
Quantum Information and Computation, Vol. 13, No. 9&10 (2013) 0721–0750
c© Rinton Press

THE LOCAL HAMILTONIAN PROBLEM ON A LINE WITH EIGHT STATES

IS QMA-COMPLETE

SEAN HALLGRENa

Department of Computer Science and Engineering, The Pennsylvania State University

University Park, PA 16802, USA

DANIEL NAGAJb

Faculty for Physics, University of Vienna

Boltzmanngasse 5, 1090 Vienna, Austria

Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences
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The Local Hamiltonian problem is the problem of estimating the least eigenvalue of a

local Hamiltonian, and is complete for the class QMA. The 1D problem on a chain of
qubits has heuristics which work well, while the 13-state qudit case has been shown

to be QMA-complete. We show that this problem remains QMA-complete when the

dimensionality of the qudits is brought down to 8.
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1 Introduction

The Local Hamiltonian problem – estimating the ground state energy of a local Hamiltonian

– is a natural problem in physics, and belongs to the complexity class QMA. QMA is the

quantum analogue of NP. Languages in QMA have a quantum verifier: a polynomial-time

quantum algorithm that takes (poly-sized) quantum states as witnesses.

In quantum mechanics, the Hamiltonian of a system is the Hermitian operator corre-

sponding to the energy of the system: its eigenvalues are the set of energies that a system

can be measured to have. It also determines the time-evolution of the system and defines

the interactions between its subsystems. The least eigenvalue (ground state energy) and the

corresponding eigenvector (the ground state) are key to understanding the properties of a
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quantum system. Hamiltonians in nature are usually local, in that they can be written as a

sum H =
∑M
i=1Hi where each term Hi acts only on a small (constant) number of subsystems.

Estimating the ground state energy of such an H is therefore a very fundamental question.

The input to the k-Local Hamiltonian problem is a set of Hermitian matrices {Hi}, each

Hi acting on a set of k qubits (out of a total of n), and the problem is to estimate the lowest

eigenvalue of the sum H =
∑M
i=1Hi. Note that even though each Hi acts nontrivially on a

constant number k of qubits and is constant-dimensional, H itself acts on the whole space of

n qubits and is therefore exponential in size. The Local Hamiltonian problem can be thought

of as a generalization of SAT [1]. In particular, MAX2SAT is a special case of the 2-Local

Hamiltonian problem. Therefore, 2-Local Hamiltonian is NP-hard.

The 5-Local Hamiltonian problem was the first to be shown to be QMA-complete, in [2].

It is also a very natural complete problem, given that it is a generalization of SAT. More-

over, physicists have worked on similar problems, developing a number of heuristic tools

for approximating ground states and ground state energies. However, the Hamiltonian con-

structed in [2] does not have any constrain the spatial arrangement of the qubits, making it

unrealistic. In physical (e.g. spin) systems, the Hamiltonians are often spatially local: the

interacting systems (qubits or qudits) may be arranged on a grid, or the interactions are (at

least approximately) short-ranged (e.g. nearest-neighbor). Simulation of local Hamiltonians

on one- or two-dimensional grids is an important problem in physics, and it is natural to

try to understand the complexity in the different cases obtained by changing the locality

and the dimensionality of the qudits. Since it is also much easier to realize and manipulate

lower-dimensional qudits in the lab, these cases are particularly important.

There have been improvements on this result and its unfrustrated variant Quantum k-

SAT [3, 4, 5]. The locality was brought down to 3 [6] and then to 2 [7]. The 2-local problem

remains QMA-complete when the Hamiltonians are restricted to be nearest-neighbor interac-

tions on a 2D grid [8]. The 1D case was not expected to be so hard: its classical counterpart,

the 1D constraint satisfaction problem, has efficient algorithms. Moreover, there are good

heuristic methods that are effective on many instances of the problem. Therefore, it was a

somewhat surprising result when [9] showed a hardness proof for the Local Hamiltonian prob-

lem on a chain (with nearest-neighbor interactions) of 13-statecqudits. In this paper, we bring

the number of states down from 13 to 8. For a recent review of QMA-complete problems, see

[10].

The hardness of the 1D problem (with nearest-neighbor interactions only) for the cases

with 2-7 state qudits remains an interesting open question. It is not clear if the QMA-

completeness result will continue to hold as we further decrease the dimensionality of the

qudits down towards 2. It may happen that below a particular dimensionality, we could

find that the problem has an efficient quantum or classical algorithm, e.g. if the ground

state entanglement could be shown to be low. Recently, an interesting qutrit chain with a

unique unfrustrated ground state with lots of entanglement was analyzed in [11]. Finally, these

QMA-completeness results also bear a close relationship to adiabatic quantum computing: the

cThe paper states hardness for d = 12. However, there are two illegal configurations that are not penalized:

×© ×© �© © © and ×© ×© 	© © © turn into each other under the action of the Hamiltonian. The
superposition of these two configurations forms a zero energy state of the Hamiltonian, which means that the
Hamiltonian no longer has the promised 1

poly
gap. This can be fixed by adding a 13th state, as discussed in

footnote 4 in [9].
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computation models in these results, and the Hamiltonians that check these computations,

can be used to perform universal adiabatic quantum computing. It will be interesting to see if

restricted local Hamiltonian systems (e.g., low-dimensional qudits on a line) that most likely

do not encode a QMA-complete problem can still be used to perform universal adiabatic QC.

To show QMA completeness for our version of Local Hamiltonian, we reduce an arbitrary

QMA language L to a Local Hamiltonian in 1D with d = 8 particles, outputting a Hamiltonian

that either has a ground state energy below some value a, or whether this energy is at least

1/poly larger than a. We base our proof on three ideas.

First, we use Kitaev’s Hamiltonian [2]: a Hamiltonian that has as its ground state a

history state of the verification circuitdVx for the language L. A history state is a state of the

form
∑
t |φt〉|t〉, where |φt〉 is the state after applying the first t gates of Vx to |φ0〉. Kitaev’s

Hamiltonian induces forward and backward transitions between consecutive time-steps, i.e.,

|φt〉 |t〉 ←→ |φt+1〉 |t+ 1〉. In addition, the Hamiltonian serves to ensure that no illegal (i.e.,

not corresponding to an encoding of the time-step) states occur in the clock register, that the

input to the circuit is correct, and that the computation ultimately accepts.

Second, the encoding of a computation in the ground state of a nearest-neighbor 1D

Hamiltonian is based on the construction of [9]. The n computational qubits are encoded

in subspaces of n of the qudits (of which there are polynomially many) on the line. The

line is divided into blocks, and in each block a set of nearest-neighbor gates is performed on

the encoded qubits before the qubits are transferred to the next block where the next set of

gates can be performed. The gate applications and the qubit transfers occur via two-local

(nearest-neighbor) operations. The construction in [9] uses a 2-dimensional “gate” subspace

of the qudits to mark the position along the line where a gate is being performed. The

qudits storing the qubits on which gates have already been performed are indicated by a two-

dimensional space L , and the ones on which a gate is yet to be performed are labeled R .

There are also one-dimensional states 	© and �© : the former marks the transition between

the gate-performing steps and the qubit-transferring steps of the computation, and the latter

shifts the qubits to the right. A two-dimensional state B serves to move the active spot back

to the right after �© has moved the qubits over one site.

Third, our main contribution is reducing the dimensionality of the qudits to 8. This

“leaner” qudit construction comes at a price – allowing the forward/backward transitions in

our Hamiltonian to be non-unique, possibly resulting in “illegal” configurations of the qudit

chain. However, we can work around this problem and suppress those by adding penalty

terms. Raising the energy of states away from the allowed subspace allows us to use the

projection lemma from [7], showing that even despite the illegal transitions, the ground state

must have a substantial overlap with the legal subspace. Restricted to that subspace, the

illegal transitions in the Hamiltonian do not contribute to the expectation value of the energy

for a correct history state. Therefore, the history state of a computation that accepts with

high probability can be close to the ground state of the entire Hamiltonian, and results in a

low ground-state energy. Of course, we also need to show a lower bound on the ground state

energy for Hamiltonians corresponding to quantum circuits without easily-accepted witnesses.

In more detail, our dimension reduction comes from getting rid of the distinction between

the two two-dimensional qudit states – the L (done: qubits in a block that have already

dThe subscript x in the verifier circuit Vx stands for the instance x of the problem.
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participated in gate applications) and R (ready: qubits that are yet to have a gate applied

to them) qubit types – using instead just one type of qubit combined with a 1-dimensional

state ◦© , using parity of the qubit position to distinguish between “done”/“ready”. We use

the mapping L → ◦© and R → ◦© , doubling the number of particles on the line.

Furthermore, we get rid of the B qubit type – we instead use the boundary between “done”

and “ready” sequences of qubits as the active spot. We also will not need the 	© state (used

in [9]) anymore.

2 Background

Let us begin by a general definition of the Local Hamiltonian problem:

Definition 1 (The d-state k-Local Hamiltonian Problem) We are given a Hamiltonian

H = H1 +H2 + . . .+Hs on n d-state qudits, with the matrix elements of each Hi specified by

poly(n) bits. H is k-local: each Hi acts nontrivially on only k of the n qudits. We are also

given two constants a, b ∈ R such that b − a ≥ 1/poly(n), with the promise that the smallest

eigenvalue of H, λ(H), is either at most a or greater than b. We must decide if λ(H) ≤ a or

λ(H) > b.

As mentioned in the Introduction and shown by Kitaev [2], this problem lies in (and is

complete for) the class QMA.

Definition 2 (QMA) A language L is in the class QMA iff for each instance x there exists

a uniform polynomial-size quantum circuit Vx such that

• if x ∈ L, ∃|ξ〉, a polynomial-size quantum state (a witness)

such that Pr(accept(Vx, |ξ〉)) ≥ 2/3,

• if x /∈ L, ∀|ξ〉 Pr(accept(Vx, |ξ〉)) ≤ 1/3.

Previous proofs for QMA-completeness rely on a special state encoding a computation (a

history state) for showing QMA-hardness of Local Hamiltonian. A circuit is transformed into

an appropriate Hamiltonian such that a history state is a zero-eigenvector when there is a

witness to make the circuit accept.

