting on states ϱ on a d-dimensional Hilbert space equipped with a distinguished
orthonormal basis | 〉 =x{ } x

d
1 (for these, we imagine the basis states with respect to which the

oracles (4) act). For p = 1, all quantum coherence is lost between any two oracle calls, but
one can still perform a classical algorithm (on the basis states | 〉x); in this sense, the noise
level p of partial dephasing parametrizes how ‘quantum’ a search algorithm may be. Our
constructive algorithms also work with the runtimes guaranteed by theorems 3 and 4 under
the more general noise model

ϱ ϱ ϱ= + −D pT p() : () (1) , (B3)p
T

where T may be any quantum channel, see discussion below equation (7).
Our formalization of noisy search algorithms (sections 2 and 3) does allow to noiselessly

check whether a given index ′x equals the marked element x, since immediately before
and after an oracle call one may perform any quantum operation without noise (cf
equation (13)) and thus one action of

∼
Ox from (4) on a suitably prepared quantum register can

accomplish this check and write the result into the (noiseless) classical memory. This fact is
important, as it allows the verification/falsification step at the conclusion of each round (cf
algorithms 1 and 2). Alternatively, such a noiseless check may be implemented by a classical
table lookup.

The above noise models are formulated in discrete time, but our prescription for the noise
Dp to act between any two oracle calls is supposed to model the continuous action of noise in a
real-world situation. For example, since in (B1) the probability to ‘lose’ the quantum computer
between any two consecutive oracle calls is p, its lifetime is roughly p1 (measured in the time
between two oracle calls); and indeed, the time scale ∼k p1 appeared often in the analysis in
section 2.3.

Note that quantum error correction [1, 4, 5] does not work for partial depolarizing (B1) or
dephasing (B2), as these noises affect the whole quantum computer ‘collectively’. This means
that the whole quantum computer is subjected to a ‘flash’ of noise, such as drifting lasers or an
external hit by a magnetic field. These may be reasonable noise models for not-too-large
quantum computers.

Discussing the noise models more quantitatively, we first notice that the lower bound (10)
on the success probability after k steps of Groverʼs algorithm under noise applies to all three

30

New J. Phys. 16 (2014) 073033 P Vrana et al

noise models (B1)–(B3). For partial depolarizing (B1) one can compute the success probability
in (10) exactly: the −2 1k omitted terms are of the form

∑ − = −
=

− −

N
p p x

I

N
x

N
p p

1
(1)

1
(1) , (B4)

x

N
m k m N m k m

1

where m is the number of noise hits. These terms correspond to events when the maximally
mixed state is prepared at some point due to noise acting and since both Dp and Gx (see before
equation (9)) are unital. As the coefficients of these terms sum up to − − p(1 (1))k , the exact
success probability for this model is

= − − + − +
⎛
⎝⎜

⎞
⎠⎟()p N k p p

N
p k

N
(, ,) 1 (1)

1
(1) sin (2 1) arcsin

1
. (B5)s

pol k k 2

Using this exact success probability for partial depolarizing improves the runtime bounds for
this specific noise model (e.g. theorem 3 for large noise level p), but the lower bound (10) is
quite tight unless ≫kp 1. The drawbacks of relying on a too specific noise model are
furthermore discussed below equation (30).

An exact computation of the success probability can also be done for partial dephasing
(B2), but is much more involved. Furthermore, one can prove that the success probability for
partial dephasing is not smaller than for depolarizing at the same noise level:

⩾φp N k p p N k p(, ,) (, ,)s s
pol . This inequality is, however, not immediate, as for identical noise

parameters ∈p (0, 1), partial depolarizing Dp
I cannot be obtained by post-processing φDp , i.e.

≠ ∘ φD P Dp
I

p for all quantum channels P.
Our proofs of the general lower bounds on the number of oracle calls (theorems 2 and 5)

require partial depolarizing (B1), as theorem 1 was proved only for generalized partial
depolarizing noise ϱ τ ϱ ϱ↦ + −p pTr (1) and the proofs (and presuppositions) of theorems 2
and 5 require furthermore a symmetry between the oracle indices, limiting further to τ = I d/d .

Finally, we argue that it makes sense in sections 2 and 3 to perform efficiency analyses by
keeping the noise parameter p fixed while the size of the quantum register N (or NM) varies,
possibly even tending to infinity. Phrased another way, we ask whether, for example, the
strength of partial depolarizing (B1) with parameter p on an d-dimensional quantum system is
comparable to the strength of partial depolarizing with the same parameter p in ′d dimensions,
even if d and ′d are widely different.

