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Abstract
One of the hallmarks of quantum theory is the realization that distinct
measurements cannot in general be performed simultaneously, in stark contrast
to classical physics. In this context the notions of coexistence and joint
measurability are employed to analyze the possibility of measuring together two
general quantum observables, characterizing different degrees of compatibility
between measurements. It is known that two jointly measurable observables are
always coexistent, and that the converse holds for various classes of observables,
including the case of observables with two outcomes. Here we resolve, in the
negative, the open question of whether this equivalence holds in general. Our
resolution strengthens the notions of coexistence and joint measurability by
showing that both are robust against small imperfections in the measurement
setups.

PACS numbers: 03.65.Ta, 03.65.Ca, 03.67.−a

It is well known that two quantum observables can in general not be measured
together [1]. In describing the relation between two or more quantum observables,
several related notions are in use. The most prominent ones are: commutativity (COM),
non-disturbance (ND), joint measurability (JM), and coexistence (COEX) [2–6]. Whereas,
as the names suggest, joint measurability and non-disturbance can easily be understood in
operational terms, commutativity and coexistence at first glance rely more on the underlying
mathematical representation of quantum observables.

The connections between all these properties are well studied for pairs of general quantum
observables, which are given in terms of positive operator-valued measures (POVMs). If the
POVMs are projection-valued—the case considered in most undergraduate quantum physics
textbooks—then all four notions turn out to coincide, which may explain why they are
sometimes used interchangeably. In general, we know that

COM ⇒ ND ⇒ JM ⇒ COEX

holds, and that the first two implications are strict in the sense that the reverse implications
do not hold in general [2]. The last implication, however, appears to be more subtle: while
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joint measurability is known to imply coexistence, it is a persistent open problem whether the
converse holds as well [6–8]. The present communication resolves this problem.

We begin by recalling the basic definitions and setting the notation. On a complex Hilbert
space H, a linear operator E with 0 � E � 1 is called an effect. The set of effects is denoted
by E (H). A general quantum observable (or measurement) is described by a POVM A, which
is a countably additive mapping A : A → E (H) on a σ -algebra A of subsets of �A satisfying
A(�A) = 1. The set �A represents the possible outcomes of the measurement. For any input
state ρ describing the initial preparation of the quantum system and for any X ∈ A, the
expression tr[ρA(X )] then gives the probability of obtaining a measurement outcome x ∈ X
[9]. We denote by ran(A) := {A(X )|X ∈ A} the set of effects corresponding to A.

For the results below it will be sufficient to consider finite outcome sets �A = {1, . . . , n}
equipped with the discrete σ -algebra A that contains all subsets of �A; we call A an n-outcome
observable. In this case, A is fully determined by the effects Ak := A({k}) for k ∈ {1, . . . , n},
and abusing notation we then write A = (A1, . . . , An).

We now define the two notions whose relationship we want to clarify.

Definition 1 (Coexistence). Two POVMs A and B are called coexistent if there exists a POVM
M such that ran(A) ∪ ran(B) ⊆ ran(M).

The notion of coexistence was introduced for effects and for observables by Ludwig [3] and
refined to the present definitions by Busch, Lahti and Mittelstaedt [10]. Coexistence of the two
observables A and B ensures that each effect of A or B can be simulated by the measurement
M, and even that all binary observables that can be formed from A and B can be measured
simultaneously, but it does not directly provide a way to measure the entire observables A and
B simultaneously.

A simultaneous measurement is possible when A and B are both marginals of a single
observable. This is captured by the following notion:

Definition 2 (Joint measurability). Two POVMs A : A → E (H) and B : B → E (H) are
jointly measurable if there exists a POVM J : J → E (H) on the σ -algebra J generated by
A × B, such that for all X ∈ A and Y ∈ B,

A(X ) = J(X × �B), B(Y ) = J(�A × Y ).

Joint measurability of two observables immediately implies their coexistence. The
converse also follows easily for binary observables: the two-outcome POVMs A = (A1, 1−A1)

and B = (B1, 1 − B1) are coexistent if and only if they are jointly measurable [6, 11, 12].
Beyond this case of two outcomes, several broad classes of observables have been

identified for which coexistence and joint measurability are equivalent [5, 6, 12–14]: for
example projection-valued POVMs [5]; all cases in which one of the POVMs is determined by
a discrete set of linearly independent rank-1 effects, as noticed very recently [14]1,2 or POVMs
with effects contained in a regular effect algebra [12]. So far, however, it has been an open
question whether the equivalence holds for all pairs of observables [6–8].

We answer this question by providing an instance of coexistent observables that are not
jointly measurable. The example has |�A| = 3 and |�B| = 2 and is thus minimal in terms of
the number of outcomes beyond the known two-outcome case.