Definition 3 (History state) Let V = UK · · ·U2U1 be a circuit of K gates on n qubits.

Consider a Hilbert space with K + 1 orthogonal subspaces {St}Kt=0, each with basis {|jt〉}2
n−1
j=0

of dimension 2n. We define the history state corresponding to the action of V on an initial

n-qubit state |ϕ〉 as a superposition over states coming from orthogonal spaces:

|ηϕ〉 =
1√

K + 1

K∑
t=0

|γϕt 〉 (1)

where |γϕt 〉 =
∑2n−1
j=0 |jt〉 〈j|Ut · · ·U2U1 |ϕ〉 is a vector in the subspace St.

Note that the Hilbert space as a whole can be bigger than the union of St’s, and we can

write it as an orthogonal direct sum of subspaces
(⊕K

i=0 St

)
⊕ Hrest, with the rest of the

Hilbert space denoted Hrest.
A propagation Hamiltonian can be defined to ensure that a low-energy candidate state has

the form (1), when the state evolution satisfies a certain orthogonality condition. Note that
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for any initial n-qubit state |ϕ〉 and any t ∈ {0, . . . ,K}, we have |γϕt 〉 ∈ St. The propagation

Hamiltonian associated with the circuit V is Hprop :=
∑K−1
t=0 Ht where

Ht :=

2n−1∑
j=0

(
|jt〉 〈jt|+ |jt+1〉 〈jt+1| − U ′t+1 |jt+1〉 〈jt| − |jt〉 〈jt+1|U ′t+1

†
)
, (2)

with U ′t+1 =
∑2n−1
k,j=0 |kt+1〉 〈k|Ut+1 |j〉 〈jt+1| acting as the unitary Ut+1 on the subspace St+1.

Observe that the action of Ht on |γϕt 〉 and |γϕt+1〉 is (not summing over t)

Ht |γϕt 〉 = |γϕt 〉 −
∣∣γϕt+1

〉
, (3)

Ht|γϕt+1〉 = |γϕt+1〉 − |γ
ϕ
t 〉 ,

since
∣∣γϕt+1

〉
= U ′t+1

∑2n−1
j=0 |jt+1〉 〈jt|γϕt 〉. It is then straightforward to verify that |γϕt 〉+

∣∣γϕt+1

〉
is a zero-energy eigenvector of Ht. A history state is then also a zero eigenvector of each Ht,

and so a zero eigenvector of Hprop. The propagation Hamiltonian thus serves to “check”

the progress of the computation, by giving an energy penalty to all non-history states. For

a specific construction of a QMA-complete k-Local Hamiltonian problem, it will have to be

shown that Hprop can be built from operators that obey the chosen locality restrictions.

Let Vx be a verifying circuit for an instance x
?
∈ L ∈ QMA, taking as input n − m

ancilla qubits in the state |0〉 and an m-qubit state |ξ〉, and it has squared amplitude 2/3 on

some designated output qubit if x ∈ L, and less than 1/3 otherwise. Kitaev’s proof used a

history state of the following form. The unitaries Ui are the ones from the original verifier

circuit Vx = UK . . . U1 and are 2-local. An extra unary clock register is used to build the

structure of orthogonal subspaces St, requiring a 2-local clock checking Hamiltonian Hclock in

the Hamiltonian for distinguishing the subspaces St from Hrest spanned by states with illegal

clock configurations. The history state for verifying a valid witness |ξ〉 using Vx is

|η〉 =
1√

K + 1

K∑
t=0

(
Ut . . . U1

(
|0〉n−m ⊗ |ξ〉

))
⊗ |t〉clock .

This history-state structure for low-energy state candidates is enforced by Hprop imposing

energy penalties for deviating from the indicated form. With the unary clock construction,

the required locality of the terms in Hprop is 5. In addition, Kitaev adds two more Hamil-

tonian terms: Hin penalizing states with improperly initialized ancillae (not of the form

|γ0〉 = |0〉n−m ⊗ |ξ〉), and Hout verifying whether the computation accepts. This turns out

to be enough to ensure that x 6∈ L instances of the 5-Local Hamiltonian have no low-energy

eigenvector.

3 Encoding a computation in a sequence of orthogonal states of a line of 8-

dimensional qudits.

Our goal is to encode a quantum verifier circuit Vx into a 2-Local Hamiltonian instance

with nearest-neighbor interactions on a line of qudits, satisfying certain properties. In this

section we do the first step, transforming Vx into a modified circuit Ṽx that does the same

computation as Vx, but instead of on n qubits, it acts on a line of poly(n) qudits of dimension

d = 8. All gates in Ṽx are nearest-neighbor on this line, and the states occurring during the
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computation are pairwise orthogonal. This is the condition given in Section 2. Finding the

circuit Ṽx with these properties allows us to define a Hamiltonian such that, in the case that

there exists a witness on which the circuit Ṽx accepts with high probability, the history state

of the computation on the witness is a low-energy state of the Hamiltonian. Otherwise, we

will be able to lower bound the ground state energy of this Hamiltonian.

Assume Vx works on a space of n qubits. Choose a way to arrange the qubits on a line.

The original circuit can be transformed to a circuit V ′x consisting of R rounds of gates, where

each round is composed of n − 1 nearest-neighbor gates: the first gate in a round acts on

qubits 1 and 2, the second on qubits 2 and 3, and so on. Any quantum circuit can be recast

in this fashion, by inserting swap gates and identity gates, with a polynomial blowup increase

in the number of gates.

We now convert the circuit V ′x to a circuit Ṽx acting on a line of 8-state qudits arranged in

R blocks of 2n particles each. The qudits are 8-dimensional, and we will utilize some of the

8 states as data-carriers (holding qubits the computation acts on). The rest will guarantee

the orthogonality conditions and the proper progress of the computation. At any time during

the computation, we want exactly n of the qudits to be in the “data-holding” states, and we

simply call them qubits. Initially, all of the n qubits are located in the first block of particles.

After each round of gates from V ′x is carried out, the qubits are transferred to the next block

of 2n particles where the next set of gates from V ′x can be performed.

Claim 1 Given a QMA verifier circuit Vx on n qubits, an equivalent QMA verifier circuit Ṽx
can be efficiently computed such that Ṽx operates on 2nR 8-state qudits on a line, only uses

nearest neighbor gates, and such that the states occurring during the computation are pairwise

orthogonal.

In the rest of this Section we describe the sequence of orthogonal states that appear in the

computation on the qudit line. Later, in Section 4 we present the positive semidefinite 2-local

Hamiltonian whose ground state is the uniform superposition over states from this desired

sequence.

Let us choose the Hilbert space of each particle as an orthogonal direct sum: H8 =
◦© ⊕ �© ⊕© ⊕ ×© ⊕ ⊕ I . The subspaces denoted ◦© , �© ,© , and ×© are 1-dimensional.

Then we have 2-dimensional subspaces and I , each designed to hold a state of a qubit

(specified by two complex numbers a0 and a1, with a0, a1 ∈ C and |a0|2 + |a1|2 = 1). We

label the basis vectors of these 2-dimensional subspaces | (s)〉 and |I (s)〉 with s = 0, 1. A

qudit in the state
∑1
s=0 as| (s)〉 or

∑1
s=0 as|I (s)〉 is then said to have the qubit content

a0 |0〉+ a1 |1〉.
When we label a qudit by one of the symbols { ◦© , �© ,© , ×© , , I }, we mean that

its state belongs to a particular subspace of H8. Such labeling of the whole chain de-

fines a configuration. The Hilbert space of the qudit chain thus decomposes into orthog-

onal subspaces indexed by configurations. We can choose a basis for the Hilbert space

of the entire system as a tensor product of 2nR (one for each site) of the basis vectors{
| ◦©〉, |�©〉, |© 〉, | ×©〉, | (0)〉, | (1)〉, |I (0)〉, |I (1)〉

}
. The state of the system is a vector in

the span of the basis vectors.
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Let us now construct a sequence of configurations, corresponding to the progression of

a computation with the circuit Ṽx. We view the qudit chain as R blocks of length 2n and

mark their boundaries . To highlight the parity of the sites, we also draw after every even,

non-boundary site.

In the initial configuration, the first block holds qubits at odd-numbered sites, interspersed

with ◦© s. The rest of the chain consists of © s:

I ◦© ◦© · · · ◦© ©︸ ︷︷ ︸
the first block of length 2n

©© ©© · · · (4)

The qubit content of the I and sites carries the initial n-qubit input to the circuit V ′x (the

ancillae and the witness). Each step of the computation is a 2-local unitary operation applied

to two adjacent particles, resulting in a change of configuration (building up an orthogonal

sequence), and possibly a change in the state of the qubit content (doing the computation).

Let us now write the rules for building up the circuit Ṽx.

We choose a list of transition rules (for configurations) and list them in Table 1. Each rule

connects configurations that differ in two particular neighboring spots, and are connected by

a 2-local unitary transformation. The sequence of these transformations (as applied sequen-

tially to the initial configuration) defines the 2-local gates of the circuit Ṽx. This assignment

of unitaries is unique by construction, as we choose the transition rules so that for any con-

figuration arising from the initial one, there is always exactly one rule that possibly applies

to it (see also Table 2 for a part of the sequence of configurations for n = 3). We ensure this

uniqueness by rules involving up to 4 particles in the rules. However, in Section 4 we will

write a Hamiltonian made from 2-local terms that checksethese transitions.

Let us explain the logic behind the rules. Rule 1 applies the unitary from the modified,

nearest-neighbor circuit V ′x. The rest of the rules ensure the orthogonalization and locality

properties. Initially, the qubits are placed at the odd sites, separated by ◦© s. If we want

them to interact, we have to move them together, which is what rules 2 and 3 do. The

nearest-neighbor gates from V ′x are then performed at the I junctions using rule 1. The
© label marks sites that the computation hasn’t reached yet, while the ×© sites will not be

used again. The �© (a pusher state) serves to move the qubits to the right.

The computation can be divided into R “rounds”, each corresponding to the application

of a “round” of gates from V ′x, and then moving the qubit block 2n positions to the right. Let

us look at the two phases of a round of computation in detail, referring to Table 2 (a n = 3

qubit example).

