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Abstract
We provide a new approach to adiabatic state preparation that uses coherent
control and measurement to average different adiabatic evolutions in ways that
cause their diabatic errors to cancel, allowing highly accurate state preparations
using less time than conventional approaches. We show that this new model for
adiabatic state preparation is polynomially equivalent to conventional adiabatic
quantum computation by providing upper bounds on the cost of simulating such
evolutions on a circuit-based quantum computer. Finally, we show that this
approach is robust to small errors in the quantum control register and that the
system remains protected against noise on the adiabatic register by the spec-
tral gap.

Keywords: adiabatic evolution, coherent control, state preparation, quantum
simulation, quantum computation, adiabatic theorem

The quantum adiabatic theorem is an essential tool for quantum information processing and
quantum control [1–6]. It states that the evolution generated by a slowly varying Hamiltonian
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(relative to the minimum eigenvalue gap) maps eigenstates of the initial Hamiltonian to
eigenstates of the final Hamiltonian [7]. This process provides a simple and error-robust method
for state preparation that is used extensively in quantum simulation, adiabatic quantum
computing as well as pulse design. A drawback of adiabatic evolution is that it is often much
slower than competing state preparation methods. Finding ways of reducing ‘diabatic’ errors
(which result from using a finite evolution time) is vitally important for practical applications of
adiabatic state preparation.

Two major strategies have been proposed to minimize the error in adiabatic evolutions:
local adiabatic evolution and boundary cancellation methods. Local adiabatic evolution [8, 9]
(LAE) minimizes the time needed to reach the adiabatic regime by choosing the evolution speed
such that the adiabatic condition is satisfied at each instant throughout the evolution. In a typical
scenario of LAE, the rate at which the Hamiltonian changes is fast in the beginning and the end
of evolution, when the distance between the ground state and the first excited state is large, and
small in the middle around the minimal gap. This approach optimizes the scaling of the
evolution time with the size of the system and works best to reduce diabatic errors in the short
time or ‘Landau–Zener’ regime (so called because the Landau–Zener formula provides a better
approximation to the resultant state than adiabatic perturbation theory does).

Boundary cancellation methods minimize the error in the adiabatic approximation once the
adiabatic condition is met [10−12]. These methods polynomially improve the error scaling,
relative to LAE, by setting the first −n 1 derivatives of the Hamiltonian to zero at the
boundaries. This strategy tends to lead to taking the Hamiltonian to be slowly varying near the
beginning and end of the evolution, which typically is where the eigenvalue gap is largest.
Since the Hamiltonian will often vary slowly when the gap is large, it forces the evolution to
speed up around the minimal gap, which retards the convergence to the adiabatic regime (the
regime where adiabatic perturbation theory applies).

These two approaches are typically at odds: LAE says that you should move quickly when
the gap is large to minimize the error, which is often at the beginning and end of the adiabatic
passage [8, 9], whereas boundary cancellation methods show that it is often best to move very
slowly at the beginning and end of the evolution [10, 13]. The question is, can these two
objectives be simultaneously satisfied, and if so, how?

We consider a model of adiabatic quantum computation that can achieve both goals. Our
hybrid model for adiabatic computation uses a logarithmically large control register over which
the user has universal control, and a larger adiabatic system that is coherently controlled by the
smaller register. Since the control register is constrained to a logarithmic size, this model of
computing is directly equivalent neither to the circuit model of quantum computing nor to
adiabatic quantum computing. These generalizations grant two freedoms: (a) the adiabatic
subsystem can evolve under a superposition of different adiabatic evolutions and (b)
measurement can be used on the control qubits without exciting the system out of the
groundstate. These freedoms allow us to escape the constraints of unitarity and implement a
wider class of operations including linear combinations of unitaries [14], which we use to
increase the resilience of the evolution to diabatic errors. This model also subsumes those
of [15, 16].

Unlike the previous methods, we do not search for a single optimal adiabatic evolution.
Instead we take two (or more) evolutions that generate errors that are oriented in opposite
directions, as in figure 2, and then use the non-deterministic circuit in figure 1 to suppress these
errors by performing an appropriate weighted average of the evolutions. We then show that a
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linear combination of adiabatic evolutions can asymptotically decrease the error in the adiabatic
approximation. The resultant averaged adiabatic evolution can have the benefits of both LAE
and boundary cancellation methods: the convergence to the adiabatic regime is comparable to
LAE, while the error scaling in the adiabatic regime is comparable to that of boundary
cancellation methods.

In the following section we review the adiabatic theorem. We then provide the gadget that
we use to cancel the leading order diabatic errors in section 2. We illustrate the utility of this
method in section 3, where we apply the gadget to approximately cancel the dominant diabatic
transition. We provide methods in section 5 that simultaneously suppress every transition,
assuming that the adiabatic paths obey a particular symmetry condition. Finally, we discuss
how our techniques can combine the best features of local adiabatic evolution and boundary
cancellation methods in section 4 and then discuss the implementation of our model of
coherently controlled adiabatic evolution using a quantum computer in section 7.

1. Review of the adiabatic theorem

It is not possible to provide a closed form solution to the Schrödinger equation for the case of
time-dependent Hamiltonians in general. It is customary in such cases to express the time
evolution operator, which is the formal solution to

∂
∂

= −U t

t
H t U t

( , 0)
i ( ) ( , 0), (1)

as

 ∏∫= =τ τ−

→∞ =

−
−U t( , 0) e : lim e . (2)H

r
j

r
H jt r t ri ( )d

0

1
i ( )

t

0

A wide array of approximation methods exist for U(t), including the Magnus expansion [17],
Dyson series [18], Floquet theory [19], the Landau–Zener formula [20] and the adiabatic
approximation.

The adiabatic approximation is widely used to approximate quantum dynamics in cases
where rate of change of the time-dependent Hamiltonian is slow relative to an appropriate
power of the minimum eigenvalue gap. In essence, the approximation states that if you prepare
a system in an eigenstate of the Hamiltonian and evolve sufficiently slowly then the quantum
system will evolve to the corresponding instantaneous eigenstate throughout the evolution. This
lack of excitation throughout the process makes it analogous to reversible adiabatic processes in
statistical mechanics. This analogy is not exact since the change in von Neumann entropy is
also zero for any unitary process, and so the ‘adiabatic’ moniker persists for largely historical
reasons.

Figure 1. Circuit for linear combination of two unitary operations.
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Since the adiabatic approximation requires slow evolution, it is useful to consider how the
approximation error scales as the speed of the transition from the initial to the final Hamiltonian
decreases. This makes it natural to parameterize time via the variable s where

=s t T , (3)

and T is the total time for the adiabatic passage. While an adiabatic evolution occurs on
∈t T[0, ], ∈s [0, 1] regardless of the actual duration of the evolution. This means that if the

Hamiltonian is re-parameterized as H(s), then we can increase T to make the evolution slower
without fundamentally changing the form of the evolution.

We need to introduce some further notation before we can discuss the adiabatic
approximation in greater detail. First we define n s( ) to be the instantaneous eigenvectors of
the time-dependent Hamiltonian,

=H s n s E s n s( ) ( ) ( ) ( ) , (4)n

and we make no assumptions about the ordering of En (i.e. we do not assume that ⩽E E0 1).
Also, for notational simplicity, we define =g s E s( ) : ( )0 . We refer to this state as g s( )
because it will represent the ground state in many practical examples of adiabatic QIP. The
eigenvalue gaps will also be key to our analysis and so we use the following notation for them:

γ = −μ ν μ νs E s E s( ) : ( ) ( ). (5),

The adiabatic approximation is often expressed in many different ways. The simplest of
these states that

⎜ ⎟⎛
⎝

⎞
⎠∫≈ +ξ ξ−U g g O

T
(1, 0) (0) e (1)

1
. (6)E Ti ( ) d

0

1

0

In general the adiabatic approximation holds if

γ
≫

∥∂ ∥ + ∥∂ ∥ + ∥∂ ∥( )
T

H s H s H s

s

max ( ) ( ) ( )

min ( )
, (7)

s s
a

s
b

s
c

s g
d

2 3

,1

for integers a b c, , and d that depend on the properties of the Hamiltonian [21–24]. A common
misconception is that the adiabatic approximation holds if

γ
≫

∥∂ ∥
T

H s

s

max ( )

min ( )
, (8)s s

s 0,1
2

although this criteria is appropriate for sufficiently slow evolutions under smoothly varying
Hamiltonians [21, 22]. On the other hand, it is also known to fail in cases where there are
resonant transitions which can occur in problems where∥∂ ∥H s( )s

2 is an increasing function of T
[25, 26]. This can cause higher-order terms in the adiabatic perturbation series, which are
typically negligible, to dominate the error in the approximation.