First, both partial depolarizing (B1) and partial dephasing (B2) (the latter with respect to a
tensor product of bases) are compatible under tracing out subsystems when the same parameter
p is used on the tensor product system and on the subsystem:

ϱ ϱ= ∀ ∈φ φ⎡⎣ ⎤⎦ ()D D ptr () tr [] [0, 1]. (B6)p
I

p
I, ,

B AB B AB

With this parametrization of the noise, it does therefore not help for algorithm performance to
introduce larger and larger ancillary systems or ‘innocent bystanders’: the noise on the ‘Grover
part’ of the algorithm cannot be made small in this way, which is a reasonable requirement.

Secondly, both for partial depolarizing and dephasing, one can obtain the noise in −d 1
dimensions by post-processing the noise on a d-dimensional system:

ϱ ϱ ϱ⊕ = ∘ ⊕ ∀ ∈ ∀ ∈φ φ −()D P D p() 0 (0) [0, 1] , (B7)p p
d 1

31

New J. Phys. 16 (2014) 073033 P Vrana et al

where =P id for dephasing noise (and the additional dimension | 〉d has to correspond to one of
the basis vectors in (B2)), and

= − | 〉〈 | − | 〉〈 | + − | 〉〈 | 〈 | | 〉 −P X I d d X I d d I d d d X d d() : () () () (1) for depolarizing. This com-
patibility under restrictions of the Hilbert space to subspaces is important and sensible in the
context of exclusion algorithms (algorithm 2, and proof of theorem 4), where the effective
dimension of the quantum register is reduced by 1 in each round.

Appendix C. Proof of theorem 3

Proof. As we assume the noise to act symmetrically with respect to the different oracles (which
both partial depolarizing and dephasing do) and since the Grover steps of algorithm 1 are
symmetric as well, the success events in different rounds g are independent. Thus, with (10), we
can upper bound the failure probability after round *g by

∑

∑

∑

≡∏ − = −

⩽ −

⩽ − − +

*
*

*

*

=
=

=

=

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

() ()() ()

()

()

p p N k p p N k p

p N k p

p k
N

1 , , exp log 1 , ,

exp , ,

exp (1) sin 2 1 arcsin
1

. (C1)

g

g

s g

g

g

s g

g

g

s g

g

g
k

g

fail 0
0

0

0

2g

To show that the failure probability is at most ε, as desired, below we will lower bound the sum
∑ =
*

g
g

0 and adjust parameters such that it is at least εlog (1). The sum can be further bounded
by assuming it to start at some = *g g with ⩽ ⩽* *g g0 :

∑ ∑… ⩾ − +
*

*

*

= =

*

⎛
⎝⎜

⎞
⎠⎟()p k

N
() (1) sin 2 1 arcsin

1
. (C2)

g

g
k

g g

g

g

0

2g

The number of oracle calls can be upper bounded as follows:

∫

∑ ∑π
ε

π π
ε

π π
ε ε

+ ⩽ + + +

⩽ + + + +

⩽ + + + +

*

*

*
*

* *

=

*

= =

−

−

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

()k g N
g

c

g N N
g

c
dg

g N N c
g

c

1 1
4

1
log (1)

1
4 4

1
log (1)

1
4 2

log
1

1
log (1)

. (C3)

g

g

0

g

g

g

g

g

0 0

1 2

1 2

The proof of the theorem now consists in showing that there exists a number *g (of rounds)
such that the failure probability (C1) is at most ε, while the number of oracle calls (C3) does not
exceed the value given in (37). This argument will be split into three cases, as sketched in the
main text. We make abundant use of the fact that ε ⩾c log (1) 1, since ε ε⩽ =: 1 20 and

32

New J. Phys. 16 (2014) 073033 P Vrana et al

c = 10. We also define =N : 1000 and assume ⩾N N0 throughout, in accord with the statement of
theorem 3.

Case 1: π⩽p N4 (). In this case, the actual decoherence rate p is small, and we take
only the first few rounds g into account to obtain an upper bound on pfail. By using

⩾N Narcsin(1) 1 , ⩾x x x xsin () sin ()0 0 for π⩽ ⩽ ⩽x x0 0 , and setting

=
+

+

π

π

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

() ()
() ()

()Q N
N N

N N
:

sin 1 arcsin 1

1 arcsin 1
,0

2
2 0 0

2 0 0

2

we continue in bounding (C2):

∫

∑ ∑

∑

α ε π

π α ε

π α ε

… ⩾ − +

⩾ −

⩾ −

*

*

*

*

*

= *

*

= =

=

*

*

*

⎜ ⎟⎛
⎝

⎢
⎣⎢

⎥
⎦⎥

⎞
⎠()