The goal of the first phase of the computation is gate application. It involves rules 2 and

1, moving the I qubit from the left end of the chain while applying the gates from a given

“round”. When I reaches the front end of the chain, rule 4 creates a the “pusher” state
�© . After 2n− 1 applications of rule 5, the pusher gets to the left end of the qubit sequence,

where it disappears through rule 6. This first phase thus moves I n times, makes n− 1 gate

applications, adds 1 pusher creation, 2n− 1 pushes and 1 killing of �© , altogether making 4n

steps.

eTo “check” a transition means adding an energy penalty to terms that do not have the same amplitude for
both of the states involved in the transition.
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1. I ←→ Um( I ) performs a two-qubit gate Um (location-dependent) on the qubit
content of the two particles, while shifting the active site to the right.

2. (a) I ◦© ←→ ◦© I moves an “active” qubit I to the right (not near a block
boundary),

(b) I ◦© ←→ ×© I is applicable when a block boundary is to the left of it,

(c) I© ←→ ◦© I is applicable when a block boundary is in front of it.

3. (a) ×© ◦© ←→ ×© ×© moves the leftmost qubit (not after a boundary),

(b) ◦© ←→ ◦© moves a qubit to the right, only noting correct

parity, regardless of the boundary location. We denote this using the symbol .

(c) © © ←→ ◦© © moves the rightmost qubit (not before a boundary).

(d) ×© © © ←→ ×© ×© © a special rule ensuring that if there is a single qubit
in the chain, it can still move. Rule 3(d) does not actually apply to any legal
configuration.

4. (a) I ©© ←→ �©© creates a left-moving pusher �© at the front near a bound-

ary .

(b) ©© ←→ �©© introduces �© when away from a block boundary.

5. (a) �© ←→ �© pushes �© left and a qubit to the right (not caring for the
boundary).

(b) ◦© �© ←→ �© ◦© does the same with �© and ◦© , at locations with this parity.

6. (a) ×© �© ←→ ×© ×© I kills the pusher �© at the left end of the qubits at a bound-

ary , changing the last qubit to I , allowing the next round of gate applications
to begin.

(b) ×© �© ←→ ×© ×© simply kills the pusher, when away from the boundary.

�© .

Table 1. The transition rules, which together with a carefully chosen initial state (4) define the 2-
local gates of the circuit Ṽx. Note that some of these rules are 2-local, some 3-local and some even

4-local, which helps them identify their intended locations uniquely. However, the transformations
themselves are only 2-local. See also Table 2 for an example of a progression of configurations and
the unique applicability of these rules. We will later write a Hamiltonian Hprop with only 2-local

terms checking these transitions.
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The second phase (which is repeated n− 1 times) moves the qubits to the right until they

are all within the next block. It takes n applications of rule 3 to move all the qubits one

step to the right. Then we create the pusher �© , move it to the left (2n − 1 steps) and kill

it. Altogether, this takes 3n+ 1 steps. If we now are not at the boundary, the second phase

repeats. If we are at a block boundary , the second phase concludes, and the “round” of

computation concludes as well, as all the qubits have now moved 2n positions to the right.

A new “round” of computation (with the particle I starting to move) starts according to

rule 2. Summing it up, a whole “round” of computation consists of 4n + (n − 1)(3n + 1) =

3n2 + 2n − 1 steps. During each “round”, n − 1 gates from V ′x are applied and the qubits

are moved over to the next block of qudits. This happens for each of the first R − 1 blocks.

In the last block, after the gates are applied, the computation comes to a halt in the state:
×© 2n(R−1) ×© ◦© · · · ◦© ◦© I . Also, without loss of generality, we take all the

gates in the very first round to be identities. This allows us to verify that the ancilla qubits

(laid out on the left of the qubit sequence) all start out in the correct state |0〉.
The entire computation with (R− 1) regular rounds and a last round with 2n steps (until

I reaches the right end) together take K = (R− 1)(3n2 + 2n− 1) + 2n steps, corresponding

to K + 1 configurations of the qudits. Also note that a configuration is never repeated in

the course of the computation – all of the K + 1 configurations are distinct, and therefore

orthogonal.

3.1 Legal configurations

At the moment, we are interested only in the (legal) configurations that we want to appear

during a computation. Of course, the whole Hilbert space is much larger, containing many

other states. We will call those illegal, and want them to be “detectable”. For now, we will

not deal with these other states until Section 4.1.

Let the set of legal configurations C0, . . . , CK be the K + 1 configurations that can be

obtained by applying the rules in Table 1 starting with the initial configuration (4). The legal

configurations correspond to the K+1 (including the initial state) intermediate computational

states generated by the circuit Ṽx. We call all other configurations illegal.

We will now look at the properties shared by the legal configurations. It will be convenient

to look at pairs of particles at locations (2i−1, 2i) and (2i+1, 2i+2). Table 3 lists the allowed

pairs of symbols and which ones can be adjacent to each other. The pairs play the roles of

“dead” (labeled x, particles not to be used anymore), “done” (labeled D, qubits to the left of

the active site), “active” (labeled A, the active site), “ready” (labeled R, qubits to the right of

the active site) and “unborn” (labeled u, “unborn” particles, not used yet) from the construc-

tion in [9]. There, the legal states were of the form (x · · · x) (D · · · D) A (R · · · R) (u · · · u),

with a single active site. Here (z · · · z) stands for a variable-length string made from the letter

“z”.

Connecting subsequent pairs according to the rules listed in Table 3 imposes a particular

form for the legal states (brackets indicate variable-length, possibly empty substrings)

(x · · · x)[qubits](u · · · u) (5)
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· · · ×© ×© I ◦© ◦© © ©© ©© ©© ©© · · · rule 2

· · · ×© ×© ×© I ◦© © ©© ©© ©© ©© · · · rule 1

· · · ×© ×© ×© I ◦© © ©© ©© ©© ©© · · · rule 2

· · · ×© ×© ×© ◦© I © ©© ©© ©© ©© · · · rule 1

· · · ×© ×© ×© ◦© I© ©© ©© ©© ©© · · · rule 2

· · · ×© ×© ×© ◦© ◦© I ©© ©© ©© ©© · · · rule 4

· · · ×© ×© ×© ◦© ◦© �©© ©© ©© ©© · · · rule 5

· · · ×© ×© ×© ◦© ◦© �© © ©© ©© ©© · · · rule 5

· · · ×© ×© ×© ◦© �© ◦© © ©© ©© ©© · · · rule 5

· · · ×© ×© ×© ◦© �© ◦© © ©© ©© ©© · · · rule 5

· · · ×© ×© ×© �© ◦© ◦© © ©© ©© ©© · · · rule 5

· · · ×© ×© ×© �© ◦© ◦© © ©© ©© ©© · · · rule 6

· · · ×© ×© ×© ×© ◦© ◦© © ©© ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ◦© © ©© ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ◦© © ©© ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ◦© ◦© ©© ©© ©© · · · rule 4

· · · ×© ×© ×© ×© ×© ◦© ◦© �©© ©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ◦© ◦© �© © ©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ◦© �© ◦© © ©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ◦© �© ◦© © ©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© �© ◦© ◦© © ©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© �© ◦© ◦© © ©© ©© · · · rule 6

· · · ×© ×© ×© ×© ×© ×© ◦© ◦© © ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ×© ×© ◦© © ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ×© ×© ◦© © ©© ©© · · · rule 3

· · · ×© ×© ×© ×© ×© ×© ×© ◦© ◦© ©© ©© · · · rule 4

· · · ×© ×© ×© ×© ×© ×© ×© ◦© ◦© �©© ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ×© ×© ◦© ◦© �© © ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ×© ×© ◦© �© ◦© © ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ×© ×© ◦© �© ◦© © ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ×© ×© �© ◦© ◦© © ©© · · · rule 5

· · · ×© ×© ×© ×© ×© ×© ×© �© ◦© ◦© © ©© · · · rule 2

· · · ×© ×© ×© ×© ×© ×© ×© ×© I ◦© ◦© © ©© · · ·

Table 2. The configurations occurring in one cycle of the computation with n = 3 qubits. The

rules whose application brings the state to the next one are listed on the right.
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where [qubits] is a nonzero string of the form

Ax(R · · ·R) Ru (6)

(DxD · · ·D)A1(R · · ·R) Ru (7)

Dx (D · · ·D)Ap(R · · ·R) Ru (8)

Dx (D · · ·D)A2(R · · ·RRu) (9)

Dx (D · · ·D)Au (10)

(R· · ·R) Ru (11)

Dx (D · · ·D) (R · · ·R) Ru (12)

Dx (D · · ·D). (13)

The first five options involve an “active” pair, while the last three have no “active” pair

in them. Furthermore, note that the whole [qubits] string cannot be empty, because the

rightmost particle of the whole chain cannot be ×© , the leftmost one cannot be © and the

combination ×©© is illegal. Next, for legal configurations, the number of particles holding

qubits needs to be exactly n.

Let us have a closer look at the legal [qubits] strings with an active site (I or �© ), which

translates to a single active pair (Ax, A1, Ap, A2 or Au). One example is ×© I ◦© ©
(which is of the type DxA1Ru). In the case there is no Dx pair, the active pair has to

be Ax(6) or A1(7) – an example is the sequence ×© I ◦© © (with pairs AxRRu).

In the case there is no Ru pair, the active pair has to be of the A2 or Au, as in e.g.
×© ◦© ◦© �©© (this is DxDDAu).

The other three types of legal substrings [qubits] do not have an active pair. First, we could

have a done qubit pair on the right end as in ×© ◦© ◦© (simply DxDD without any

R’s). Second, observe that two neighboring particles can appear at positions (2i, 2i+ 1),

when coming from two consecutive pairs as in ×© ◦© © (read as DxDRu). Finally,

it is possible to have a ready qubit pair on the left end as in ◦© ◦© © (simply

RRRu without any D’s).

The location of the [qubits] substring matters. For a legal configuration with a I symbol,

the string [qubits] must fit exactly between two block boundaries as [qubits] (see Table 2).