We refer to such results as zeroth-order adiabatic theorems, because they provide an
estimate of the error that is correct to the zeroth order in −T 1, meaning that they simply tell you
that the error is zero if the adiabatic process is infinitely slow. In order to show that we can
combine different adiabatic evolutions to cancel the error, we need to have a sharper adiabatic
condition that approximates the error to at least O T(1 ). It is necessary for us to use a first-order
adiabatic approximation, which provides us with the error in the adiabatic approximation
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correct to O T(1 )2 [21]:

⎜ ⎟⎛
⎝

⎞
⎠



∑ ∫
∫

γ

−

=
−

+ξ ξ
γ ξ ξ

≠

−

=

g g U g s

n s g s

s T
n O

T

( (1) (1) ) (1, 0) ( )

e
˙ ( ) ( ) e

i ( )
(1)

1 . (9)

n g

E T
T

g n

s

i ( ) d
i ( )d

,

0

1

2
n

s

g n

0

1 0
,

This result can easily be found through the use of path integral methods [27–29]. Upper bounds
on the magnitude of the sum of all O T(1 )2 terms are given in [21].

Equation (9) tells us something surprising: the leading order contribution to the error in the
adiabatic approximation does not depend on the minimum gap but rather on the eigenvalue gap
at the beginning and the end of the evolution, which motivates taking =H s˙ ( ) 0 or equivalently

=n s g s˙ ( )| ( ) 0 on the boundary as per boundary cancellation methods [10]. The apparent
contradiction posed by (9) is easily resolved. Adiabatic conditions like (7) give criteria for the
convergence of the adiabatic perturbation series of U T( , 0) in powers of T1 , and equations
such as (9) give a truncated expression for the power series. This means that after a critical
evolution speed, the error in the adiabatic approximation no longer depends on the minimum
gap, whereas the error depends crucially on the minimum gap before this point. We refer to the
regime where the minimum gap dictates the error as the Landau–Zener regime and the regime
where it does not as the adiabatic regime.

Similarly, the first-order adiabatic theorem relies on several conditions outlined in [21].
First, the Hamiltonian must be twice differentiable and three times piecewise differentiable with
all such derivatives upper-bounded by a constant. Second, the system must already be in the
adiabatic regime (i.e. the Θ T(1 ) contribution to the error is much greater than the sum of all
O T(1 )2 contributions). Third, we require that the norm of the Hamiltonian be upper-bounded
by a constant for all times during the evolution. These criteria guarantee the validity of (9).

A common way to reduce errors in both the Landau–Zener regime and the adiabatic
regime is to change the path used in the adiabatic evolution. The most frequently used adiabatic
path, known as linear interpolation, is

= − +H s s H sH( ) (1 ) , (10)0 1

where H0 is the initial Hamiltonian and H1 is the final Hamiltonian. There are, of course, many
ways that one could imagine transitioning from the initial Hamiltonian to the final Hamiltonian.
Each of these ways represents a particular ‘adiabatic path’ and (10) is known as the linear
adiabatic path. More generally we could consider a path of the form

= − +H s f s H g s H( ) (1 ( )) ( ) , (11)0 1

where = =f g(0) (0) 0 and = =f g(1) (1) 1. Such paths can be extremely important for
adiabatic quantum computing because they allow the evolution to slow down through, or even
avoid, parts of the evolution that contribute substantially to the error; however, here we assume
the simple case of =g s f s( ) ( ). We do not require that the range of f be [0, 1] here. In fact, some
of the adiabatic paths that we consider will attain negative values and values greater than 1.

Other examples of non-linear paths include local adiabatic evolution, which seeks to
minimize the error in the Landau–Zener regime by choosing the evolution speed to be smallest
near the minimum gap. Boundary cancellation methods, on the other hand, choose paths that
minimize the error in the adiabatic regime by choosing the evolution speed to be zero at s = 0
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and s = 1. These two strategies are seemingly orthogonal. At present there is no known method
that combines the best features of local adiabatic paths and the paths yielded by boundary
cancellation methods. Our work provides a way to achieve this, thereby illustrating that
controlled adiabatic evolution affords greater power than conventional adiabatic evolution.

2. Controlled adiabatic evolution using a small number of ancillas

The central idea behind our approach is to use a gadget that was recently proposed in [14] to
non-deterministically implement the weighted average of two or more adiabatic evolutions.
This idea of using controlled adiabatic evolutions and measurement has been recently explored
by Itay Hen [15] and is also used in holonomic quantum computing [16]; however, these results
do not consider using coherent control and measurement to suppress diabatic errors. The gadget
that we use for this averaging process is given in figure 1. The circuit in figure 1
probabilistically implements linear combinations of unitary operations, as seen through the
following argument:

ψ ψ θ θ
θ ψ θ ψ

θ θ ψ θ θ ψ

→ +
→ +

→ + + −( ) ( )
U U

U U U U

0 (cos 0 sin 1 )
cos 0 sin 1

cos sin 0 sin cos 1 . (12)

A B

A B B A
2 2

We then see that if the ancilla register is measured to be 0 then the circuit performs a weighted
combination of UA and UB on the state ψ ; otherwise, the circuit implements the difference
between the two operators:

ψ⩾ − −( )p U U(0) 1 . (13)A B
2

The generalization to cases where multiple UA and UB are used is trivial: it simply involves
increasing the number of qubits used to control the overall rotation [14]. Such circuits, or
variants thereof, are also used in [30, 31].

For the case of adiabatic evolution, we know that to the zeroth order

∫

∫

= +

= +

−

−

( )

( )

( )

( )

U T g g O T

U T g g O T

, 0 (0) e (1) (1 ),

, 0 (0) e (1) (1 ), (14)

A A
E f s sT

B B
E f s sT

i ( ) d

i ( ) d

A A

B B

0

1

0

0

1

0

where =T T Tmax { , }A B . This means that, to leading order, both UA and UB generate the same
evolution up to a global phase and hence we expect the success probability to be high if the
phases picked up by g under both evolutions are comparable.

Rather than choosing different paths that apply the same phase to g s( ) , we counter-rotate
the evolution of each eigenstate by including an additional phase to each unitary. This affords
us much greater freedom to choose adiabatic paths for UB and UA. In particular, we choose
these phases such that
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟





∫ ∫

∫ ∫

=

=

−

−

( )

( )

( ) ( )

( ) ( )

U T g g

U T g g

, 0 (0) e e (1) ,

, 0 (0) e e (1) . (15)

A A
E f s sT H f s sT

B B
E f s sT H f s sT

i ( ) d i ( ) d

i ( ) d i ( ) d

A A A A

B B B B

0

1

0
0

1

0

1

0
0

1

Note that in certain highly symmetric cases, such as those considered in section 5, these phase
factors are identical and can therefore be omitted.

We see from the choices of phases in (15) that (13) gives the failure probability of the
linear combination O T(1 ) in the limit of large T. This means that the failure probability will
typically be extremely small for adiabatic processes. Even if a failure is observed, the gadget in
figure 1 informs the user that a failure has occurred and the state preparation process can be
repeated until success is obtained. We see from numerical experiments that the failure
probability of these circuits has a near-negligible impact on the cost of coherently controlled
adiabatic state preparation in the adiabatic regime.

Generalization of these ideas to cases where more than two unitary evolutions are averaged
is straightforward and is discussed in detail in [14]. We present the two-unitary case explicitly
here since the majority of our results focus on averaging two different adiabatic evolutions.

3. A general method for canceling a single transition

Our first approach is a generalization of the strategy employed by Wiebe and Babcock in [32],
which suppresses the dominant transition in the adiabatic passage for adiabatic paths satisfying

γ γ
=

= =

n s g s

s

n s g s

s

˙ ( ) ( )

( )

˙ ( ) ( )

( )
, (16)

g n
s

g n
s

,
0

,
1

by choosing the evolution time T appropriately. Our strategy is to suppress a single transition,
not by choosing a single time and requiring a symmetry condition as per [32], but by interfering
the adiabatic evolution with a dual evolution, as suggested in figure 2. This allows such errors to
be suppressed for any evolution time and any primary path. We also provide a method for
suppressing the two most significant diabatic transitions in appendix A.

Figure 2. The average of two evolutions with opposite errors will completely eliminate
the first-order error.

