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We study hybrid superconducting-semiconducting nanowires in the presence of Rashba spin-orbit

interaction aswell as helicalmagnetic fields.We show that the interplay between them leads to a competition

of phases with two topological gaps closing and reopening, resulting in unexpected reentrance behavior. In

addition to the topological phasewith localizedMajorana fermions (MFs) we find new phases characterized

by fractionally charged fermion (FF) bound states of Jackiw-Rebbi type. The system can be fully gapped by

the magnetic fields alone, giving rise to FFs that transmute intoMFs upon turning on superconductivity. We

find explicit analytical solutions for MF and FF bound states and determine the phase diagram numerically

by determining the correspondingWronskian null space.We show by renormalization group arguments that

electron-electron interactions enhance the Zeeman gaps opened by the fields.

DOI: 10.1103/PhysRevLett.109.236801 PACS numbers: 73.63.Nm, 74.45.+c

Introduction.—Majorana fermions [1] (MFs) in con-
densed matter systems [2], interesting from a fundamental
point of view as well as for potential applications in
topological quantum computing, have attracted wide
interest, both in theory [3–16] and experiment [17–19].
One of the most promising candidate systems for MFs are
semiconducting nanowires with Rashba spin-orbit interac-
tion (SOI) brought into proximity with a superconductor
[7–9]. In such hybrid systems, a topological phase with a
MF at each end of the nanowire is predicted to emerge once
an applied uniform magnetic field exceeds a critical value
[6–9]. As pointed out recently [20], the Rashba SOI in such
wires is equivalent to a helical Zeeman term, and thus the
same topological phase with MFs is predicted to occur
in hybrid systems in the presence of a helical field but
without SOI [21,22].

Here, we go a decisive step further and address the
question, what happens when both fields are present, an
internal Rashba SOI field as well as a helical—or more
generally—a spatially varying magnetic field. Quite remar-
kably, we discover that due to the interference between the
two mechanisms the phase diagram becomes surprisingly
rich, with reentrance behavior of MFs and new phases
characterized by fractionally charged fermions (FF), anal-
ogously to Jackiw-Rebbi fermion bound states [23]. Since
the system is fully gapped by the magnetic fields at certain
Rashba SOI strengths (in the absence of superconducti-
vity), these FFs act as precursors of MFs into which they
transmute by turning on superconductivity.

The main part of this Letter aims at characterizing the
mentioned phase diagram. For this we find explicit solu-
tions for the various bound states, which allows us to derive
analytical conditions for the boundaries of the topological
phases. We also perform an independent numerical search
of the phases and present results illustrating them. We
show that the phases can be controlled with experimentally

accessible parameters, such as the uniform field or the
chemical potential. We formulate the topological criterion
as a condition local in momentum space via the kernel
dimension of the Wronskian, which does not require the
knowledge of the spectrum in the entire Brillouin zone.
We also address interaction effects and show that they
increase all Zeeman gaps and thereby the stability of the
topological phase.
Model.—We consider a system consisting of a semi-

conducting nanowire with Rashba SOI in proximity with
an s-wave bulk superconductor and in the presence of
magnetic fields which contain uniform and spatially vary-
ing components, see Fig. 1. The Rashba spin-orbit inter-
action is characterized by a SOI vector � pointing along,
say, the z axis. The effective continuum Hamiltonian for
the nanowire is in Nambu representation given by H0 ¼
1
2

R
dxc yðxÞH 0c ðxÞ with

H 0 ¼ ð�@
2@2x=2m��Þ�3 � i��3�3@x; (1)

wherem is the electron mass. Here, c ¼ ð�";�#;�
y
" ;�

y
# Þ,

and �ðyÞ
� ðxÞ, with � ¼"; # , is the annihilation (creation)

FIG. 1 (color online). Schematics of the hybrid semiconducting-
superconducting system, consisting of a finite Rashba nanowire
(green cylinder) on top of an s-wave bulk superconductor (red slab)
in the presence of a uniform magnetic fieldB (grey arrow) applied
along the nanowire in x direction. Periodically arranged nano-
magnets (blue bars) produce a spatially varying magnetic field
BnðxÞ (grey arrows). We note that BnðxÞ can also be generated
intrinsically, e.g., by a helical hyperfine field of nuclear spins inside
the nanowire [24].
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operator for a spin � (up or down) electron at position x.
The Pauli matrix �i (�i) acts in the spin (electron-hole)
space. The spectrum of H 0 consists of four parabolas
centered at the Rashba momentum �kso ¼ �m�=@2, see
Fig. 2. The chemical potential � is chosen to be zero at the
crossing of the Rashba branches at k ¼ 0.

The uniform (B) and spatially varying (Bn) magnetic
fields lead to the Zeeman term,

H z ¼ g�B½Bþ BnðxÞ� � ��3=2; (2)

where g is the g factor and �B the Bohr magneton.
The proximity-induced superconductivity couples states
of opposite momenta and spins and is described by H s ¼
�s�2�2, where the effective pairing amplitude �s can be
assumed to be non-negative.