On the other hand, the string [qubits] without the symbol I always has runs across a block

boundary somewhere. These two properties later help us check that we do not have too few

or too many qubits or whether the qubits are properly aligned between the boundaries, ruling

out illegal but locally undetectable states.

4 The Hamiltonian

We aim to construct a Hamiltonian corresponding to a circuit Ṽx such that the ground state

energy of the Hamiltonian is E ≤ a for ‘yes’ instances (x ∈ L) and E ≥ b for the ‘no’ instances,

where a and b have a 1/poly(n) separation. We will show the history state of the computation

on the witnesses for ‘yes’ instances has a low energy. Our Hamiltonian is a sum of four terms:

H := JinHin + JpropHprop + JpenHpen +Hout.

The coefficients Jin, Jprop, and Jpen will later be chosen to be some polynomials in n. For

the term Hprop, any valid history state (a uniform superposition of legal configurations whose
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allowed to be followed by

property symbol pair x Dx D Ax A1 Ap A2 Au R Ru u

dead: x ×© ×© X X X X X X

dead+done: Dx ×© X X X X X X X X

done: D ◦© X X X X X X X X

active leftmost: Ax ×© I , ×© �© X X

active gate 1: A1 I ◦© X X

active pusher: Ap ◦© �© , �© ◦© X X

active gate 2: A2 ◦© I X X X

active rightmost: Au I© , �©© X

ready: R ◦© X X

ready+unborn: Ru © X

unborn: u ©© X

Table 3. Building up the legal configuration structure from pairs of symbols (unlisted symbol

pairs do not appear in legal configurations). We list symbol pairs allowed at positions (2i− 1, 2i)
and their designated followups at positions (2i + 1, 2i + 2). Note the mirror symmetry of the

table across the antidiagonal. The allowed configurations of the whole chain must then have form

(x · · · x)[qubits](u · · · u), with a substring [qubits] given by (6)-(13), with at most one active pair.
Further restrictions come into play from considering the block boundary locations (see Table 5)

the number of “qubits” and their proper alignment with respect to the block boundaries.

qubit content comes corresponds to the computation with the gates from Ṽx) will be a zero-

energy state. The term Hin raises the energy of states which do not have ancilla qubits

initialized to 0, which is required in the circuit Ṽx. The role of Hout is to raise the energy

of the states which encode computations that are not accepted. Finally, the terms in Hpen

penalize (i.e. raise the energy of) locally detectable illegal configurations which do not have

the proper form as described by equations (5)-(13) in Section 3.1.

We start with the ancilla-checking term Hin, defined as

Hin := |I (1)〉〈I (1)|1 +

n−m∑
i=2

| (1)〉〈 (1)|2i−1.

By raising the energy of states with qubit content |1〉, it ensures that in a low-energy state

candidate the ancilla qubits (the first n−m) are all initially (in the initial configuration (4)

they are located at odd positions in the first block) in the |0〉 state. Without loss of generality,

we assume that the first round of V ′x consists of identity gates. This is necessary when we

want the ancilla qubits to remain unpenalized by Hin until they are moved from the first

block into the second block.

The term Hout := |I (0)〉〈I (0)|2nR checks that when the computation finishes (the I
state appears at the very right end of the qudit chain), the qubit content of the output qubit

is |1〉. For computations that do not accept, the output qubit state is |0〉 and Hout penalizes

this.

In defining the remaining terms of the Hamiltonian, we will need to be able to distinguish

between different kinds of configurations of the chain. We classify three types:

1. legal configurations are defined in Section 3.1 to be the configurations C0, . . . , CK occur-
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1. ×© I ◦© ( ◦© )n−2 © (©© )n © (2b)

2. ×© ×© I ( ◦© )n−2 © (©© )n © (1)

3. For i from 0 to n− 3:

(a) ×© ×© ( ◦© )i I ◦© ( ◦© )n−i−3 © (©© )n © (2a)

(b) ×© ×© ( ◦© )i ◦© I ( ◦© )n−i−3 © (©© )n © (1)

4. ×© ×© ( ◦© )n−2 I© (©© )n © (2c)

5. ×© ×© ( ◦© )n−2 ◦© I (©© )n © (4a)

6. ×© ×© ( ◦© )n−1 �©© (©© )n−1 © (5a)

7. For j from 0 to n− 2:

(a) For k from 0 to n− 2:

i. ×© (×© ×© )j ×© ( ◦© )n−k−2 ◦© �© ( ◦© )k © (©© )n−j−1 © (5b)

ii. ×© (×© ×© )j ×© ( ◦© )n−k−2 �© ◦© ( ◦© )k © (©© )n−j−1 © (5a)

(b) ×© (×© ×© )j ×© �© ( ◦© )n−1 © (©© )n−j−1 © (6b)

(c) ×© (×© ×© )j ×© ×© ( ◦© )n−1 © (©© )n−j−1 © (3a)

(d) For l from 0 to n− 3:

×© (×© ×© )j+1 ×© ( ◦© )l ( ◦© )n−l−2 © (©© )n−j−1 © (3b)

(e) ×© (×© ×© )j+1 ×© ( ◦© )n−2 © (©© )n−j−1 © (3c)

(f) ×© (×© ×© )j+1 ×© ( ◦© )n−2 ◦© (©© )n−j−1 © (4b)

(g) ×© (×© ×© )j+1 ×© ( ◦© )n−2 ◦© �©© (©© )n−j−2 © (5a)

8. For i from 0 to n− 2:

(a) ×© (×© ×© )n−1 ×© ( ◦© )n−i−2 ◦© �© ( ◦© )i © © (5b)

(b) ×© (×© ×© )n−1 ×© ( ◦© )n−i−2 �© ◦© ( ◦© )i © © (5a)

9. ×© (×© ×© )n−1 ×© �© ( ◦© )n−1 © © (6a)

10. ×© (×© ×© )n I ◦© ( ◦© )n−2 © ©

Table 4. The general form of the sequence of legal configurations in one round of computation.

The middle block boundary is not shown in steps 7 and 8. The full computation ends at Step 5
without the trailing circles. A particular example for n = 3 is shown in Table 2.
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ring during the computation with a circuit Ṽx when starting with the initial configuration

(4) with n qubits. All other configurations are illegal.

2. locally detectable illegal configurations are those that contain a pair of neighboring qudits

labeled by a pair of symbols that does not occur in the legal configurations. These can

be identified and penalized locally by means of a projector onto such a pair.

3. locally undetectable illegal configurations are those that are not detectable by local pro-

jections, but are still not legal, as they do not appear in the legal progression of a

computation. As shown in Lemma 4.2.4, these states have too many or too few qubits,

or an improperly aligned [qubits] block.

4.1 The penalty Hamiltonian

The role of Hpen is to ensure that there are no locally detectable illegal configurations in the

computation. That is, we wish to leave the legal states unpenalized while raising the energy

of the locally detectable illegal ones by projecting on neighboring pairs of symbols that do not

occur in a proper course of computation described in Section 3. We call such pairs forbidden.

Since we have 6 different symbols in the construction, there are 36 possible neighboring pairs.

Furthermore, we can distinguish 5 types of location pairs depending on the parity of the

positions and their position with respect to the block boundaries as listed on the right in

Table 5. We list the 56 allowed pairs of symbols in Table 5, which gives us 36× 5− 56 = 124

types of projector terms

|XY 〉〈XY |i,i+1, (14)

whereXY ∈ {×© ,© , ◦© , �© , , I }⊗2 is a forbidden pair at a location (i, i+1). For example,

the forbidden pair ×©© (disallowed in all 5 types of locations) is energetically penalized by

5∑
f=1

Hpen,f =

2nR−1∑
i=1

I1,...,i−1 ⊗ |×©©〉〈×©©|i,i+1 ⊗ Ii+2,...,2nR, (15)

while the pair is forbidden on even-parity sites (type A,C,E), and is penalized by

95∑
f=93

Hpen,f =

nR∑
i=1

I1,...,2i−2 ⊗ | 〉〈 |2i−1,2i ⊗ I2i+1,...,2nR. (16)

To take the qubit content of the particles into account, as in [9] we use the notation

|A〉〈B| :=
∑
s |as〉〈bs|, meaning that subspace B is mapped to subspace A in some prescribed

way specified by the pairing of the basis vectors. Thus, | 〉〈 | preserves the qubit

contents as | 〉〈 | :=
∑1
s,t=0 | (s) (t)〉〈 (s) (t)|.

Furthermore, to rule out configurations without any qubit-holding particles, we need to

penalize the symbols {© , , �© , ◦©} at the leftmost qudit (only ×© or I can appear there)

and project onto {×© , , �© , ◦©} on the rightmost qudit (only I or © are allowed at

the right end). Together, the Hamiltonian imposing an energy penalty on configurations

containing any of the forbidden pairs is

Hpen =

124∑
f=1

Hpen,f +Hleft +Hright. (17)
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HHHHX
Y ×© © ◦© �© I

×© X —– —– ACE ABCE CD

© —– X —– —– —– —–

◦© —– —– —– ACE X AE

�© —– ACE ACE —– BD —–

—– ABCE X BD BD B

I —– DE AC —– B —–

A: · · i = 2(k − 1)n+ 2j′ + 1

B: · · i = 2(k − 1)n+ 2j

C: · · i = 2(k − 1)n+ 1

D: · · i = 2k′n

E: · · i = 2kn− 1
1 ≤ k ≤ R
1 ≤ k′ ≤ R− 1
1 ≤ j ≤ n− 1
1 ≤ j′ ≤ n− 2

Table 5. The 56 allowed pairs XY of symbols at positions (i, i + 1) in the d = 8 construction

according to Hpen. There are 5 types of locations (A, B, C, D, E) for the pair, according to

location parity and block-boundary position. For each of the 36 symbol combinations, we list its
allowed location types. The forbidden pairs implied by this table are penalized by Hpen (17).

Observe that Hpen only catches illegal configurations with locally detectable errors, and

there exist illegal configurations that are not locally detectable, i.e., that have zero energy

under Hpen, such as this one with too many qubits

×© ×© ◦© ◦© ◦© © ©© . (18)

To identify these states as illegal, we will have to show they propagate into states with

forbidden pairs. First, though, we want to ensure this propagation, which is the topic of the

next section.