7

New J. Phys. 16 (2014) 123034 M Kieferová and N Wiebe



We wish to choose, for fixed HA, an adiabatic path that quadratically suppresses the
transition →g e(0) (1) where e s( ) is any given instantaneous eigenstate of H(s) that is
orthogonal to the g s( ) . From (9) and (15), we see that if we combineU T( , 0)A A withU T( , 0)B B

and achieve a successful measurement outcome, then we obtain a result proportional to

θ θ ϕ+ = + =( )( ) ( )U T U T g g O Tcos ( ) , 0 sin ( ) , 0 (0) (1) (1 ) : . (17)A A B B
2 2

So to leading order, the linear combination will give the correct result. Then, using (9), it is
clear that

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

∫

∫

ϕ θ

γ γ

θ
γ γ

∝

×
−

−
−

+
−

−
−

+

γ ξ ξ

γ ξ ξ

+

+

( )

e e

e g

T

e g

T

e g e g

T

O T

(1) (1) cos ( )

˙ (1) (1)

i (1)
e

˙ (0) (0)

i (0)

sin ( )
˙ (1) (1)

i
e

˙ (0) (0)

i (0)

1 . (18)

A

g e
A

A

T

A

g e
A

A

B

g e T
B

T
B

g e
B

B

2

1

,

i ( ) d

,

2

, (1)

i ( ) d

,

2

g e A
A A

B

g e
B

B

0

1

,

0

1

,

This transition can therefore be canceled, to O T(1 )2 , by choosing θ T, B and fB such that the
weighted average of the diabatic transitions to the state e is zero:

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

∫

∫

θ
γ γ

θ
γ γ

=
−

−
−

+
−

−
−

γ ξ ξ

γ ξ ξ

+

+

e g

T

e g

T

e g

T

e g

T

0 cos ( )
˙ (1) (1)

i (1)
e

˙ (0) (0)

i (0)

sin ( )
˙ (1) (1)

i (1)
e

˙ (0) (0)

i (0)
(19)

A

g e
A

A

T d

A

g e
A

A

B

g e
B

B

T d
B

g e
B

B

2
1

,

i ( )

,

2

,

i ( )

,

g e A
A A

g e
B

B

0

1

,

0

1

,

where =
γ

e s g s˙ ( )| ( )
e s H s g s

s

( ) ˙ ( ) ( )

( )e g,
. Thus it is reasonable to expect that this condition can be

met by choosing θ and fB properly. The remaining question is, how can this be done in practice?
We provide two strategies for finding fB for any fixed fA such that these errors cancel to leading
order.

3.1. Partially anti-symmetric combination

Our first method chooses the paths fA and fB to satisfy an anti-symmetric condition on the
derivatives at the beginning and end of the evolution. This approach is most useful in cases
where it is desirable for fB to be as similar to fA as possible. When optimizing these paths, it is
important to note that although fA and fB are arbitrary interpolation functions that describe the
adiabatic paths, they are constrained to obey

= =f f(0) (0) 0, (20)A B
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= =f f(1) (1) 1. (21)A B

Furthermore, let us choose fB such that its derivatives are symmetric with fA at s = 0 and anti-
symmetric at s = 1

=

= −
= =

= =

f s f s

f s f s

˙ ( ) ˙ ( ) ,

˙ ( ) ˙ ( ) . (22)

B s A s

B s A s

0 0

1 1

Then using (19), (22) simplifies to

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

θ θ
γ

θ

θ
γ

− =

+

γ ξ ξ

γ ξ ξ

+

+

T T

e g

T

T

e g

cos ( ) sin ( ) ˙ (1) (1)

(1)
cos ( )

e

sin ( )
e

˙ (0) (0)

(0)
. (23)

A B g e A

T

B

T

g e

2 2

,

2
i ( ) d

2
i ( ) d

,

g e
A

A

g e
B

B

0

1

,

0

1

,

Equation (23) can be satisfied for any fA and TA by setting

∫

∫

γ ξ ξ π

γ ξ ξ
=

+ +
T

T n( )d (2 1)

( )d
(24)B

g e
A

A

g e
B

0

1
,

0

1
,

⎛
⎝⎜

⎞
⎠⎟θ =

T

T
arctan . (25)B

A

This solution reduces to that of [32] in the limit as →T 0A ; however, a non-trivial secondary
path will always be needed if the symmetry condition demanded by [32] is not held.

An important consequence of taking the derivatives to be negative at s = 1 is that there
exists ′s such that >f x( ) 1 for all ∈ ′x s( , 1). This is a consequence of the fact that H(s) is
twice differentiable and hence ′fB is continuous, from which the result directly follows from the
mean value theorem. Thus fb does not monotonically approach 1 as →s 1, but rather it
overshoots the value and then reverses direction to end the evolution at s = 1. Such reversals of
direction are analogous to the backwards time steps used in Trotter–Suzuki methods and,
although non-traditional, are not necessarily problematic for adiabatic evolution.

We see from this discussion that controlled adiabatic paths can be used to suppress diabatic
errors in ways that are impossible using traditional adiabatic optimization strategies. In
particular, for any optimization strategy, such as local adiabatic evolution, we can always find a
second path to add to the primary path to suppress a chosen transition to one order higher.
These ideas can also be generalized to suppress more than one transition; however, finding a
closed form solution is difficult in such cases. We discuss generalizing this method to
simultaneously suppress two diabatic transitions in appendix A. A drawback of this approach is
that it cannot be used for arbitrary small times because 24 forces a difference at least

∫
π

γ ξ( )g e0

1
,

between evolution times. We address this issue below by providing a method that does not
require a shift in time, but requires a more substantial deformation to the primary adiabatic path.
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3.2. Completely anti-symmetric combination

An alternative approach is to set the derivatives for the second path to be completely
antisymmetric:

= −

= −
= =

= =

f s f s

f s f s

˙ ( ) ˙ ( )

˙ ( ) ˙ ( ) . (26)

B s A s

B s A s

0 0

1 1

Pluging (26) into (19), we obtain

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠⎟

∫ ∫

θ θ
γ

θ θ

γ

−

= −

×

γ ξ ξ γ ξ ξ+ +

T T

e g

T T

e g

cos ( ) sin ( ) ˙ (1) (1)

(1)

cos ( )
e

sin ( )
e

˙ (0) (0)

(0)
. (27)

A B g e
B

A

T

B

T

g e
B

2 2

,

2
i ( ) d

2
i ( ) d

,

g e
A

A g e
B

B
0

1

,
0

1

,

The error is suppressed when (25) holds and

∫

∫

γ ξ ξ π

γ ξ ξ
=

+
T

T n( ) d 2

( )d
. (28)B

g e
A

A

g e
B

0

1
,

0

1
,

In other words, the gap integrals for both paths must be equivalent modulo π2 . This removes the
difficulty with offsetting one of the times. However, in this case, the path fB both begins and
ends the evolution by moving backwards. Alternatively, we can modify one boundary from
each path. This backwards motion at s = 0 means that there exists δ > 0 such that the range of
fB(s) is within δ δ− +[ , 1 ]. Again, this use of backward evolution is atypical of conventional
approaches to adiabatic evolution where the additional evolution time/speed required by
backwards evolution would tend to be detrimental. In contrast, such backwards evolutions can
lead to substantial reductions in the cost for coherently controlled adiabatic evolution.

3.3. Interpolation

There are many ways that these requirements can be satisfied by a dual path to fA. The way that
we satisfy these requirements is by adding a smooth polynomial continuation of fA about s = 1
that allows the derivative to loop around and attain the opposite value. This interpolation must
have piecewise continuous third derivatives in order to guarantee that the O T(1 )2 terms will
remain sub-dominant in the limit of large T. This naturally leads to a quartic interpolation that
takes the following form for a partially anti-symmetric combination:

⎪

⎧⎨
⎩

Δ

Δ
=

< −

+ + + + ⩾ −
f s

f s s

es ds cs bs a s
( )

( ) 1

1
, (29)B

A

4 3 2

where Δ is a free parameter that controls when fB switches from the original adiabatic path fA to
the polynomial interpolation. The parameters are then set by requiring

10

New J. Phys. 16 (2014) 123034 M Kieferová and N Wiebe



Δ Δ

Δ Δ

Δ Δ

= =
− = −

= −

− = −

− = −

f f

f f

f f

f f

f f

(1) (1) 1

(1 ) (1 )

˙ (1) ˙ (1)

˙ (1 ) ˙ (1 )

¨ (1 ) ¨ (1 ). (30)

B A

B A

B A

B A

B A

We could also equally well have chosen the backwards evolution to start at s = 0 rather than
s = 1. Although seemingly arbitrary, this choice can have a substantial impact on the error
depending on whether the gap is larger at s = 0 and s = 1. We also make use of this fact later in
section 5 where we exploit this fact to suppress every transition simultaneously for
Hamiltonians that satisfy a certain symmetry property.