()

()

p Q N N
N

p Q N

p Q N dg

() (1) 2 ()
4

1
1

,

16
(1) (),

16
(1) () , (C4)

g

g g

g

g

2

2

g

g
k

g g

g

g

k

g g

g

k

0

0

2

2

0

2

0

g

g

g

where we used ⌊ ⌋ + ⩾x x2 1 for ⩾x 0. Choosing =*g : 0 and ε=* ⎡⎢ ⎤⎥g c: log (1)0 , we evaluate
the integral in (C4) to find

∑ π
ε

π
π ε

… ⩾ − +

⩾ − +

*

π
=

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟ ⎛

⎝
⎞
⎠

()

()

p Q N c
c

c

N
Q N c

c

c

()
16

(1) log 1 log
1

,

16
1

4 1
log 1 log

1
, (C5)

g

g
k

N

0

2

0
0

2

0

4

0
0

0

0

where we used π⩽p N(4). When the prefactor of εlog (1) is at least 1, then the failure
probability pfail will be at most ε by equation (C1); this happens e.g. for the choice =c : 1700 .
The number of oracle calls from (C3) is then

π π
ε

⩽ + + + +
⎛
⎝
⎜

⎞
⎠
⎟N c c c

c

N
N2

4 2
2 log

1
, (C6)2

0
0

0

which is less than ε+N N86 log (1) due to π+ ⩽N N2 4 . We notice that the term
linear in N (cf equation (37)) is absent from the runtime (C6) in case 1; intuitively speaking,
such small noise levels p still allow for quadratic speedup in the quantum search.

Case 2: π ⩽ ⩽ *N p p4 () , where we define =*p : 0.3. In this intermediate region of the
actual decoherence rate (the need for <*p 1 will become evident later), we define

π ε=* ⎡⎢ ⎤⎥g c Np: (16) log (1)2
2 2 and π ε=*

⎡⎢ ⎤⎥g c Np: (16) log (1)1
2 2 with > >c c c2 1 to be

determined later. Our choice >c c1 will in particular imply ε⩾*g c log (1), so that we can
continue lower-bounding (C4) by bounding the integrand,

33

New J. Phys. 16 (2014) 073033 P Vrana et al

∫∑ π
ε

π
ε

π π
ε

π ε
ε

π
ε ε

… ⩾ − ⩾ −

⩾ + −

×

+

⩾
−

+

*

*

*

*

*

*

*

*

= =

−

−

−

*
*⎜ ⎟

⎪ ⎪

⎪ ⎪

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
()

() ()

()

()
()

p Q N c
dg

g
p Q N c

g

g

N
g

c
p

Q N c
c

c Np

p

p

c

c
Q N c

c

c

()
32

(1) log
1

32
(1) log log

1

32
exp

4
1

log (1)
log (1)

log

16
log (1)

log
1

32
exp

log 1
log

log 1
log

1
, (C7)

g

g
k

g g

g k

0

2

0

2

0

2 1 2

0
2

1

2
2

1

2

1
0

2

1
1

0

g
g

where we used − ⩽ −* *p p p plog (1) log (1) (due to ⩾ *p p) and
π ε ε⩾Np(16) log (1) log (1/)2 2

0 (due to π⩾p N4 ()). Again, the prefactor of εlog (1)
can be made larger than 1 by choosing =c : 201 and =c : 1802 . The number of oracle calls from
(C3) is then

π π
ε

π
ε

⩽ + + + +*()N N c p cc Np2
4 2

log
1

16
2 log

1
, (C8)2

2

2

which again is less than ε+ +N Np N86() log (1).
Case 3: ⩾ *p p . For large actual noise levels p, it is enough to consider only those rounds

g for which ε =k () 0g ; in each such round, a measurement is performed on the equal
superposition state, leading to a success probability of exactly N1 . This leads to the choice

π ε=*
⎢⎣ ⎥⎦g c N: (16) log (1)2 and π ε=* ⎢⎣ ⎥⎦g c N: (16) log (1)3

2 , and we can lower-bound
(C2):

∑ ∑ π
ε

… ⩾ = − + ⩾ −*
*

*

*

*

= =
()N N
g g c c()

1 1
1

16
() log

1
. (C9)

g

g

g g

g

0

2

3

By choosing =c : 123 , the prefactor of εlog (1) exceeds 1. The number of oracle calls from (C3)
is then

π π
ε

π
ε

⩽ + + + +
*

()N c N
p

c cc Np1
4 2

log
1

16
2 log

1
, (C10)

2

3 3

which is again less than ε+ +N Np N86() log (1).
So far we have proved that the algorithm is fault-tolerant with runtime at most

ε+ +N Np N86() log (1). Due to ε ε⩽ = 1/20 , (37) is an upper bound on the
runtime. □

For the proof of the prefactor 20 mentioned below theorem 3, the Case 3 in the proof
above can be neglected, and we set ϵ= =*p : : 0.10 , and alter the lower bound (C4) a bit, such
that constants c0, c1, c2 etc can be found to yield the lower guaranteed runtime.