4.2 The propagation Hamiltonian

We want to check whether the computation on the line of qudits proceeds correctly, in a linear

sequence of configurations C0 ↔ · · · ↔ Ct ↔ Ct+1 ↔ Ct+2 ↔ · · · ↔ CK (see Section 3 and

the example in Table 2), ensuring the intended unitary operations are applied in the correct

order. The propagation-checking Hamiltonian Hprop should have a low energy only for a state

which is a superposition of all the legal configurations, with the gates applied to their qubit

content as planned.

For now, let us look only at the states from the span of the legal configurations, where

we want Hprop to give an energy penalty to all states except the history states corresponding

to the circuit Ṽx. We would like to construct it as Hprop =
∑K−1
t=0 Ht, where Ht checks the

transition from the state |ψt〉 to |ψt+1〉. For a candidate low-energy state that has a nonzero

overlap with |ψt〉, it should insist that it has to have the same amplitude as the state |ψt+1〉.
Any two legal configurations are orthogonal, so if locality did not matter, it would suffice to

use projections onto the states |ψt〉 as in (2) in Section 2. However, we want our Hamiltonian

to be 2-local.

The computation of the circuit Ṽx on an initial state runs according to the rules in Table 1,

which are (up to) 4-local. A rule LNOR ↔ LPQR applied at some location corresponds to

a transition between states |ψt〉 = |· · ·LNOR · · · 〉 and |ψt+1〉 = |· · ·LPQR · · · 〉. In the

language of Hamiltonians, this transition is facilitated by(
I⊗

(
|LPQR〉 〈LNOR|+ |LNOR〉 〈LPQR|

)
⊗ I
)
|ψt〉 = |ψt+1〉
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To penalize states whose overlap with the states |ψt〉 and |ψt+1〉 is not the same, we would

use

I⊗
(
|LNOR〉 〈LNOR|+ |LPQR〉 〈LPQR|

)
⊗ I

−I⊗
(
|LPQR〉 〈LNOR|+ |LNOR〉 〈LPQR|

)
⊗ I,

which within the subspace spanned by |ψt〉 and |ψt+1〉 projectsfonto a state proportional to

|ψt〉−|ψt+1〉. The equal superposition of the two states is thus an eigenvector with eigenvalue

0. However, we want to use 2-local, not 4-local operators. If we simply involved only the

two particles that actually change (NO ↔ PQ), it would be possible that the resulting

terms like |PQ〉 〈NO| would apply to several places in a given configuration, leading to a

branching of the legal configuration sequence, instead of producing a simple connected line

C0 ↔ · · · ↔ Ct ↔ Ct+1 ↔ · · · ↔ CK . This could doom the construction by giving some

energy to history states. However, we will now show how to construct Ht from several 2-qudit

terms that can “pick out” and “check” the intended transitions between the configurations

Ct and Ct+1. The trick involves 2-local terms on surrounding qudits as well.

Let us look at a forward application of a rule that changes the qudits (i, i + 1), taking

them from a sub-configuration NO(i,i+1) to a sub-configuration PQ(i,i+1). We constructed

the legal configurations (see Table 4) so that this rule is applicable only to a configuration that

is uniquely identifiable by a sub-configuration XY(j,j+1) on some nearby qudits (j, j+1). Sim-

ilarly, the backwards applicability of this rule is uniquely identifiable by a sub-configuration

ZW(k,k+1) on some nearby qudits (k, k + 1). We now write a Hamiltonian checking the

application of this rule as

H
(rule)
prop,i = |XY 〉 〈XY |j,j+1 + |ZW 〉 〈ZW |k,k+1 − |PQ〉 〈NO|i,i+1 − |NO〉 〈PQ|i,i+1 . (19)

In the simplest case, XY = NO, ZW = PQ and i = j = k, so that XY,ZW,NO,PQ all

involve the same pair of particles (i, i + 1). For a more complicated case, let us look at rule

4(b) ©© ←→ �©© from Table 1. The forward applicability of the rule is uniquely

identified by the substring © on the first two particles, while the backwards applicability

of this rule is uniquely identified by the substring �©© on the second and third particles.

The Hamiltonian term checking this rule will be given in (27).

Let us now look at an example from a unary clock construction, to see that history states

retain a zero-energy for a Hamiltonian of the type (19).

4.2.1 Analogy with [7]

As an example, we recall [7], where the propagation Hamiltonian was reduced from 3-local

to 2-local. There, checking the progress of a unary clock register |s〉 = |1 · · · 1s0 · · · 0〉 can be

done with a 3-local Hamiltonian

Ht =
(
|100〉〈100|+ |110〉〈110| − |110〉〈100| − |100〉〈110|

)
t,t+1,t+2

, (20)

uniquely picking the states |t〉 and |t+ 1〉 for which the transition rule 100 ↔ 110 applies.

Instead, we can make it out of 2-local (and 1-local) terms

H ′t = |10〉〈10|t,t+1 + |10〉〈10|t+1,t+2 − |1〉〈0|t+1 − |0〉〈1|t+1. (21)

fUp to a constant, as it equals 2 |α〉 〈α| with |α〉 = 1√
2

(|ψt〉+ |ψt+1〉).
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with the first two terms uniquely identifying the places where the rule should apply, while the

last two (transition) terms are ambiguous in their applicability. The price for the decrease in

locality are “mistimed” transitions such as |111100〉 → |110100〉 in the unary clock register.

However, observe that the expectation value of this Hamiltonian in the uniform superposition

of unary clock states is zero, i.e.

1

T + 1

T∑
r,s=0

〈r|H ′t|s〉 = 0,

because the mistimed transitions in H ′t take the state out of the legal subspace, to states

orthogonal to any of the proper unary clock states. On the other hand, the transitions taking

place at proper places are easily shown to result in 0 energy. Thus, the restriction of H ′i to the

legal clock subspace spanned by {|0〉 , |1〉 , . . . , |T 〉} works exactly as the Hamiltonian Hunary
prop,i =

|t〉 〈t|+ |t+ 1〉 〈t+ 1|−|t+ 1〉 〈t|−|t+ 1〉 〈t| from (2). We conclude that a correct history state

(a superposition of all legal states) has expectation energy zero under the decreased-locality

propagation-checking Hamiltonian (21) from [7].

The projector terms in H ′t thus picked the applicability place uniquely, while the mistimed

transitions coming from the last two terms took the state out of the legal subspace (to non-

unary clock states). We will now use this insight to construct our Hprop from 2-local terms.

However, our task is more complicated, because the unary-clock propagation rule 100→ 110

for a certain location applied just once in a sequence of proper clock states. In our case, a

rule for moving a qubit (or a gate particle) at a given location in the chain could connect

configurations Ct ↔ Ct+1 as well as some other configurations Ct′ ↔ Ct′+1 with the data in

the chain shifted by a few positions.

4.2.2 Explicit form of the propagation-checking terms

Instead of writing the propagation Hamiltonian as a sum of terms Ht, we choose to write it

out as a sum of terms H
(rule ρ)
prop,i corresponding to different rules ρ applied at location pairs

(i, i + 1)ρ wherever rule ρ is applicable. This generalization is required because one rule ρ

for a pair of particles can facilitate legal transitions between several configuration pairs. The

propagation Hamiltonian is then

Hprop =

6∑
ρ=1

∑
(i,i+1)ρ

H
(rule ρ)
prop,i . (22)

and we want its application to a state |ψt〉 (corresponding to a legal configuration Ct with

2 ≤ t ≤ K) to result in

Hprop |ψt〉 = 2 |ψt〉 − |ψt−1〉 − |ψt+1〉+ illegal but locally detectable states. (23)

The propagation term corresponding to rule 1 (I ←→ Um( I )) in Table 1 is

simple, as it involves only the sites i and i+ 1 and does not create bad transitions. We want

to check the transfer of I to the right and the application of the gate Uti (corresponding to

the location i) to the qubit content of the two neighboring sites. This is done by

H
(rule 1)
prop,i = |I 〉〈I |i,i+1 + | I 〉〈 I |i,i+1 (24)

− Uti | I 〉〈I |i,i+1 − U†ti |I 〉〈 I |i,i+1, (25)
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and this term appears only for locations (i, i+ 1) of the type B in Table 5.

We continue with rule 2 ( I ◦© ←→ ◦© I , I ◦© ←→ ×© I , I© ←→ ◦© I )

for moving the I from position i to i + 1. Depending on the location in the chain, the

Hamiltonian term reads

H
(rule 2)
prop,i = |IO〉〈IO|i,i+1 + |P I 〉〈P I |i,i+1

− |P I 〉〈IO|i,i+1 − |IO〉〈P I |i,i+1, (26)

with PO = ◦© ◦© for locations (i, i + 1) of type A, PO = ×© ◦© for locations of type C, and

PO = ◦©© for locations of type E.

The propagation terms for rule 4 (I ©© ←→ �©© , ©© ←→ �©© ) govern

the creation of the symbol �© . We now involve three particles, but again, only two at a time,

leaving the Hamiltonian 2-local:

H
(rule 4)
prop,i = |X©〉〈X©|i,i+1 + |�©©〉〈�©©|i+1,i+2

− | �©〉〈X©|i,i+1 − |X©〉〈 �©|i,i+1 (27)

with X = I at locations of the type D and X = at locations of the type B. Only

the projector term identifying the backwards applicability of rule 4 involves a particle pair

different from (i, i+ 1).

Rule 5 ( �© ←→ �© , ◦© �© ←→ �© ◦© ) pushes �© to the left, and its checking

Hamiltonian is again simple:

H
(rule 5)
prop,i = |X �©〉〈X �©|i,i+1 + |�©X〉〈�©X|i,i+1

− |�©X〉〈X �©|i,i+1 − |X �©〉〈�©X|i,i+1 (28)

with X = ◦© at locations of the type ACE and with X = at locations of the type BD.