The case of fully anti-symmetric boundaries is similar, except now two polynomial
interpolations are needed:

⎧
⎨⎪

⎩⎪

Δ Δ

Δ
Δ

=
< < −

+ + + + ⩽
′ + ′ + ′ + ′ + ′ ⩾ −

f s

f s s

es ds cs bs a s

e s d s c s b s a s

( )

( ) 2 1 2

2

1 2

, (31)B

A

4 3 2

4 3 2

where Δ is a free parameter that controls how rapidly fB switches from the original adiabatic
path, fA, to the polynomial interpolation. The parameters are then set by requiring

Δ Δ
Δ Δ

Δ Δ

Δ Δ

Δ Δ

Δ Δ

= =
= =

− = −
=

= −

= −

− = −

=

=

− = −

f f

f f

f f

f f

f f

f f

f f

f f

f f

f f

(0) (0) 0

(1) (1) 1

(1 2) (1 2)

( 2) ( 2)

˙ (1) ˙ (1)

˙ (0) ˙ (0)

˙ (1 2) ˙ (1 2)

˙ ( 2) ˙ ( 2)

¨ ( 2) ¨ ( 2)

¨ (1 2) ¨ (1 2). (32)

B A

B A

B A

B A

B A

B A

B A

B A

B A

B A

In particular, the coefficients in (31) can then be found by substituting (31) into (32).
It then follows that for any fixed path fA, we can choose fB such that the dominant transition

is suppressed to O T(1 )2 . This opens the possibility that our error suppression methods may
allow adiabatic state preparation to be performed using less evolution time (or equivalently,
fewer gates on a quantum computer) than existing methods. However, local adiabatic evolution
is known to be optimal for performing adiabatic Groverʼs search [8, 9], so we cannot expect that
the algorithm will outperform all existing adiabatic algorithms in every time regime. We will
see below that although our method does not outperform local adiabatic evolution for short
times, it can come very close to matching its performance while giving substantially reduced
error for slow evolutions.

11

New J. Phys. 16 (2014) 123034 M Kieferová and N Wiebe



4. Comparison to local adiabatic evolution

We focus our numerical results on the case of adiabatic Groverʼs search. The Hamiltonian for
adiabatic Groverʼs search is

 = − − + + + −⊗ ⊗( )H f s f s f s( ( )) (1 ( )) ( )( 0 0 ), (33)n n

and sufficiently slow evolution of this Hamiltonian causes the initial eigenstate +⊗n to
transition to the marked state 0 as per Groverʼs search. Local adiabatic evolution is known to
be optimal for adiabatic Groverʼs search [8, 9], meaning that the quadratic speedup over
classical algorithms is attained for the adiabatic path.

The path for local adiabatic evolution, for cases where the search space is N-dimensional,
is

⎡⎣ ⎤⎦
=

− − − −

−
( )

f s
N N s

N
( )

1 tan arctan 1 (1 2 )

2 1
. (34)

Our goal is to compare the cost of performing this adiabatic quantum algorithm using local
adiabatic evolution to the cost incurred by using our methods. We choose fA to be the path given
by local adiabatic evolution, whereas fB is taken to be a continuation of the local adiabatic path
that satisfies (22) or (26) in all of the following numerical examples.

There are several ways that the cost of an adiabatic algorithm can be measured. The most
straightforward method is to compare the time required for the evolution. Although this cost
metric is appropriate in cases where the norm of the Hamiltonian is fixed, it is not appropriate
for comparing different adiabatic evolutions because the energy required for both paths may
differ substantially. Since there is a duality between energy and time in quantum mechanics, a
fast evolution that requires a lot of energy may be dynamically equivalent to a slow evolution
that requires little energy. Thus we need to consider not just the time but also the energy. For
this reason, we use the following cost metric for the case where we combine j evolutions (where

⩾j 1 ):

⎧⎨⎩
⎫⎬⎭∫= ∥ ∥H s sT PCost max ( ) d (0), (35)

j
j j

0

1

where P (0) is the success probability of the gadget that is given by (13). Here we implicitly
assume that the cost of the rotations and the control logic is negligible and that each of the
evolutions can be implemented in parallel. These assumptions may not hold in general, but they
are appropriate for quantum computer simulations of such adiabatic evolutions because the
query complexity of such evolutions depends on the maximum evolution time chosen rather
than the total evolution time. This point will be made clear in section 7.

We see in figure 3 that including the second adiabatic path with partially anti-symmetric
boundary conditions (as per section 3.1) to LAE yields comparable performance to LAE for
short evolutions and also provides the improved scaling of boundary cancellation methods in
the adiabatic regime. In particular, the second path follows the interpolation strategy of (29): it
follows LAE (i.e. (34)) until s = 0.8 and then smoothly transitions to a fourth-order polynomial.
Unlike the method of [32], this gives superior scaling over a discrete set of points, although it
does enforce a minimum evolution time, as discussed in section 3.1. An important drawback of
this method is that there is a manifest lack of symmetry in the derivatives in the adiabatic regime
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for this method. This means that the adiabatic interference effects that appear in the LAE and
boundary cancellation paths will not appear here [32]. Note that if the Search Hamiltonian did
not have symmetric derivatives or spectrum, the adiabatic interference effects would not appear
and so they are an artifact of having a highly structured test Hamiltonian.

Figure 4 tells a similar story. In that case we use fully anti-symmetric boundary conditions
and add a second path that interpolates between LAE and polynomial evolution as per (31) with
Δ = 0.2. This also corresponds to evolution under LAE for 80% of the time. The value Δ = 0.2
was chosen arbitrarily and in practice this value could be optimized to further reduce error.
Unlike the case in figure 3, adiabatic interference patterns are again visible in the adiabatic

Figure 3. Diabatic errors for local adiabatic evolution, boundary cancellation with one
zero-derivative on the boundary and linear combination of the local adiabatic evolution
and an evolution with the opposite derivative at the end for the search Hamiltonian
with N = 5.

Figure 4. Diabatic errors for local adiabatic evolution, boundary cancellation with one
zero-derivative on the boundary and linear combination of the two paths that resemble
the local adiabatic evolution for most of the time but have opposite derivatives at the
beginning or the end, respectively, for the search Hamiltonian with N = 5. The inset
shows a zoomed-in view of ∈cost [50,65], which is the region where the linear
combination method provides the strongest benefits over the other two methods.
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regime because the two polynomials used to create the fully anti-symmetric boundary
conditions between the two paths at s = 0 and s = 1 ensure that the derivatives are the same at
the boundary, thereby allowing such interference effects to emerge again; this causes the error
to be substantially reduced on a discrete subset of points, as per [32]. As a consequence, we can
clearly see that our method substantially outperforms both methods for a range of evolutions
with cost ranging from [50, 100], due in part to the presence of adiabatic interference effects
that are absent from the boundary cancellation method.

In both of the cases considered, our methods are less effective at suppressing errors in the
adiabatic regime than boundary cancellation methods. This is because the O T(1 )2 terms in the
error in the adiabatic approximation also depend on H s˙ ( ). Such terms are zero for boundary
cancellation methods and so we generically expect from the triangle inequality that boundary
cancellation will lead to less error in this regime. An important point to note is that although
these test cases do not outperform LAE for fast evolutions or boundary cancellation methods for
slow evolutions, they can outperform both methods for evolutions that operate at an
intermediate speed. This implies that these methods are not just a compromise between the two
approaches: they also provide superior scaling in a region that is badly addressed by existing
adiabatic optimization methods.

5. Suppressing every transition for symmetric H

We now consider suppressing errors for Hamiltonians where H (0) and H (1) have the same
spectra. Although restrictive, this condition is satisfied in many natural problems [3, 8, 32]. This
symmetry is very useful because it guarantees that two adiabatic interpolations exist between H0

and H1 such that the amplitudes for every state orthogonal to g (1) that arise due to fA are
equal and opposite to those that arise under fB. This means that the linear combination will
simultaneously suppress diabatic leakage into every state. In contrast, the methods discussed in
sections 3.1 and 3.2 guarantee this only for a single (but arbitrarily chosen) transition. First let
us assume that the following conditions are met for fA(s) and fB(s)

∫ ∫γ ξ ξ γ ξ ξ=( ) ( )f f( ) d ( ) d (36)
s

g n
A

A

s

g n
B

B
0

,
0

,

γ γ
= −

= =

( ) ( )
( )

( ) ( )
( )

n f s m f s

f s

n f s g f s

f s

˙ ( ) ( )

( )

˙ ( ) ( )

( )
(37)

A A
A

g n
A

A
s

B B
B

g n
B

B
s

,
0

,
0

γ γ
= −

= =

( ) ( )
( )

( ) ( )
( )

n f s m f s

f s

n f s g f s

f s

˙ ( ) ( )

( )

˙ ( ) ( )

( )
(38)

A A
A

g n
A

A
s

B B
B

g n
B

B
s

,
1

,
1

for all states ≠n g . We will see that these conditions can always be met if the spectrum of
H(s) is symmetric about =s 1 2.

Such conditions do not naturally arise for all adiabatic passages but there are many
examples where such Hamiltonians are natural. A natural example is the search Hamiltonian;
however, such an application is trivial because the quantum dynamics occurs within a
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two-dimensional subspace. Other examples occur in adiabatic gates [15, 33, 34] and holonomic
quantum computing [16, 35].