1 Note that this work followed the initial submission of the present work as a preprint at arXiv:1307.6986.
2 The results of [14] have recently been extended to the case where one of the POVMs is discrete and extreme, but
not necessarily with rank-1 effects (T Heinosaari, private communication).
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Let {|1〉, |2〉, |3〉} be an orthonormal basis in H = C
3 and |ψ〉 := (|1〉 + |2〉 + |3〉)/√3.

Consider the following effects:

Ai := 1
2

(
1 − |i〉〈i|), i ∈ {1, 2, 3},

B1 := 1
2 |ψ〉〈ψ |, B2 := 1 − B1.

Proposition 1. The POVMs A := (A1, A2, A3) and B := (B1, B2) are coexistent, but not jointly
measurable.

Proof. To prove coexistence of A and B, each of which has at most three outcomes, we have
to construct a POVM whose range contains each Ai and Bj. The five-outcome observable

M := (
1
2 |1〉〈1|, 1

2 |2〉〈2|, 1
2 |3〉〈3|, B1,

1
21 − B1

)

clearly does the job. Concerning joint measurability we argue by contradiction. Suppose the
observables A and B were jointly measurable. Then, by definition 2, there exist effects Ji j � 0
such that

∀i :
2∑

j=1

Ji j = Ai, and ∀ j :
3∑

i=1

Ji j = Bj . (1)

Since by equation (1) the positive-semidefinite operators Ji1 sum to the rank-1 operator B1,
we must necessarily have Ji1 = ciB1 for some numbers ci � 0. Hence, again by equation (1),
Ai = ciB1 + Ji2, which, after taking the overlap 〈i| · |i〉, becomes

0 = ci

2
|〈i|ψ〉|2 + 〈i|Ji2|i〉 ∀i ∈ {1, 2, 3}.

This implies ci = 0 for all i due to |〈i|ψ〉|2 = 1/3 and 〈i|Ji2|i〉 � 0. Then, however, Ji1 = 0
for all i, and equation 1 leads to the desired contradiction B1 = ∑

i Ji1 = 0. �

By padding both POVMs from proposition 1 with effects 0 ∈ E (H), one sees that for
every n � 3, m � 2 there exist n- resp. m-outcome POVMs A and B that are coexistent but not
jointly measurable.

Proposition 1 enables a geometric picture of joint measurability and coexistence for pairs
of observables on a fixed Hilbert space H of finite dimension at least 3. First consider the pair
(In, Im), where Ik := (1/k, . . . , 1/k) denotes the k-outcome POVM corresponding to the toss of
an unbiased k-sided coin. Obviously, In and Im are jointly measurable. Since n- resp. m-outcome
observables A and B are jointly measurable whenever all their effects satisfy Ai � 1/2n and
Bj � 1/2m [15], any pair (A, B) sufficiently close to (In, Im) is jointly measurable as well.
Within the set ALL of all pairs of POVMs, the set JM of jointly measurable pairs has thus a
non-empty open interior, see figure 1. By definition 2, JM is furthermore convex and closed
in the direct sum space of all pairs. Closedness of JM is ensured for pairs of finite-outcome
observables on the finite-dimensional H since the joint observables J from definition 2 then
live in a compact set.

The set COEX of coexistent pairs of n- resp. m-outcome POVMs is convex as well
since coexistence of A and B is equivalent to the joint measurability of the collection of all
binary POVMs that can be formed from A and B. The preceding observations thus lead to
the conclusion depicted in figure 1: since proposition 1 guarantees the existence of a pair
(A, B) ∈ COEX\JM for n � 3, m � 2, the intersection of COEX\JM with the convex set
spanned by (A, B) and JM has a non-empty open interior. Therefore, the set COEX\JM itself
has a non-empty open interior, i.e. positive volume.
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Figure 1. An illustration of the compact convex sets of all pairs (A, B) of n- resp. m-outcome
observables (ALL), of coexistent pairs (COEX), and of jointly measurable pairs (JM). The set
JM contains an open neighborhood around the pair (In, Im) of uniformly random observables
and thus has positive volume. For n � 3, m � 2, the existence of the pair (solid dot) from
proposition 1 implies that the set difference COEX\JM has positive volume (see shaded area),
whereas COEX = JM whenever n, m � 2 [6, 11, 12]. By similar reasoning, ALL\COEX has
positive volume iff n, m � 2.

We emphasize that the latter conclusion resolves the question answered by this
communication in a strong sense: whereas it was previously unknown whether there exists
even one coexistent but not jointly measurable pair of observables, our proposition 1 implies
that both notions are different and that this difference is not merely an exceptional or spurious
effect. Rather, a positive fraction of all pairs of observables are jointly measurable, and another
positive fraction are coexistent but not jointly measurable. This ensures stability features
against small perturbations in the distinction between coexistence and joint measurability,
which makes both notions more meaningful and robust in experimental setups.
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