The Hamiltonian for rule 6 (×© �© ←→ ×© ×© I , ×© �© ←→ ×© ×© ) kills the

symbol �© and mirrors the ones for rule 4:

H
(rule 6)
prop,i = | ×© �©〉〈×© �©|i−1,i + | ×©W 〉〈×©W |i,i+1

− |×©W 〉〈�© |i,i+1 − |�© 〉〈×©W |i,i+1 (29)

with W = I at locations of the type D and W = at locations of the type B.

Rule 3 is the most complicated one since its definition is 4-local. We reduce the locality

by looking only at qudit pairs (i − 1, i) and (i + 1, i + 2) to identify the applicability of this

rule to states |ψt〉 and |ψt+1〉 which can be connected by an application of rule 3. Note that

the pair (i, i+ 1) has to be of the type ACE.

We begin by writing out the propagation terms corresponding to each of the possible

transitions in rule 3. Rule 3b ( ◦© ←→ ◦© ) applies to pairs (i, i + 1) of

type A, C, and E:

H
(rule 3b)
prop,i = | 〉〈 |i−1,i + | 〉〈 |i+1,i+2

− | ◦© 〉〈 ◦© |i,i+1 − | ◦©〉〈 ◦© |i,i+1. (30)
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Rule 3a (×© ◦© ←→ ×© ×© ) applies to pairs (i, i+ 1) of type A and E:

H
(rule 3a)
prop,i = | ×© 〉〈×© |i−1,i + | 〉〈 |i+1,i+2

− |×© 〉〈 ◦© |i,i+1 − | ◦©〉〈×© |i,i+1. (31)

Rule 3c ( © © ←→ ◦© © ) acts on pairs of type A and C:

H
(rule 3c)
prop,i = | 〉〈 |i−1,i + | © 〉〈 © |i+1,i+2

− | ◦© 〉〈 © |i,i+1 − | ©〉〈 ◦© |i,i+1. (32)

Finally, rule 3d (×© © © ←→ ×© ×© © ) handles a special type of illegal configuration

that contains only a single qubit-holding particle. In combination with rules 4-6, it helps to

move this qubit until it reaches a locally-detectable illegal configuration. For locations (i, i+1)

of type A, C and E, we write

H
(rule 3d)
prop,i = | ×© 〉〈×© |i−1,i + | © 〉〈 © |i+1,i+2

− |×© 〉〈 © |i,i+1 − | ©〉〈×© |i,i+1. (33)

To obtain the overall Hamiltonian for rule 3, we do not simply sum these four terms,

as we would include the terms | ×© 〉〈×© |i−1,i, | © 〉〈 © |i+1,i+2, | 〉〈 |i−1,i,

| 〉〈 |i+1,i+2 twice. The function of these projectors is to pick out the ‘before’ and ‘af-

ter’ configurations of the corresponding transition rule. Since we want each legal configuration

to picked out exactly once, we include them only in a single copy, i.e.

H
(rule 3)
prop,i = | 〉〈 |i−1,i + | 〉〈 |i+1,i+2 (34)

+ | ×© 〉〈×© |i−1,i + | © 〉〈 © |i+1,i+2 (35)

− | ◦© 〉〈 ◦© |i,i+1 − | ◦©〉〈 ◦© |i,i+1 (36)

− |×© 〉〈 © |i,i+1 − | ©〉〈×© |i,i+1 (37)

− |×© 〉〈 ◦© |i,i+1 − | ◦©〉〈×© |i,i+1 only at location types AE (38)

− | ◦© 〉〈 © |i,i+1 − | ©〉〈 ◦© |i,i+1 only at location types AC (39)

where the first four lines apply at locations (i, i+ 1) of the types ACE, and the last two lines

apply only at the location types listed (AE and AC). The projector terms in this Hamiltonian

term applied to a legal configuration now gives something nonzero only when rule 3 could

be applied to this legal configuration – and induces exactly one forward and one backward

legal transition. Possibly, it could also induce illegal transitions, which lead to illegal states

detectable by Hpen). On the other hand, when rule 3 (in its 4-local form) is not applicable

to a given configuration, we get no projection terms, only transitions to illegal states.

Note that we need to fix the prescriptions at the ends of the chain. We do this by omitting

the particles with positions with i − 1 < 1, i + 1 > 2nR or i + 2 > 2nR, e.g., using only a

single-particle projector | 〉〈 |1 as the first term in (34) at the location pair (1,2). Together,

all these terms make up Hprop.
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4.2.3 Applying the propagation Hamiltonian: examples

Let us see the Hamiltonian for rule 3 in action. We list a few examples, applying it in a

location of the type E (with a block boundary on the right), first to legal configurations:

a legal configuration applying H
(rule 3)
prop,i for (i, i+ 1) = (5, 6) gives

C1 = ×© ×© ×© ◦© © ©© · · · +×© ×© ×© ◦© © ©© · · · (projection)

−×© ×© ×© ◦© © ©© · · · (legal transition)

−×© ×© ×© ×© © ©© · · · (locally detectable)

C2 = ×© ×© ×© ×© ◦© ◦© © · · · +×© ×© ×© ×© ◦© ◦© © · · · (projection)

−×© ×© ×© ×© ×© ◦© © · · · (legal transition)

−×© ×© ×© ×© ◦© ◦© © · · · (locally detectable)

C3 = ×© �© ◦© ◦© © ©© · · · −×© �© ◦© ◦© © ©© · · · (locally detectable)

−×© �© ◦© ×© © ©© · · · (locally detectable)

For the first configuration C1, the pair (5,6) is indeed where rule 3 should apply. Thus we

get a projection from (34), and a legal transition from (36). There is an additional illegal

transition from (38), locally detectable by the illegal pair ×© . The second configuration C2

should transform forward by applying rule 3. The configuration is projected by (35), has a

legal transition from (38) and an extra illegal one from (36) with the bad substring ×© ◦© . For

the third configuration C3, rule 3 should not apply (the proper-transition producing rule is

now rule 5, involving �© ) – thus we get nothing from the projection terms (34)-(35). Instead,

we get two transitions to illegal states – (36) creates a state with a bad substring ◦© ◦© and

(38) makes a state detectable by the pair ◦© ×© .

Let us look at one more example, checking what H
(rule 3)
prop,i does to an illegal, allowed but

not locally detectable configuration. This special case is crucial for detecting configurations

with badly aligned blocks or with too few/too many qubits.

an allowed but illegal configuration applying H
(rule 3)
prop,i for the middle pair

C4 = · · · ×© ×© © ©© · · · +×© ×© ×© ×© © ©© ©© · · · (projection)

−×© ×© ×© ×© ×© ©© ©© · · · (loc. detectable)

(40)

The configuration C4 is projected once by (35) and an illegal transition from (37) makes a

configuration with a forbidden pair © . Note that we did not obtain a legal transition,

even though rule 3 was applicable and gave us a projection term. In Section 6.2 we will

translate this into a lower bound on the ground state energy for such states.

4.2.4 Classifying the legal and illegal transitions

When Hprop (22) acts on a state of the system, it induces changes in the configuration (besides

sometimes performing a two-qubit unitary operation). This construction differs from the one

in [9] in that the changes can occur at more than one location along the chain. This is readily

apparent when one considers the action of the whole propagation Hamiltonian on the state

with a configuration such as · · · ×© ×© I ◦© ◦© © ©© · · · (the first line in Table 2).
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We obtain

Hprop| · · · ×© ×© I ◦© ◦© © ©© · · · 〉 = + | · · · ×© ×© I ◦© ◦© © ©© · · · 〉
(41)

− | · · · ×© ×© ×© I ◦© © ©© · · · 〉

+ | · · · ×© ×© I ◦© ◦© © ©© · · · 〉

− | · · · ×© �© ◦© ◦© © ©© · · · 〉

− | · · · ×© ×© I ◦© ◦© © ©© · · · 〉

− | · · · ×© ×© I ◦© ×© © ©© · · · 〉

− | · · · ×© ×© I ◦© ◦© ×© ©© · · · 〉

with the first 2 terms coming from (26), connected with rule 2 for moving the I particle, the

second 2 terms coming from (29), connected with backward application of rule 6 for making �©
disappear. These 4 terms are exactly what we would like. However, we also obtain the three

transitions to locally detectable states on the 5-7th lines, due to (36)-(38), connected with

rule 3 for moving a qubit . The way the legal and locally detectable terms are produced

by Hprop in our construction obeys certain rules.

We can check thatHprop acting on a state |ψt〉 with a legal configuration (i.e. one appearing

in a computation as in Table 2, with a correct number of qubits, properly aligned between

boundaries) produces a superposition Hprop |ψt〉 that contains

1. The original legal state with amplitude 2 (for two rules that apply to it), except for

t = 0 and t = K, where the amplitude is 1 (only a single rule applies to those two

states).

2. Two new legal configurations: one due to a ‘forward’ transition to |ψt+1〉 and one due

to a ‘backward’ transition to |ψt−1〉. Note that for t = 0 and t = K we only get one

legal transition.

3. Some illegal terms, which are all locally detectable with Hpen (such as the 5th line in

(41), with the illegal combination ◦© ◦© ).

Points 1 and 2 are a property of our construction with projector terms uniquely picking

out only the “active” spots in a given configuration. We discuss the verification of point 3

(verifying that transition terms applied at inappropriate times are always locally detectable)

in the next section.

Note that there exist allowed (not containing one of the forbidden pairs) configurations

that are not locally detectable (such as the configuration C4 in (40) with a single qubit).

These are either improperly aligned or have an incorrect number of qubits. For some of these

states, Hprop gives only one transition to another allowed state, while it still projects onto

the state twice – this will be used to show the energy of such locally undetectable states is

still high. For example the configuration from (40) is projected twice by the terms in Hprop

corresponding to rules 3 and (the backwards application of) 6.

Lemma A configuration that does not contain any of the forbidden pairs (i.e. those penalized

by Hpen) is either one of the legal configurations (configurations that occur in the course of
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a computation), or (i) has a [qubits] string of incorrect length, or (ii) has a [qubits] string of

the right length, but improperly aligned with the block boundaries.

Proof: Careful checking of the allowed pairs at positions (i, i + 1) for odd i and even

i from Table 5 implies the allowed joining of symbol pairs given in Table 3). This in turn

restricts the legal/allowed configurations to form (x · · · x)[qubits](u · · · u) where [qubits] is a

nonzero string with the structure (5)-(13).