After substituting (36)–(38) into (18), we find

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

∫

∫

ϕ θ
γ γ

θ
γ γ

=
−

−
−

−
−

−
−

+

γ ξ ξ

γ ξ ξ

+

+

( )

n n
n g

T

n g

T

n g

T

n g

T

O T

(1) (1) cos ( )
˙ (1) (1)

i (1)
e

˙ (0) (0)

i (0)

sin ( )
˙ (1) (1)

i (1)
e

˙ (0) (0)

i (0)

1 . (39)

A

g n
A

A

T

A

g n
A

A

A

g n
A

B

T

A

g n
A

B

2
1

,

i ( ) d

,

2

,

i ( ) d

,

2

g n A
A A

g n
A

B

0

1

,

0

1

,

It is then clear that if we take θ π= 4 and TA=TB then every transition will be suppressed from
O T(1 ) to O T(1 )2 under these assumptions.

The question remaining is, when can we make these conditions hold? A natural case that
covers a wide range of adiabatic protocols is the case where the eigenvalue gap is symmetric.
That is to say that γ γ= −s s( ) (1 )g n g n, , for all s and ≠n g. It is difficult to find a second
adiabatic path that satisfies the conditions in section 3.3, for the choice =f f ,A because the anti-
symmetry required by (37), equation (37) necessitates the use of adiabatic paths similar to those
in section 3.2. Such paths will typically violate (36) because including the reversal near s = 0
and s = 1 will change the gap integral.

A better approach is to modify both paths. It is easy to see by substitution that if we let fB
be given by (29) and (30) and then choose fA to be the time reversed version of this path (i.e.

= − −f s f s( ) 1 (1 )A B ) then

= − +

= − + − −

( ) ( )
( )

H f s f s H f s H

f s H f s H

( ) 1 ( ) ( )

(1 ) 1 (1 ) . (40)

A A A

B B

0 1

0 1

The assumption that γ γ= −s s( ) (1 )g n g n, , then directly implies that γ =f s( ( ))g n A, γ −f s( (1 )),g n B,

which gives us the desired result of

∫ ∫γ γ=( ) ( )f s s f s s( ) d ( ) d . (41)g n B g n A
0

1

,
0

1

,

This fact becomes immediately obvious in light of figure 5, where the spectrum for a Search
Hamiltonian with fA and fB chosen to be time reverses of each other is given. After substituting
(41) into (39) and using the assumption that γ γ=(1) (0),g n g n, , we see that

ϕ = ( )n n O T(1) (1) 1 . (42)2

Thus for any adiabatic path parameterized by f(s) and any evolution time T, we can always
choose two paths fA and fB that both incur diabatic errors that cancel to O T(1 )2 . This fact is
demonstrated numerically for a Hamiltonian that satisfies these requirements in figure 6. In
contrast, without these assumptions, only the dominant transition is suppressed to O T(1 )2

which implies that the diabatic errors scale as O T(1 ) for sufficiently long evolutions.
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This result is much stronger than that of [32], which leads to suppression of all diabatic
errors only if the gap integrals for each transition are rational multiples of each other and, even
then, will only work at specially chosen values of T. This precludes the techniqueʼs use for
almost all Hamiltonians. In contrast, coherent control of the adiabatic path allows all of the
transitions to be suppressed for a wide class of adiabatic protocols and this result holds for any
T. This clearly demonstrates that coherently controlled adiabatic evolution allows us to
circumvent the limitations of existing adiabatic optimization schemes. We will also see this
below, where we show that these methods can be used in concert with boundary cancellation
methods.

6. Incorporating boundary cancellation

In principle, our approach for improving the scaling of adiabatic evolution can be improved
from O T(1 )2 to O T(1 )3 or higher by interfering more adiabatic paths. A challenge facing this

Figure 5. A symmetric pair of Hamiltonians with equal gap integrals and opposite
derivatives at the begining and at the end. The same intuition formalized in (37) works
for an arbitrary number of transitions.

Figure 6. Diabatic errors for  σ σ π= + + ⊗H s s( ) sin ( )z z
(1) (2) where  is the

Hadamard operator, for H(s) directly and also for the case where the adiabatic paths are
chosen as per (37) and (38) with Δ = 0.1 for the linear combination.
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approach is that the expression for the error in the adiabatic approximation becomes much more
complex as we transition from first to second order in powers of T1 . As noted in [10, 13], these
expressions become much simpler if we take several of the derivatives to be zero at s = 0 and
s = 1. Here we use this simplification to show that our strategy can be used in concert with
boundary cancellation methods. This allows the error scaling to be improved by one order
without increasing the number of zero derivatives on the boundary. This is important because
the time needed for the system to transition to the adiabatic regime increases with the number of
derivatives that are set to zero at s = 0 and s = 1.

If the first m derivatives of H(s) are set to zero on the boundary then the remaining error in
the adiabatic approximation is [32]:

⎜ ⎟⎛
⎝

⎞
⎠



∑ ∫
∫

γ

−

=
∂

−

× +

ξ ξ
γ ξ ξ

≠

−
+

+ +

=

+

( )

g g U g s

n s H s g s

s T

n O
T

( (1) (1) ) (1, 0) ( )

e
( ) ( ) ( ) e

i ( )

(1)
1

(43)

n g

E T s
m T

g n
m m

s

m

i ( ) d
1 i ( )d

,
2 1

0

1

2

n

s

g n

0

1 0
,

This expression is analogous to (9), as can be seen by substituting

γ
→

∂

→

+

+

+

( )
n s m s

n s H s m s

s

T T

˙ ( ) ( )
( ) ( ) ( )

( )
,

(44)

s
m

g n
m

m

1

,
1

1

into (9). Equation (43) implicitly assumes that =n s n s˙ ( )| ( ) 0, which can always be assumed
to be true because the phases of n s( ) are arbitrary. All of the previous methods can then be
used after making these substitutions and using a higher-order polynomial to perform the
interpolation.

For example, we can generalize the method of section 5 with the following modification to
the conditions required for both fA and fB:

Δ Δ

Δ Δ

= −

= −

= ∀ ∈ +

− = − ∀ ∈ +

= ∀ ∈

+ +

+ +

f f

f f

f f j m

f f j m

f j m

(0) (0)

(1) (1)

( ) ( ) [0, 2]

(1 ) (1 ) [0, 2]

(1) 0 (0, ], (45)

B
m

A
m

B
m

A
m

B
j

A
j

B
j

A
j

B
j

( 1) ( 1)

( 1) ( 1)

( ) ( )

( ) ( )

( )

and picking TA= TB with θ π= 4. This enables exponentially accurate adiabatic approxima-
tions if m is chosen as a function of T.

Alternatively, cancellation of the leading order transition to +O T(1 )m 1 can be obtained by
using the exact same ideas within the methods of sections 3.1 and 3.2 after using the
substitutions in (44) and conditions similar to (45) for the polynomial interpolations. It should
also be noted that in systems where the adiabatically transported subspace is a one- or
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two-dimensional subspace, such approaches also can be used to make the overall error scaling
+O T(1 )m 1 . This raises the possibility that controlled adiabatic evolution can be combined with

boundary cancellation methods to substantially reduce the cost of performing a high-accuracy
adiabatic state preparation.

7. Costing controlled adiabatic evolutions

There are two types of costly resources in coherently controlled adiabatic evolutions. The first is
the cost of evolving the adiabatic register, denoted ψ in figure 1. The second is the cost of
performing the required rotations on the control register. In this section we will provide a
complete cost analysis of this model under the assumption that it is being simulated using a
circuit-based quantum computer that is further equipped with oracles that compute the
necessary properties of the Hamiltonian. We will then conclude that a coherently controlled
adiabatic using sparse, row-computable Hamiltonian evolution is polynomially equivalent to
the circuit model. Other appropriate cost models, such as bounding the energy and time required
to implement the controlled Hamiltonians using k-local Hamiltonians, will not be discussed
here. Since we show that coherently controlled adiabatic evolution is polynomially equivalent
to the circuit model, it will immediately follow that it is also polynomially equivalent to
adiabatic quantum computation using local Hamiltonians.

The first important result that we need to show this is an upper bound on the number of
oracle queries needed to simulate a time-dependent Hamiltonian within fixed error on a
quantum computer. We will use this result to upper-bound the query complexity of performing
the controlled adiabatic evolutions. In order to understand the theorem, we will define a
smoothness classification for Hamiltonians:

Definition 1. The set of operators =H j m{ : 1 ,..., }j is Λ − p-smooth on  ⊆ if

Λ ⩾ ∑ ∂=
+( )H t( )j

m
t
p

j
p

1

1 ( 1)
, for all ∈t and ∈ ⋯p P{0, 1, , }.

Now with definition 1 we can state the following corollary, which gives the query
complexity of the simulaton algorithm. The number of one-and two-qubits needed for the
simulation is at most proportional to the number of queries made.