34

New J. Phys. 16 (2014) 073033 P Vrana et al

Appendix D. Technical Lemmata

By the following lemma, we convert Zalkaʼs implicit bound, equation (11), into an explicit one
(see after the proof below):

Lemma 1. Let ⩽ ⩽x0 1 and ⩽ ⩽y0 1. Then, for any α< < ∞0 :

α
α

+ − − ⩽ + − + −⎜ ⎟⎛
⎝

⎞
⎠xy x y x y(1)(1) 1

1
2

(1)
1
2

1
1 . (D1)

Proof. The left-hand side is a concave function of ∈x y(,) [0, 1]2, smooth in the interior, and
hence its graph stays under its tangent plane drawn at any point x y(,)0 0 for < <x0 10 and
< <y0 10 . The partial derivatives of = + − −h x y xy x y(,) (1)(1) at (x, y) are

= −
−
−

= − −
−

h x y
y

x

y

x
h x y

x

y

x

y
(,)

2

1

2 1
and (,)

2
1

2 1
. (D2)x y

Writing α=y x0
2

0 for α< < ∞0 , we have

α α
α

α α
α

⩽ + − + −

= + −
−
−

−

+ −
−
−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

()

()

h x y h x y h x y x x h x y y y

h x x
x

x
x x

x

x
y x

(,) (,) (,)() (,)()

,
1
2

1

1
()

1
2

1 1

1
. (D3)

x y0 0 0 0 0 0 0 0

0
2

0

2
0

0
0

0

2
0

2
0

Now taking the limit →x 00 yields (D1). □

We apply this lemma to Zalkaʼs bound [13] (equation (11) above) with =x ps and =y :
N

1

α
α

α
α

⩾ − − − −

= − + − −

⩾ − + − + −

= − − −

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟
⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟
⎤
⎦⎥

⎛
⎝

⎞
⎠

()

k N N p N N p

N p
N

p
N

N p
N

Np

4 2 2 2 1 1

2 1
1

1 1
1

2 1 1
1
2

(1)
1
2

1
1

1

(1)
1

1 . (D4)

s s

s s

s

s

2

One can easily see that the sharpest bound on ps is obtained for α = + −k(2 1) 1,
yielding ⩽ +Np k(2 1)s

2.
The following lemma shows that algorithm 2 in section 3 is optimal within the class of

algorithms considered in theorem 5, up to a constant factor in the runtime:

35

New J. Phys. 16 (2014) 073033 P Vrana et al

Lemma 2. For < <p0 1 and ε< <0 1 the following inequalities hold:

ε
ε+

⩽ − ⩽
+ε ε

{ }p
1

1
min 1 , log

1 2

1
. (D5)

p p

1
log (1)

1
log (1)

Proof. First, ε >p log (1) 0 implies

ε+
⩽

ε

p
1

1
log

1
. (D6)

p

1
log (1)

Now let =h x x() log
x

1 for >x 0. Then ′ =− −h x x() 1 log and ″ =−h x x() 1 , so h is
concave, and the tangent at x = 1 is − x1 . This gives ε ε ε ε ε⩽ ⩽ −p log (1) log (1) 1 , which
implies

ε
+

⩽ −
ε

1

1
1 , (D7)

p

1
log (1)

concluding the left inequality. For the right inequality, if ε ε− = − ⩽ε{ }pmin 1 , log 1 11 ,
then

ϵ
+

⩾
+

⩾ −
ϵ ϵ−

2

1

2

1
1 . (D8)

p

1
log (1)

1
1

Lastly, if ε− =ε ε{ }p pmin 1 , log log1 1 then in particular < ⩽εp0 log 11 . Thus, finally,

ε
⩽

+ ε

p log
1 2

1
. (D9)

p

1
log (1)

□

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:
Cambridge University Press)

[2] Shor P 1995 Scheme for reducing decoherence in quantum memory Phys. Rev. A 52 2493
[3] Steane A M 1996 Error correcting codes in quantum theory Phys. Rev. Lett. 77 793
[4] Shor P 1996 Fault-tolerant Quantum Computation Proc. of the XXXVII Annual Symp. on Fundamentals of

Computer Science (Los Alamitos, CA: IEEE Press)
[5] Knill E, Laflamme R and Zurek W H 1998 Resilient quantum computation: error models and thresholds Proc.