The only configurations that are not ruled out by these considerations are: (i) the legal

configurations, (ii) configurations with a [qubits] string of the wrong length (not containing

exactly n qubits), (iii) configurations with a [qubits] string with the right number of qubits,

but improperly aligned with the blocks (e.g. · · · ×© ×© ◦© I ◦© © © · · · which

eventually evolves to · · · ×© ×© ◦© ◦© I© © · · · with a bad pair I© indicative

of a misaligned block). �

5 Completeness

Suppose there exists a witness, |ξ〉, that is accepted by Vx with probability ≥ 1−ε. Beginning

with the initial state |ψ0〉 (4) that has n qubits with qubit content |0n−m〉 ⊗ |ξ〉, we get the

history state |η〉 = 1√
K+1

∑K
t=0 |ψt〉 associated with circuit Ṽx. The configurations occurring

in this superposition are exactly the legal configurations. Given that all the ancilla qubits

were initially in the |0〉 state, Hin evaluates to zero on |η〉. Since all the configurations in the

superposition are legal, Hpen also evaluates to zero.

We next note the following facts about the legal configurations to be used in the claim.

Fact 2 Any legal configuration can contain at most one substring on the lefthand side of the

transition rules 1–6. This means that to any legal configuration, at most one of the transition

rules can apply in the forward direction. Furthermore, a legal configuration can contain at

most one substring XY(j,j+1) (and thus be connected to a single projector term of the type

|XY 〉 〈XY |j,j+1 in all of Hrule ρ
prop,i (19)).

The first part of this fact can be verified by inspection of the list of legal configurations in

Table 2 and the transitions that can be applied to them in Table 1. To check the second part

(about the projector terms), in Table 5 we list the substrings XY identifying active spots in

legal configurations from the projector terms of the type |XY 〉 〈XY |j,j+1 in all of the Hrule ρ
prop,i.

An inspection of the legal sequence again shows that each state in it has only one spot where

one of the substrings XY appears (at a proper location with respect to the boundaries).

Fact 3 Any legal configuration can contain at most one substring from the righthand side

of the transition rules 1–6 (i.e. at most one transition rule applies to it in the backward

direction). Furthermore, a legal configuration can contain at most one substring ZW(k,k+1)

(and thus be connected to a single projector term of the type |ZW 〉 〈ZW |k,k+1 in all of Hrule ρ
prop,i

(19)).
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location type XY (for a forward transition) ZW (for a backward transition)

(A) · · ◦© �© , ×© �© �© ◦© , �©©
(B) · · I , , ×© , © , �© I , , ×© , © , �©
(C) · · ◦© �© , ×© �© �© ◦© , �©© , ×© I
(D) · · I © , �© ×© I , �©
(E) · · ◦© �© , ×© �© , I© �© ◦© , �©©

Table 6. Substrings identifying active spots in legal configurations. We list all of the substrings

appearing in the projector terms of the type |XY 〉 〈XY |j,j+1 and |ZW 〉 〈ZW |k,k+1 from all of the

Hrule ρ
prop,i terms (24), (26), (34), (27), (28) and (29). Finding a substring XY of a legal configuration

Ct uniquely indicates that the configuration is connected to some configuration Ct+1 ahead of it.

Similarly, finding a substring ZW uniquely locates a backward transition to some Ct−1.

Fact 4 For a legal configuration Ct, there can be multiple places containing one of the sub-

strings NO(i,i+1) or PQ(i,i+1) from all of the terms in Hrule ρ
prop,i (19). However, exchanging

any NO → PQ in Ct leads to locally detectable illegal configurations for all cases except one,

which gives the legal (following) configuration Ct+1. Similarly, exchanging any PQ → NO

in Ct leads to locally detectable illegal configurations for all cases except one, which gives the

legal (preceding) configuration Ct−1.

We have chosen the PQ’s and NO’s so that they work properly where they should, and always

produce locally detectable illegal configurations when used at “wrong times” (i.e. improper

locations). This can be checked by careful inspection of the transition rules and terms in

Hrule ρ
prop,i.

Claim 5 For any history state |η〉 with an initial configuration C0 from (4), 〈η|Hprop|η〉 = 0.

Proof: Let us see what happens when we apply Hprop to a state |ψt〉 with a legal configu-

ration Ct. The propagation Hamiltonian is made from terms of the type (19), with projection

terms built from substrings XY and ZW , and transition terms exchanging substrings NO

for PQ and vice versa.

First, due to Fact 2, a legal configuration Ct contains only one substring XY(j,j+1), and

this projection term will apply, producing |ψt〉. Second, due to Fact 4, the corresponding

transition term NO(i,i+1) → PQ(i,i+1) will apply, producing the state − |ψt+1〉. Possibly,

other transition terms for other substrings NO → PQ will apply at a different (or the same)

location, but these all produce locally detectable configurations, which are orthogonal to legal

ones. Third, due to Fact 3 we get a single projection term because of the unique substring

ZW(k,k+1), producing |ψt〉 again. Fourth, again due to Fact 4, we get a single legal transition

to − |ψt−1〉, and possible other, illegal, detectable states.

In sum, the action of Hprop on |ψt〉 (for 1 ≤ t ≤ K − 1) produces, − |ψt−1〉 + 2 |ψt〉 −
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|ψt+1〉 in the legal subspace, and a vector that lies in the space of locally detectable illegal

configurations. For the endpoint states, we only get Hprop |ψ0〉 = |ψ0〉 − |ψ1〉+ illegal states,

and Hprop |ψK〉 = |ψK〉 − |ψK−1〉+ illegal states. Observe that within the legal subspace,

both the rows and columns of the matrix form of Hprop sum to zero. Looking now at a

history state |η〉, a uniform superposition of legal states (for a given initial state), we obtain

〈η|Ht |η〉 = 0, since Hprop |η〉 = 0 when restricted to the legal subspace, and the illegal terms

produced by Hprop are orthogonal to |η〉. �
With the propagation Hamiltonian evaluating to zero on a proper history state, we have

〈η|JinHin + JpropHprop + JpenHpen|η〉 = 0.

Consider now the last remaining term in the Hamiltonian, 〈η|Hout|η〉. Since Hout acts only

on the state with I on the last qubit, this term equals 1
K+1 〈ψK |Hout|ψK〉 = p0

K+1 , where

p0 is the probability that the output qubit is zero in the final step. Since the computation

accepts with probability 1− p0 ≥ 1− ε, we have 〈η|Hout |η〉 ≤ ε
K+1 . Finally,

〈η|H |η〉 = 〈η| JinHin + JpropHprop + JpenHpen +Hout |η〉 ≤
ε

K + 1
. (42)

This concludes our completeness proof, showing that the energy for a proper history state

corresponding to the verifying computation on a well-accepted witness |ξ〉 is close to zero.

Therefore, the ground state energy of H is also small, in fact it is upper-bounded by a = ε
K+1 ,

where K = (R− 1)(3n2 + 2n− 1) + 2n, with R a polynomial in n.

6 Soundness

We now need to show that in the case that there exists no witness that is accepted by Vx
with probability greater than ε, the ground state energy of H is bounded away from zero.

We partition the set of configurations into minimal sets S that are invariant under the

action of Hprop. The invariant sets are of three types:

1. Sets that contain legal configurations and locally detectable illegal configurations.

2. Sets that contain only locally detectable illegal configurations.

3. Sets that contain only illegal configurations, some of which are not locally detectable

As we have seen previously, the action of Hprop on a legal configuration produces legal ‘for-

ward’ and ‘backward’ transitions, besides transitions to illegal configurations.

Illegal configurations that are not locally detectable either have the wrong number of

qubits or have the right number of qubits but are incorrectly alignedgwith the blocks. Since the

transition rules do not change the number of two-state sites in a configuration nor change the

alignment of the [qubits] string, legal configurations cannot transition to illegal configurations

that are not locally detectable. Similarly, illegal configurations that are not locally detectable

can only turn into other non-locally detectable illegal configurations, or into locally detectable

illegal configurations.

gAn example of a locally undetectable, misaligned sequence: · · · ×© ◦© ◦© I © © © © © · · ·
The block length is 4, and when the I particle eventually reaches the front of the [qubits], it will happen
away from a sequence boundary – there we’ll be able to detect it.
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A vector belonging to a subspace of type 2 has energy ≥ Jpen, due to the presence of at

least one locally detectable illegal pair that is penalized by Hpen. We now need to show that

vectors from spaces of type 1 and 3 have high energy. We do this by repeated use of the

Projection Lemma, a technique introduced in [7]. The lemma allows us to bound the ground

state energy of our Hamiltonian by restricting it to progressively smaller subspaces of the

Hilbert space.

Lemma 1 (Projection Lemma, [7] Lemma 1) Let H = H1 + H2 be the sum of two

Hamiltonians operating on some Hilbert space H = S + S⊥. Suppose the Hamiltonian H2

is such that S is a zero eigenspace and the eigenvectors in S⊥ have eigenvalue at least J >

2||H1||. Then,

λ(H1|S)− ‖H1‖2

J − 2‖H1‖
≤ λ(H) ≤ λ(H1|S) (43)

where λ(A) denotes the lowest eigenvalue of an operator A.

6.1 Type 1 subspace

We consider the action of H on H1, the space spanned by configurations of type 1. We apply

the projection lemma with

H1 = JinHin + JpropHprop +Hout, H2 = JpenHpen.

Let Spen be the subspace of H1 that is spanned by legal configurations. Then Spen ⊆ H1 is

the zero eigenspace of H2. On S⊥pen, H2 has energy ≥ Jpen. Since ‖H1‖ ≤ poly(n), we can

pick Jpen to be some polynomial such that Jpen > 2‖H1‖, allowing us to apply the projection

lemma:

λ(H) ≥ λ(H1|Spen
)− 1/8. (44)

Now we bound the lowest eigenvalue of H1|Spen
,

H1|Spen = Hout|Spen + JinHin|Spen + JpropHprop|Spen .

We apply the projection lemma again, with

H ′1 = Hout|Spen
+ JinHin|Spen

, H ′2 = JpropHprop|Spen
.