Corollary 1. (Cor. 6 of [36]) Let   μ↦ = …μ
×H M{ : ; 1, , }2 2n n

be a set of time-dependent
Hermitian operators that is Λ − k2 -smooth on  Δ= + ⧹ …t t t t t( , ) { , , }L0 0 1 , where

Δ< < ⋯ < < +t t t t tL0 1 0 , with the additional conditions

1. ∃ ∈ ⩾ ∥ ∥Δ∈ +H H H t: max ( )t t t tmax max [ , ]0 0
,

2. ϵ ΛΔ< ⩽ − t0 min {1, 27(5 3) d }k 1 2 ,

3. NT satisfies ⎜ ⎟
⎡
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎥⎥

⩾ Δ
ϵ

∥∂ ∥μ μ∈
−

N logT
H t kMd t

2
( max ( ) )(32 )(5 3)t t

k
,

2 1 2

,

4. nH satisfies
⎡
⎢⎢

⎤
⎥⎥⩾ +ΛΔ

ϵ

−( )n 2 log 6H
kMd t

2
32 (5 3)k2 1

and
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5. Δ < −= … +t t t2 min ( )N
ℓ L ℓ ℓ0, , 1

T with Δ= ++t t t:L 1 0 , where NT is the number of bits used
to represent t and nH is the number of qubits used to encode the matrix elements of H. Then
the query complexity for simulating evolution generated by = ∑μ μ μ μH t T H t T( ) ( )† , for a
fixed set of unitary basis changing operators μT , within an error of ϵ using time-ordered

Trotter–Suzuki formulas with error Δ +O t( )k2 1 is

⎜ ⎟
⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
⎥ΛΔ ΛΔ

ϵ
⩽ + +−N CMd L kd t

d t
12 5 ( 1) 24

5
3

6
( 3)

, (46)k
k k

queries
2 1 2

2 1 2

where C is the number of oracle calls needed to simulate a one-sparse Hamiltonian, and the
number of basis change operations is at most N Cd(3 )queries

2 .

Note that we need to use a result for simulating piecewise smooth Hamiltonians because
the interpolations used in our method will typically cause H f s( ( ))j to be non-analytic at either
one or two points. The result of corollary 1 is then useful because it provides the cost of
performing such a simulation despite such complications. Note that in the cases we consider
L = 1 for partially anti-symmetric boundary conditions and L = 2 for completely anti-symmetric
boundary conditions. Also, for simplicity, we cite a method that does not use adaptively chosen
timesteps. Such adaptive methods are given in [36] and lead to similar scaling where Λ is
replaced by the time average of the instantaneous values of Λ.

There are two types of oracles that are required by this corollary. First, an oracle is required
that outputs the location of the jth non-zero matrix element in a given row, where ⩽j d if H is
d-sparse.

→O j i i L i( ) : 0 ( ) (47)j1

where Lj(i) gives the jth non-zero element in row i. We cost a single query to O1 as n queries to
a single qubit oracle because each query to this oracle yields n bits, and it is more realistic to
cost the algorithm by the number of qubits output if the dimension of the Hilbert space is large.
The corollary also requires an oracle for matrix elements of H(s)

→O i k s i k s H s: 0 ( ) . (48)i k2 ,

We also use (for convenience) a new oracle, Of, whose role is to prepare a quantum state
encoding the particular value of fA(s) or fB(s) that is needed in a given timestep. In general, if we
wish to find the value of fp(s) we use the oracle in the following way:

=O s p j f s( ) 0 ( ) . (49)f p

This oracle is crucial to our approach because it allows us to remove the multiple controls used
in figure 1. For example,

∑∑
= =

O O O s b a p x( ) 0 0 0f

p

N

x

p j2 1

1 1

2n
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∑∑=
= =

( )b a p x L x f s H f s( ) ( ) ( ) . (50)
p

N

x

p j ℓ p p
x L x i

1 1

2

, ( , )

n

Our cost analysis of the controlled adiabatic evolution follows by converting the controlled
evolution in figure 1 into the evolution of a single larger Hamiltonian. This larger Hamiltonian
can then be simulated by conventional means (such as a Trotter–Suzuki decomposition as per
corollary 1).

Theorem 2. Assume that we wish to simulate a coherently controlled adiabatic evolution that

uses the controlled evolutions  …∫ ∫− −{ e , , e }H f s T H f s Ti ( ( )) i ( ( ))p p0

1
1 1 0

1

such that H(s) is a
Hamiltonian satisfying Γ∥ ′ ∥ ⩽H s( ) and each H f( )j is Λ – k2 -smooth and all remaining
assumptions of corollary 1 are held for Δ =t Tmax j j. The query complexity of performing the
simulation within error at most ϵ using kth-order time-ordered Trotter–Suzuki formulas and
oracles that yield one bit per query obeys

⎜ ⎟
⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥
⎥Λ

Λ
ϵ

⩽ + +−N CMd L kd T
d T

12 5 ( 1) 24 max
5
3

6 max

( 6)
, (51)k

j j

k
j j

k

queries
2 1 2

2 1 2

where

⎡
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎥⎥

Γ
ϵ

⩽ + + +( )C n z n
T

4 2 3 2 log
6 max

, (52)n H
j j

2

zn is the number of times that ⎡⎢ ⎤⎥↦n n2 log2 must be iterated before achieving a value that is

less than or equal to 6 and ⎡⎢ ⎤⎥Γ⩽N log ( )f s( ) 2 .

Proof. To see this, note that the controlled unitary evolutions in figure 1 produce a time-
evolution operator of the following block-diagonal form:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⋯
⋮ ⋱ ⋮

⋯
× ⋯ ×

⋯
⋮ ⋱ ⋮

⋯
=

⋯
⋮ ⋱ ⋮

⋯

U

U

U

U

0

0

0

0

0

0
,

p p

1 1

where …U U, , p1 are the p controlled adiabatic evolutions. By expanding out the unitaries as
time-ordered operator exponentials, we see that the ideal time evolution operator is of the form

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
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



∫

∫

⋯
⋮ ⋱ ⋮

⋯
=

⋯
⋮ ⋱ ⋮

⋯

−

− ( )

( )U

U

0

0

e 0

0 e

. (53)
p

H f s sT

H f s sT

1 i ( ) d

i ( ) dp p

0

1

1 1

0

1

Consider the Hamiltonian = ∑ ⊗H j j Hj j. It is easy to see using Taylor expansion
and the fact that each of the terms in H commute that
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Here ⊕ represents the direct sum operation. Thus we have that
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⎢
⎢
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Now let = ∑ ⊗s j j H sH( ) ( )j j . It then follows from the definition of the ordered-
operator exponential and the block-diagonal structure of (55) that

⎡

⎣
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⎦
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r j
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H j r T r
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H s sT

i ( )d
1

i ( )

i ( )

i ( )d

i ( )d

p
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0

1
1

0

1

1

0

1

It then follows that the controlled evolutions in (53) can be expressed as a simulation of a single
time-dependent Hamiltonian by taking →H s H f s T T( ) ( ( ))j j j in (56). For simplicity, let us
take =T Tmax j j.

Next we need to find the properties of the dilated Hamiltonian H(s) that describes the
controlled evolutions in the controlled adiabatic evolution. Firstly, assuming each Hj is the sum
of M Hamiltonians that can be efficiently transformed into d-sparse matrices, it follows that H
can be expressed as a similar sum. Similarly, since = ∑ ⊗H s j j H f s T T( ) ( ( ))j j j , it
follows from the fact that sH( ) has a direct product structure and the assumption that each
H f s( ( ))j is Λ – k2 -smooth that for any non-negative integer ⩽q k2

Λ∥∂ ∥ = ∥∂ ∥ ⩽ +( )s f s
T

T
H( ) max ( ) . (57)s

q

j
s
H

j

j q 1

Hence, for =T Tmax j j, H(s) is at most Λ − k2 -smooth.
We then have from (46) that the cost of simulating the effective Hamiltonian sH( ) using

kth-order Trotter–Suzuki formulas is at most
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( 3)
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k

j
j

k
j

j
k

queries
2 1

2

2 1 2

The remaining issue is the calculation of C. In order to compute C we need to first show
that we can simulate a query to the Hamiltonian oracles for H using those for H. We specifically
require two oracles: one that computes the locations of the ith (potentially) non-zero matrix
element in any row of H and another that evaluates that matrix element at a fixed value of s.

The oracle for finding the column index for a specified element in row x of H can be
constructed as follows. The oracle O1 has the property that

O q x y q( ) ( ) , (59)1

where y(q) is the column index of the qth element in row x. Then for any j we can construct the
corresponding oracle by exploiting the block diagonal structure of H via

= + − =q j x j x y q j j x j y qO ( ) 0 ( ) 2 ( 1) ( ) . (60)n
1

The oracle qO ( )1 can therefore be enacted using one query to O1 and a polynomial size
arithmetic circuit.

