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Abstract. Exploiting the mapping between a binary mixture and the Ising model we have 

analyzed the critical fluctuations by means of the density-matrix renormalization group 

technique. The calculations have been carried out for a two-dimensional  Ising strip  subject 

to equally strong surface fields. It was found that the critical Casimir force has significantly 

different behavior on opposite sides of the capillary condensation line, especially below the 

critical temperature. It can be concluded that in real binary mixtures the most attractive 

force appears at temperatures near �
�
 and at reservoir compositions slightly away from 

the critical composition. 
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Introduction 

The confinement of long-ranged critical fluctuations in the vicinity of second- 

order phase transition in a binary mixture generates effective forces arising between  

confining surfaces, known in the literature as critical Casimir forces [1-4]. They 

acquire universal features upon approaching a critical point of the medium and 

become long ranged at criticality. Moreover, such forces can also act among particles 

immersed in a critical mixture [5]. This is realized in binary liquid mixtures close to 

their critical point �� which belong to the universality class of the Ising model [6-9]. 

Figure 1 presents the phase diagram of a binary mixture representing two-

component liquid where the components are denoted by A and B. There is one 

mixed state above the critical temperature �� and two coexisting phases below ��  
which are separated into A-rich phase and B-rich phase. The metastable states have 

not been presented in Figure 1. The deviation of the difference of the chemical 

potentials of the two components of the mixture from the value at criticality corre-

sponds to the bulk magnetic field of the Ising model. The surface field corresponds 

to the overall preference of a surface for one of the two phases (component A rich 

or component B rich). 

Another surface effect, becoming increasingly important when the size of 

system is decreased, is the capillary condensation. Its essence lies in the shift 



M. Zubaszewska, A. Gendiar, T. Masłowski 178

of the phase coexistence line to a finite value of the bulk magnetic field ��(�; �) as 
the combined effect of identical boundary fields and confinement. For short-range 

boundary fields this line scales for large �, according to the Kelvin equation as ����; ��~1/� [10]. This phenomenon is analogous to the capillary condensation 

for one-component fluid confined between parallel surfaces, where the gas-liquid 

transition occurs at a lower pressure than in the bulk. 

In the present paper the critical Casimir force as a function of temperature 

and the bulk field is studied for the two-dimensional Ising model. We assume 

that boundaries of the strip are equal and belong to the so-called normal transition 

surface universality class (+,+)	[11], which is characterized by a strong effective 

surface field acting on the corresponding order parameter of a system. Normal 

transition surface universality class is an appropriate characterization of a critical 

binary mixture in the presence of an external wall. For these systems the critical 

Casimir force is expected to be attractive for all thermodynamic states [1-5]. 

Our goal is to determine the dependence of critical Casimir force on the bulk 

field and temperature. We are interested in such a range of parameters where 

the properties of the confined fluid near bulk criticality are particularly rich because 

of the combined effects of finite-size and specific wall-fluid interactions. Hence, 

we would like to assign a range of thermodynamic parameters for which the force 

is the most attractive. 
 

 

Fig. 1. Schematic phase diagram of a binary mixture of liquids A and B with an upper 

critical point represented by the dot mark. �� denotes the concentration of the liquid A 

while ��,� is its critical concentration. According to our results, the darker the interior 

shading, the more attractive the Casimir force becomes. The concentration of the liquid B 

is equal to 1 − �� 

1. Model 

We consider a two-dimensional Ising model on the square lattice in a slit geo- 

metry �	 × 	� subject to identical boundary fields. The energy for a configuration 

{�} of spins is given by the Hamiltonian: 
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with 	 > 0 and ��,� = ±1, where (�, �) labels the site of the lattice. The first sum is 

over nearest neighbors, while the second sum is performed over spins at the both 

surfaces. We are interested in the limit � → ∞ with finite �. Bulk and surface 

fields are measured in the units of the coupling constant J and the distances are 

measured in units of the lattice constant. 

2. Method 

In order to calculate the free energy of a system, we use the density-matrix 

renormalization-group method (DMRG) originally introduced to study ground-state 

properties of quantum-spin chains [12-14]. In spite of the name, the method has 

only some analogies with the traditional renormalization group, being essentially 

the numerical, iterative basis, truncation method. 
 

 

Fig. 2. The critical Casimir force as a function of the bulk field and temperature. The 

solid line represents the capillary condensation line ��(�;� = 301). The thick cross 

symbol represents the bulk criticality at ℎ = 0 and � = �� ≈ 2.269	
�

��
 

Next the DMRG was adapted by Nishino for two-dimensional classical systems 

at nonzero temperatures [15-19]. The total free energy � per site is obtained from 

the largest eigenvalue �� of the effective transfer matrix 

���,�, ℎ, ℎ�� = −
���� ln ��. (2) 
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The linear dimension of the total effective transfer matrix is 4��. The � parameter 

determines the dimension of the subspace of system states, which are kept during 

subsequent steps, the higher �, the greater the precision of results. In the present 
case we have found that the value � = 50 is sufficient to guarantee very high 

accuracy. Apart from the direct neighborhood of the critical point our results for 

the free energy hold 12 significant digits of accuracy. 

In order to obtain the critical Casimir force we calculate first the excess 

free energy per unit length in the (1,0) direction ������ ≡ �����− ����, where  �� = �(� → ∞,�, ℎ, ℎ� = 0) is the bulk free energy per spin [10]. For the vanishing 

bulk field, fb is known from the exact solution of the two-dimensional Ising model 

[20]. For nonvanishing bulk fields, in order to get the bulk free energy, the calcula-

tions have been performed for the free boundary condition (ℎ� = 0) when � was 

increasing up to convergence of the results, which, in practice, meant no more than 

2000 lattice constants. 
The expression for the critical Casimir force can be defined as [1]: 

�� = − ������� �
�,�,��

. (3) 

In turn, the capillary condensation line ��(�; � = ���� ) can be determined by 

the maxima of the total free energy [15-19]. 

3. Results 

Figure 2 presents the critical Casimir force for the strip of the width �	 = 	301 

and the surface fields ℎ� = 8.15 providing the very strong field limit. The capillary 

condensation (coexistence) line has a positive slope and is located at ℎ < 0 

(because the surface field is a positive number). 
 

 
Fig. 3. Three-dimensional plot of the critical Casimir force as a function 

of the bulk field and temperature 
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As one can see, at capillary condensation, the critical Casimir force exhibits 

a jump from a large value for thermodynamic states corresponding to the demixing 

phase to a vanishingly small value for those corresponding to the mixed phase. 

The darker area in the picture, the more attractive the Casimir force becomes. 

Further details of the critical Casimir force as a function of two arguments can be 

found in a perspective plot (Fig. 3). 

Conclusions 

The critical Casimir force arises in the thermodynamic description of confined 

binary fluid mixtures as an excess pressure over the bulk value and is conjugate 

to the distance �	between the confining surfaces. Such a strongly attractive force 

between two large colloidal particles immersed in a near-critical fluid can have 

ramifications for aggregation or flocculation of the particles. 

Exploiting the mapping between binary mixtures and the Ising model we have 

applied the DMRG method providing essentially exact numerical results for strips 

with widths up to � = 2000	lattice constants with various boundary conditions. 

The major difference in the behavior of the critical Casimir force on both sides 

of the capillary condensation line appears below the critical temperature. Therefore, 

our results imply that in real binary mixtures the critical Casimir force at tempera-

tures somewhat below �� and at reservoir compositions slightly away from the 

critical composition should be much more attractive than at the bulk criticality. 
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