To simplify the analysis of the eigenvalues of Hprop, we rotate to a different basis – one in

which all the gates from Vx are just the identity operator. We define the unitary matrix W :

W =

K∑
t=0

Ut · · ·U1 ⊗ |t〉〈t|

where |t〉 represents the configuration in the t-th step of the computation, and Ut, . . . , U1 are
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the first t unitary operations performed on the qubit content of the particles. Then we have,

W †Hprop|Spen
W = I ⊗



1
2 − 1

2 0 0 · · · 0 0

− 1
2 1 − 1

2 0 · · · · · · 0

0 − 1
2 1 − 1

2

. . .

0 0 − 1
2

. . .
. . .

...

...
. . . 0

0 1 − 1
2

0 0 · · · 0 − 1
2

1
2


(K+1)×(K+1)

. (45)

This matrix has only one zero-eigenvector, namely the valid history state. Therefore

Sprop ⊂ Spen ⊂ H1 the set of correct history states (disregarding initial state of ancilla

qubits). This matrix has second largest eigenvalue ≥ 1
2(K+1)2 (see Appendix 1). Therefore, in

S⊥prop, H ′2 has minimum energy ≥ Jprop · 1
2(K+1)2 . Choosing Jprop so that

Jprop
2(K+1)2 > 2‖H ′1‖,

the projection lemma gives us:

λ(H1|Spen
) ≥ λ(H ′1|Sprop

)− 1

8
. (46)

We now apply the projection lemma a third time, to H ′1|Sprop
, with

H ′′1 = Hout|Sprop
, H ′′2 = JinHin|Sprop

.

H ′′2 has zero eigenspace Sin ⊂ Sprop ⊂ Spen ⊂ H1, the set of history states with correctly

initialized ancilla qubits. Since H ′′2 is in the standard basis and applies to vectors that are

history states with 0 on the ancilla input (i.e., in S⊥in), H ′′2 has minimum energy O
(

1
K+1

)
.

Therefore, Jin can be chosen so that Jin
K+1 > 2‖H ′′1 ‖. Then

λ(H ′1|Sprop) ≥ λ(H ′′1 |Sin)− 1

8
, (47)

and H ′′1 |Sin = Hout|Sin . For any input state |ξ, 0〉, the circuit Vx accepts with probability < ε.

Therefore, for any |η〉 ∈ Sin, we have 〈η|Hout|η〉 > (1−ε)/(K+1). In particular, this is true for

the eigenvector |η〉 of Hout with the lowest eigenvalue. Therefore λ(Hout|Sin) ≥ (1−ε)/(K+1).

Combining (47) with (44) and (46), we have λ(H) ≥ 5
8 − ε.

Now we look at vectors from subspaces of type 3.

6.2 Type 3 subspace

A locally undetectable illegal configuration either (i) has the wrong number of qubits, or (ii)

has the [qubits] string incorrectly aligned with the blocks.

Consider a (locally undetectable illegal) configuration with a I site. The [qubits] string

either crosses a block boundary, or is too short (or both). The I moves right until it either

hits the end of the [qubits] string or it hits a block boundary. If the end of the [qubits] string

does not coincide with a block boundary, the configuration eventually evolves to contain either

I ◦© or I© , both of which are locally detectable. If the end of the [qubits] string does
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coincide with the block boundary (this can only happen when the [qubits] string is too short),

the qubits get moved over into the next block, where a I is generated again, and, moving

right, eventually produces a pair I© , which is locally penalized.

A locally undetectable illegal configuration with a �© also eventually evolves into a locally

detectable one: the �© moves the [qubits] string to the right until the beginning of the [qubits]

string coincides with the beginning of a block, and generates a I , at which point the above

argument applies.

If our locally undetectable illegal configuration has neither I or �© , i.e. its [qubits]

substring consists only of s (separated by ◦© s), the qubits begin to move themselves to the

right, eventually generating a �© or I flag, at which point, the previous arguments apply:

the evolution does indeed result in a locally detectable configuration.

In all the above cases, a locally detectable illegal configuration is reached within polyno-

mially many steps/transitions. To see this, consider a configuration with n′ qubits. It takes

poly(n′) steps to move the [qubits] string over one block, and by the preceding arguments,

a locally checkable configuration must be reached at some point in this ‘round’ of compu-

tation. Since n′ can be at most 2nR, this number of steps (which we label K ′) must be

polynomial in n. In other words, the transition rules eventually take the state outside H3 =

Span(configurations of type 3). We can treat the restriction of Hprop to H3 in much the same

way as we did its restriction to H1.

We attempt to bound the lowest eigenvalue of JpenHpen + JpropHprop on H3 using the

projection lemma, with H1 = JpropHprop and H2 = JpenHpen. The zero eigenspace of H2 is

the space of illegal states that are not locally detectable, Spen ⊂ H3. H2 has energy ≥ Jpen

on S⊥pen. Choosing Jpen to be poly(Jprop‖Hprop‖),

λ(H) ≥ λ(H1|Spen
)− 1

8
. (48)

We now need the lowest eigenvalue of JpropHprop|Spen
. We rotate bases once again, using

the unitary matrix W defined earlier, with the difference that |t〉 now represents the t-th

configuration in the sequence of (locally undetectable) illegal configurations that arises from

the transition rules and forms the steps of the ‘computation’. This sequence of configurations

terminates in a locally detectable illegal configuration on at least one end. (The other end

of the sequence could be a locally undetectable illegal configuration from which there are no

further transitions.) When we have a transition to a locally illegal configuration, the action of

Hprop on the last nonlocally detectable illegal configuration (|K ′〉) in the sequence is to pick

this configuration out twice, i.e., there are two projectors onto this configuration in Hprop|Spen
,

with the result that, in the space of configurations, the last (or first, or both) diagonal element

of W †Hprop|Spen
W is 1 instead of 1

2 .
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In other words, W †Hprop|Spen
W looks like

I ⊗



f − 1
2 0 0 · · · 0 0

− 1
2 1 − 1

2 0 · · · · · · 0

0 − 1
2 1 − 1

2

. . .

0 0 − 1
2

. . .
. . .

...

...
. . . 0

0 1 − 1
2

0 0 · · · 0 − 1
2 g


(K′+1)×(K′+1)

(49)

with f = 1, g = 1
2 or f = g = 1. This is a matrix for a quantum walk on a line with particular

boundary conditions.

The least eigenvalue of either of these matrices is O
(

1
(K′+1)2

)
(see Appendix 1). Since

K ′ is a polynomial in n, choosing Jprop to be an appropriately large polynomial in n, we can

lower-bound the energy of H on type-3 subspaces by some constant.
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Appendix A Eigenvalues

Here we analyze the eigenvalues of the three matrices in Section 6. Our matrices are of
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the form: 

f − 1
2 0 0 · · · 0 0

− 1
2 1 − 1

2 0 · · · · · · 0

0 − 1
2 1 − 1

2

. . .

0 0 − 1
2

. . .
. . .

...

...
. . . 0

0 1 − 1
2

0 0 · · · 0 − 1
2 g


(L+1)×(L+1)

(A.1)

where, in subspaces of type 1, f = g = 1
2 , and in subspaces of type 3, either (i) f = g = 1

or (ii) f = 1 and g = 1
2 (we could also have f = 1

2 and g = 1, but this doesn’t change the

eigenvalues).

We wish to solve the eigenvalue equation Mx = λx, where M is our matrix, and x =

(x0, x1, x2, . . . , xL)T . It is easy to see that x must satisfy the equations

− 1

2
xj−1 + xj −

1

2
xj+1 = λxj for 1 ≤ j ≤ L− 1. (A.2)

We use the ansatz

xj = A cos k(j + c) +B sin k(j + c). (A.3)

where A, B, k and c are reals. Plugging this into (A.2):

−(cos k) (A cos k(j + c) +B sin k(j + c)) = (λ− 1) (A cos k(j + c) +B sin k(j + c))

λ = 1− cos k

Any vector x with xj = A cos k(j + c) + B sin k(j + c) satisfies (A.2) with λ = 1 − cos k.

Now we apply the ‘boundary conditions’ in the first case (f = g = 1
2 ). The eigenvectors and

eigenvalues are

λm = 1− cos

(
mπ

L+ 1

)
,

|ψm〉 =

L∑
j=0

cos

(
mπ

L+ 1
(j +

1

2
)

)
|j〉 for m = 0, 1, . . . , L.

We can check this by plugging into the boundary condition equations

1

2
x0 −

1

2
x1 = (1− cos k)x0,

−1

2
xL−1 +

1

2
xL = (1− cos k)xL.

The lowest eigenvalue in this case is 0 (when m = 0). The second-lowest eigenvalue is

1− cos

(
π

L+ 1

)
>

(
1

L+ 1

)2(
π2

2!
− π4

4!(L+ 1)2

)
= Ω

(
1

(L+ 1)2

)
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i.e., 1/poly(L), where L is the number of steps, as promised.

Now we consider the next set of boundary conditions f = g = 1 (subspace of type 3). We

get eigenvalues and eigenvectors:

λm = 1− cos

(
(m+ 1)π

L+ 1

)
,

|ψm〉 =

L∑
j=0

cos

(
(m+ 1)π

L+ 2
(j + 1)

)
|j〉 for m = 0, 1, . . . , L.

This is again easily checked by plugging into the equations

x0 −
1

2
x1 = (1− cos k)x0,

−1

2
xL−1 + xL = (1− cos k)xL.

The lowest eigenvalue here is λ0 = 1− cos
(

π
L+2

)
, which is Ω( 1

(L+2)2 ).

The final set of boundary conditions to consider is f = 1, g = 1
2 . The eigenvalues and

eigenvectors in this case are:

λm = 1− cos

(
(2m+ 1)π

2L+ 3

)
,

|ψm〉 =

L∑
j=0

sin

(
(2m+ 1)π

2L+ 3
(j + 1)

)
|j〉 for m = 0, 1, . . . , L.

The lowest eigenvalue here is λ0 = 1− cos
(

π
2L+3

)
= Ω( 1

(2L+3)2 ).
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