The second oracle qO ( )2 gives for a specific value of s that is specified, the value of H(s).
Specifically, after taking into account the block diagonal structure of H, we need the oracle to
be of the form

⎡⎣ ⎤⎦= ( )j x y s j x y H f sO 0 ( ) . (61)j
x y

2
,

This oracle can be implemented using one query to Of and one query to O2.
In [36], it is assumed that the time is provided to the oracles via classical control. Here, we

assume that the time is provided via a quantum register so we must add the cost of preparing
this register to the cost, C, of simulating a one-sparse matrix. Lemma 9 of [36] gives us that the
query complexity (costed at 1/per bit of output yielded by O1 and O2) is

⩽ + +( )C n z n4 2 3 . (62)n H

For each one-sparse Hamiltonian that appears in the Trotter–Suzuki decomposition, the time
register must be initialized once [36]. This causes an additional source of error and if we are to
fit it within our error budget, we must reduce the error in other parts of the simulation algorithm.
There are three sources of error in the simulation algorithm: Trotter–Suzuki error, error due to
finite nH and error due to finite nT (we have neglected errors in synthesizing single qubit
operations etc). Each of these three sources of error is chosen to be at most ϵ 3 in [36].
Therefore, if we reduce the error tolerance in the Trotter–Suzuki approximation to ϵ 6 and allow
an error tolerance of ϵ 6 for approximating fj(s) then the overall error will remain at most ϵ.
Thus the overall complexity becomes
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. (63)k

j
j

k
j

j
k

queries
2 1 2

2 1 2

The error in −e s THi ( ) is at most Δ∥ ∥s TH( ) [37], where Δ sH( ) is the error in implementing
the Hamiltonian. By Taylorʼs theorem this is at most Γ Δf s Tmax | ( )| maxj j j j, where Δf s( )j is
the error incurred by approximating fj(s) to a finite number of digits. Let us define the number of
digits used to express fj as n fj

. Then the error in fj is Δ ⩽ −f 2j
n f j. Hence it suffices to choose

Γ ϵ=− T2 max 6. (64)n

j
j

f j

Thus since we have to both compute the value of fj(s) to n fj
bits of precision using queries to O2

and then uncompute it, equations (64) and (62) give

⎡
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎥⎥

Γ
ϵ

⩽ + + +( )C n z n
T

4 2 3 2 log
6 max

, (65)n H
j j

2

as claimed. □
We therefore see from theorem 2 that this model of adiabatic computation can be

efficiently simulated using the posited oracles under reasonable smoothness assumptions. This
naturally leads to the following corollary:

Corollary 3. Let = …f s j p( ): 1, ,j efficiently computable functions, = ∑μ μ μ μ=H s T H s T( ) ( )M
1

†

where each μH f s( ( ))j is a d-sparse row-computable matrix for all s and ∈p O n(poly( )). If the
conditions of theorem 2 are satisfied for the adiabatic paths …f f{ , , }p1 then controlled
adiabatic evolution under …H f s H f s{ ( ( )), , ( ( ))}p1 is polynomially equivalent to both the
circuit model and in turn adiabatic quantum computation.

Proof. We know that a circuit simulation of the controlled adiabatic evolution is efficient under
the assumptions of theorem 2 given access to the oracles O1, O2 and Of. If H(s) is row
computable, then it implies that there exist efficient algorithms to find the locations and values
of each non-zero matrix element of H(s). Thus O1 and O2 can be implemented efficiently by the
definition of row computability.

Of can be efficiently computed for each j by assumption, and hence for any fixed j and s the
state 〉f s| ( )j can be prepared efficiently. Furthermore, because ∈p O n(poly( )), it follows that

the state ∑ 〉= a j f s| ( )j
p

j j1 can be efficiently prepared. Thus Of can be efficiently simulated in
the circuit model as well. This implies that quantum computers can efficiently simulate this
class of coherently controlled adiabatic evolutions.

Local Hamiltonians are a subset of d-sparse Hamiltonians. Therefore the class of adiabatic
evolutions considered includes a set of Hamiltonians that generate a family of evolutions that
are polynomially equivalent to the circuit model [38]. Thus if we ignore the control register,
then the controlled adiabatic evolution can be reduced to a universal adiabatic quantum
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computer. Thus our model of computation is polynomially equivalent to both the circuit model
and adiabatic quantum computation. □

We now see that controlled adiabatic quantum computation using piecewise smooth,
sparse, bounded, row-computable Hamiltonians is not an exponentially more powerful model of
computation than traditional adiabatic computation. Apart from showing that this is a
reasonable model of quantum computation, it also shows that the maximum evolution time used
is a reasonable metric for the cost of the evolution (once made dimensionless by multiplying by
a characteristic energy of the system). For most of the adiabatic paths considered, the
contribution of the derivatives of the Hamiltonian to Λ is negligible and thus in practice it
suffices to ignore their contributions. Also, because this algorithm scales near-linearly with the
evolution time, this analysis clearly shows that our model can only potentially provide sub-
polynomial speedups over circuit-based quantum computation for fixed d and M.

8. Error robustness

Our methods improve the performance of adiabatic state preparation by utilizing knowledge
about the Hamiltonian. Such knowledge is never perfect, in practice, because of noise and
experimental imperfections. The question remains whether coherently controlled adiabatic
evolutions inherit the robustness of traditional adiabatic approaches or if the extra knowledge
the approach requires causes them to be innately more fragile. For simplicity, we restrict our
attention to adiabatic dynamics controlled with one qubit. The generalization to many qubits is
straightforward.

Let us first consider errors in the Hamiltonians HA and HB applied to the adiabatic register.
The effective undisturbed time evolution operator for the system (after absorbing the individual
evolution times TA and TB into the Hamiltonians) is

 

∫ ∫

∫=

− ⊗ − ⊗

− ⊗ + ⊗

e e

e . (66)

H s sT H s sT

H s H s sT

i 0 0 ( )d i 1 1 ( )d

i 0 0 ( ) 1 1 ( )d

A B

A B

0

1

0

1

0

1

Thus the system evolution can be described by a single time-dependent Hamiltonian with
eigenvalue gap Γ γ γ= ν ν νs s: min { ( ), ( )}s g

A
g

B
, , , . In particular, let us assume that a perturbation

Hamiltonian λHP is added to the effective Hamiltonian, where = ⊗ +H H0 0P
P

0

⊗ H1 1 P
1 . We take this form to ensure that the imperfection on the adiabatic register

does not modify the state of the control register. As the total effective system is gapped, we
anticipate that the resultant adiabatic evolution will be robust to these errors if the magnitude of
the perturbation is small relative to Γ .

Our intuition can be validated using perturbation theory to leading order. The shift in the
instantaneous eigenvalues for the Hamiltonian is

Δ λ ν ν λ λ λ= − ⩽ ∥ ∥ +ν ( )E s s H s s g s H s g s H s O( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) . (67)g P P P,
2
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Similarly, the shift in the instantaneous eigenvector g s( ) is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑λ

ν
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ν
γ
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+

+

ν ν ν≠

( )

s H s g s

s

s H s g s

s
s

O

0 ( ) ( ) 0 ( )

( )
0

0 ( ) ( ) 1 ( )

( )
1 ( )

. (68)

g

P

g
A

P

g
B

, ,

2

Equation (68) implies that, for fixed dimension, the error in the final state will be small if
λ Γ∥ ∥ ≪H smax ( )s

P . This suggests that the gap protects the ground state against this sort of
noise exactly in the same manner as in traditional adiabatic evolution. On the other hand, the
gap provides no corresponding protection against the shifts in the phase that HP incurs. We see
from (67) that such phases have a negligible impact if

∫λ ∥ ∥ ≪H s sT( ) d 1. (69)P

0

1

Thus controlled adiabatic evolution will function well under such imperfections if λ≪T 1 .
This suggests that these errors impose a time cutoff, after which the errors in the phases in the
two adiabatic paths differ enough for phase cancellation to fail. In such cases, the system will
tend to revert to performance that is comparable to uncontrolled adiabatic evolution because
(68) shows that the ground state will still be protected against such noise by the gap. This
behavior is illustrated in figure 7.