R. Soc. A 454 365
[6] Preskill J 1998 Reliable quantum computers Proc. R. Soc. A 454 385
[7] Gottesman D 2013 Fault-tolerant quantum computation with constant overhead (arXiv:1310.2984

[quant-ph])
[8] Zanardi P 1997 Dissipative dynamics in a quantum register Phys. Rev. A 56 4445
[9] Lidar D A, Chuang I L and Whaley K B 1998 Decoherence-free subspaces for quantum computation Phys.

Rev. Lett. 81 2594
[10] Grover L K 1997 Quantum mechanics helps in searching for a needle in a haystack Phys. Rev. Lett. 79 325
[11] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 Strengths and weaknesses of quantum computing

SIAM J. Comput. 26 1510

36

New J. Phys. 16 (2014) 073033 P Vrana et al

http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1098/rspa.1998.0166
http://dx.doi.org/10.1098/rspa.1998.0171
http://arXiv.org/abs/1310.2984
http://dx.doi.org/10.1103/PhysRevA.56.4445
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1137/S0097539796300933

[12] Boyer M, Brassard G, Hoyer P and Tapp A 1998 Tight bounds on quantum searching Fortschr. Phys. 46 493
[13] Zalka C 1999 Groverʼs quantum searching algorithm is optimal Phys. Rev. A 60 2746
[14] Pablo-Norman B and Ruiz-Altaba M 1999 Noise in Groverʼs quantum search algorithm Phys. Rev. A 61

012301
[15] Long G L, Li Y S, Zhang W L and Tu C C 2000 Dominant gate imperfection in Groverʼs quantum search

algorithm Phys. Rev. A 61 042305
[16] Azuma H 2002 Decoherence in Groverʼs quantum algorithm: perturbative approach Phys. Rev. A 65 042311
[17] Shapira D, Mozes S and Biham O 2003 Effect of unitary noise on Groverʼs quantum search algorithm Phys.

Rev. A 67 042301
[18] Hsieh J, Li C and Chuu D 2004 An improved phase error tolerance in quantum search algorithm Chin. J.

Phys. 42 585
[19] Shenvi N, Brown K R and Whaley K B 2003 Effects of a random noisy oracle on search algorithm

complexity Phys. Rev. A 68 052313
[20] Regev O and Schiff L 2008 Impossibility of a quantum speed-up with a faulty oracle Proc. of the XXXV Int.

colloquium on Automata, Languages and Programming 1 773
[21] Temme K 2014 A note on the runtime of a faulty Hamiltonian oracle (arXiv:1404.1977 [quant-ph])
[22] Montanaro A 2010 Quantum Search with Advice Proc. of the 5th Conf. on Theory of Quantum Computation,

Communication and Cryptography (Berlin: Springer) p 77
[23] Ben-Or M, Gottesman D and Hassidim A 2013 Quantum refrigerator (arXiv:1301.1995 [quant-ph])

37

New J. Phys. 16 (2014) 073033 P Vrana et al

http://dx.doi.org/10.1002/(ISSN)1521-3978
http://dx.doi.org/10.1103/PhysRevA.60.2746
http://dx.doi.org/10.1103/PhysRevA.61.012301
http://dx.doi.org/10.1103/PhysRevA.61.012301
http://dx.doi.org/10.1103/PhysRevA.61.042305
http://dx.doi.org/10.1103/PhysRevA.65.042311
http://dx.doi.org/10.1103/PhysRevA.67.042301
http://dx.doi.org/10.1103/PhysRevA.68.052313
http://arXiv.org/abs/1404.1977
http://arXiv.org/abs/1301.1995

	1. Introduction
	1.1. Fault-ignorant algorithms—definition and basic properties

	2. Quantum search under noise—memoryless approach
	2.1. Setup: noiseless and noisy quantum search
	2.2. Building block for noisy search algorithms
	2.3. Search algorithm by repeating the basic building block—known noise level p
	2.4. Fault-ignorant search composed from basic building blocks

	3. Search algorithms employing noiseless classical memory
	3.1. Search with exclusion
	3.2. Fault-ignorant quantum search with exclusion
	3.3. Our search algorithms, and comparision to other work [19�–�21]

	4. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References