Another way to look at this is to ask the question of how much control is needed in order to
guarantee a particular magnitude of error given a fixed evolution time. To ensure that errors in
the Hamiltonian do not degrade the asymptotic scaling of coherently controlled adiabatic
evolution, λ must be of order ( )O

T

1 . We find a similar bound if we do not assume that HP has a

direct sum structure i.e. ≠ ⊗ + ⊗H H H0 0 1 1P
P P

0 1 using results from [37].
Timing errors are also an important contributor to the errors in controlled adiabatic

evolutions such as these . Suppose that TA and TB are shifted by ΔA and ΔB respectively from

Figure 7. Probability of diabatic error for a search Hamiltonian with fully symmetric
boundary conditions given 0.1% error in the gap integral. The data shows that the mean
of the distribution of errors begins to approach the O T(1 ) scaling predicted for
uncontrolled adiabatic evolutions as time increases and the error remains constant.
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the values that satisfy (19). Similarly as for an eigenvalue shift, imperfect timing will cause
dephasing errors between the evolutions. Expanding (18) in powers of ΔA and ΔB, we find that

the timing errors are of order ( )O
T

1
2

when Δ Δ ∈ ( )O,a B T

1 .
Finally there is the issue of state preparation errors for the control register. In order to ensure that

the overall diabatic error isO ( )
T

1
2 , it suffices to ensure that the state preparation error is at mostO ( )

T

1 .

This is because the error for each of the individual adiabatic paths is already O ( )
T

1 , which means that

O ( )
T

1 errors in the operations on the control register result in errors ofO ( )
T

1
2 in the ground state. This

means that the control accuracy needed in order to achieve this improved scaling is modest.
These results show that our ideas will work well for performing adiabatic state preparation

on a quantum computer as well as for sufficiently short evolutions on a controlled adiabatic
device even under certain imperfections. Such results are not surprising, as our techniques
exploit knowledge about the dynamics to gain an advantage over traditional approaches. We
find, however, that the method is as robust to noise as the result of [32], which does not use
controlled adiabatic evolution. This shows that the level of control needed does not preclude the
use of this approach in non-fault-tolerant applications. It is also interesting to note that these
dephasing errors in the instantaneous eigenbasis of the Hamiltonian can actually be corrected by
using the control registers to add an appropriate phase to one of the computational braches,
whereas such errors can only be corrected by changing the evolution time in [32].

9. Conclusion

Our work shows that traditional approaches to adiabatic state preparation or quantum
computing that only utilize classical control over the adiabatic subsystem are unnecessarily
restrictive. In particular, we show that much greater control over the adiabatic process can be
achieved by relaxing these conditions to allow an adiabatic system to perform coherent control
of a polynomially large number of adiabatic evolutions. Furthermore, by introducing
measurements on these registers we gain the ability to apply non-unitary operations on the
system. This is significant because it not only allows dissipative dynamics to be naturally
included into the state preparation process but also allows post-selection and feedback to be
used to generate gates that would be otherwise difficult to engineer. Although this approach
requires more complex control, it retains what is perhaps the most significant feature of
adiabatic state preparation algorithms: protection against certain types of noise by the spectral
gap. Also, the small control register may require far less quantum error correction than would be
required to construct a circuit-based quantum computer that could simulate the entire protocol.

Apart from providing a richer paradigm for performing state preparation, we show that
coherently controlled adiabatic evolution can provide performance advantages over existing
adiabatic strategies for state preparation. Specifically, it allows us to combine the best features
of local adiabatic evolution and boundary cancellation methods, which are two optimization
strategies that are traditionally at odds with each other. These combined strategies provide better
error scaling than any known adiabatic optimization technique for evolution times that are close
to the transition between the Landau–Zener regime and the adiabatic regime. We have also
shown that using controlled adiabatic evolutions to prepare initial states is also robust to errors.
This means that the technique can be realistically applied in state preparation problems outside
of quantum computation. We finally provide an explicit quantum simulation algorithm for
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simulating our protocol, and in turn traditional adiabatic algorithms, that explicitly gives the
cost of simulating the controlled adiabatic evolution using a quantum computer and find that
this cost scales near-linearly in the evolution time.

There are several natural applications of our method to quantum computing. First, adiabatic
state preparation is widely used in quantum chemistry simulation algorithms to prepare an
approximation to the ground state of the molecule in cases where naïve approximations, such as
the Hartree–Fock approximation, fail [4]. Traditional circuit synthesis methods for preparing the
FCI groundstate do not apply in such cases because the ground state is not known a priori. Thus
adiabatic state preparation provides one of the few known methods that can provide states that
have high fidelity with the FCI ground state, which is needed to simulate chemically important
expectation values such as dipole moments. Controlled adiabatic evolution may substantially
accelerate the preparation of high-fidelity simulation of such quantities.

Another application of our methods involves simulating quantum field theories. Adiabatic
evolution is used as an important step in the algorithm for simulating ϕ4 theories by Jordan, Lee
and Preskill [39]. A key step in their method is to use adiabatic evolution to transform the basis
from that of the free theory to the interacting theory to enable state preparation and
measurement. The number of operations needed to simulate the adiabatic evolution is a major
contribution to the complexity of the algorithm and so methods like ours could lead to
substantially improved methods for simulating field theories.

These results only begin to scratch the surface of what is possible within this paradigm. First,
apart from suppressing diabatic errors, our approach removes several important restrictions that
make developing computationally useful adiabatic algorithms challenging. In particular, the use of
measurement and coherent control provides an important generalization beyond the approach of
[40], which used transitions between the ground state and the excited states to enable an
exponential speedup that is not known to be achievable within the standard adiabatic paradigm.
Second, our approach explicitly uses linear combinations of unitary operations that are nearly
unitary. This raises an interesting question of whether truly non-unitary processes will be of use in
optimizing adiabatic passage. Progress towards this goal has already been reported in [41]. Also,
techniques similar to ours may be of value in phase randomization protocols similar to [42].
Ultimately, these ideas may even lead to more natural ways of performing error correction or
suppression in a coherently controlled adiabatic quantum computer. These are just a few examples
of the many avenues of research that are opened by this work.
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Appendix A. Suppressing both transitions in a three level system

The approaches used to cancel the first-order transitions for a two-level system can be
generalized for larger systems as well. In a case of a three-level system, we must ensure that

27

New J. Phys. 16 (2014) 123034 M Kieferová and N Wiebe



transitions to both the first and second excited states are O T(1 ). This occurs if the following
conditions are met:
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where the the first evolution corresponds to a Hamiltonian H f s( ( ))A and the second one to
H f s( ( ))B with its states denoted by primes, parameterizing the Hamiltonian with a single
function as in the last paragraph. Moreover, we assume that H f s( ( ))A and H f s( ( ))B are equal
at the beginning and the end of evolution (but their derivatives with respect to s differ).

It is straightforward to cancel transitions at certain (discrete) times using our knowledge
from the 2-level case when we realize

= =e g e f s H g˙ (0) (0) (0) ˙ ( ) (0) (A.3)s1 1 0 1

= =e g e f s H g˙ (0) (0) (0) ˙ ( ) (0) (A.4)s2 2 0 1

= − =e g e f s H g˙ (1) (1) (1) ˙ ( ) (1) (A.5)s1 1 1 0

= − =e g e f s H g˙ (1) (1) (1) ˙ ( ) (1) . (A.6)s2 2 1 0

Hence, by choosing f s( )A and f s( )B as in section 3.1 and using (25), we get rid of terms
containing derivatives at the end for both levels. This approach trivially generalizes to higher-
dimensional systems.

Now we need to fix TA and TB in order to remove the contributions from the boundary by
requiring that evolutions gain opposite phases. We can rewrite already simplified (A.1), (A.2) as
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(A.7)
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This system of equation has a solution, unless the determinant of the matrix equals zero. Note
that with this approach we get only a discrete set of times TA and TB for which the error
vanishes, in contrast to many of our prior methods.

Error suppression can also be achieved for arbitrary time if we use more than two
evolutions. A 2-level inspired solution uses 4 unitaries, UA, UB, UC and UD, where UA and UC

are given by Hamiltonian H f s( ( ))A and UB and UD by H f s( ( ))B . We pick the functions
f f,A B based on section 3.1. The goal is then to find times TA–TD and weights a–d such that the
following equations are satisfied:
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First, the normalization condition

+ + + =a b c d 1 (A.10)

must hold. Second, we choose b and TB such that they cancel the error on the first level from
evolution by UA. This is exactly the same problem we solved for a 2-level system, hence the
proper b and TB are
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The same can be done for UC and UD:
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=d
cT

T
. (A.14)D

C

This suppresses the first transition out of g (typically the transition to the first excited state) to
O T(1 )2 . In addition, the errrors from the derivatives at the end on the second excited state
cancel as well.

Finally, we are left with
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Therefore we can set the value of TC and ratio of a and c and we are still free to choose arbitrary
TA. After some algebra we can rewrite (A.15)
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We can ensure that both sides of the equation pick the same phases (up to πk2 ) by setting TC
and then we only need a value of k for which the cosines would have the same sign. That is
possible, unless
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∫ ∫
∫

∫
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This procedure can also be used to find paths that cancel multiple transitions in higher-
dimensional systems, but a closed form may not necessarily exist, unlike the present case.
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