From now on, we assume that the SOI energym�2=@2 is
the largest energy scale at the Fermi level in the problem.
In this strong SOI regime, we can treat the B fields and �s

as small perturbations. This allows us to linearize the full
Hamiltonian H 0 þH z þH s around k ¼ 0 (referred to
as interior branches) and k ¼ �2kso (referred to as exterior
branches), see Fig. 2. This entails that we can use the ansatz

�ðxÞ ¼ R" þ L# þ L"e�2iksox þ R#e2iksox; (3)

where the right mover R�ðxÞ and the left mover L�ðxÞ are
slowly varying fields. For a uniform magnetic field alone
(chosen along the x axis) the full Hamiltonian becomes

H ¼ 1
2

R
dx ~c ðxÞyH ~c ðxÞ with

H ¼�i@�F�3�3@xþ�z�3�1ð1þ�3Þ=2þ�s�2�2; (4)

where the Pauli matrix �i acts in the interior-exterior

branch space, and ~c ¼ ðR"; L#; R
y
" ; L

y
# ; L"; R#; L

y
" ; R

y
# Þ.

The Fermi velocity is given by �F ¼ �=@ and the
Zeeman energy by �z ¼ g�BB=2. Next, we include the
spatially varying magnetic field and assume that it has a
substantial Fourier component either at 4kso (case I) or at

2kso (case II), leading to additional couplings between all
branches of the spectrum, see Fig. 2. Next, we treat the two
cases in turn and will see that the interplay of Rashba and
magnetic fields leads to a surprisingly rich diagram of
topological phases.
Case I.—Here, we consider BnðxÞ with period 4kso and

perpendicular to �. For a field with oscillating amplitude
only, we consider two geometries,Bn;x¼ x̂Bncosð4ksoxþ�Þ
andBn;y ¼ ŷBn sinð4ksoxþ �Þ, with arbitrary phase shift �,
while for a helical field we consider a field with anticlock-
wise rotation, ðBn;x þBn;yÞ=2. (Clockwise rotation does not
lead to coupling.) We note that BnðxÞ can also be generated
intrinsically, e.g., by the hyperfine field of ordered nuclear
spins inside the nanowire [24]. All geometries lead
to identical results: they affect only the exterior branches
(see Fig. 2) and the corresponding Hamiltonian remains
block diagonal in � space. The full Hamiltonian becomes
H 4kso ¼ H þ �nð�1 cos� � �2 sin�Þ�3ð1 � �3Þ=2,
where �n ¼ g�BBn=4. The spectrum for the exterior
(l ¼ e) and interior (l ¼ i) branches is given by

E2
l ¼ ð@�FkÞ2 þ �2

s þ �2
l þ�2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

s�
2
l þ�2½ð@�FkÞ2 þ �2

l �
q

; (5)

where �e=i ¼ �n=z. We note the equivalence of effects of a

uniform field on the interior branches and of a periodic field
on the exterior branches. The spectrum is fully gapped except
for two special cases, �2

n=z ¼ �2
s þ�2. This suggests that

there will be transitions between different nontrivial phases.
We identify these phases by the presence or absence of

bound states inside the gap. For this it is most convenient to
study the Wronskian corresponding to the four decaying
fundamental solutions [25]. Here, we consider a semi-
infinite nanowire, with a boundary at x ¼ 0, and assume
that all decay lengths will be shorter than the system
length. For fixed parameters (including the energy E), we
find the four decaying eigenstates ofH 4kso for the left and

right movers. Using Eq. (3), we express them in the basis of
the original fermionic fields c , leading to four four-spinor
solutions �j with j ¼ 1; :::; 4, and construct a 4� 4
Wronskian matrix WijðxÞ ¼ ½�jðxÞ�i. The dimension d of

the null space ofWð0Þ determines the system phase: d ¼ 0
corresponds to a phase with no bound states (trivial phase),
d ¼ 1 at E ¼ 0 to a phase with one single MF (topological
phase), d ¼ 2 at E ¼ 0 or d ¼ 1 at E � 0 to a phase with
one localized fermion of fractional charge (see below)
(fermion phase). We refer to the trivial and fermion phases
as nontopological. Finally, the knowledge of theWð0Þ null
space allows us to construct the bound state wave func-
tions, expressed in terms of linearly dependent combina-
tions of �j fulfilling the Dirichlet boundary condition at
x ¼ 0. In the Supplemental Material [26], we list the
analytical solutions for the MF bound states, from which
we see explicitly that these solutions are robust against any

FIG. 2 (color online). The spectrum of Rashba nanowire con-
sists of parabolas shifted by �kso: solid and dashed lines
correspond to the electron and hole spectrum, respectively.
The outer circles (dotted) mark the exterior branches and the
inner circle (dotted) marks the interior branches. A spatially
varying magnetic field with period 4kso (lower horizontal arrow)
couples the exterior branches. Similarly, a uniform magnetic
field couples the interior branches at k ¼ 0 (not indicated).
A spatially varying magnetic field with period 2kso (upper two
horizontal arrows) mixes exterior with interior branches.
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parameter variations (topologically stable) as long as the
topological gap remains open.

For case I, we find that the system is in the topological
phase if one of the following inequalities is satisfied,

ðIAÞ<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n ��2
q

< �s <<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z ��2
q

; (6)

ðIBÞ<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z ��2
q

<�s <<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n ��2
q

; (7)

with the corresponding MF wave functions given in the
Supplemental Material [26]. Case IA goes into IB upon
interchange �z $ �n. As anticipated after Eq. (5), the
boundaries of the topological phase correspond to the
system being gapless. In the absence of Bn, there is only
one topological gap, which arises from the interior
branches [7,8]. In this case, only condition IA can be
satisfied, and a MF emerges when the uniform B field
exceeds a critical value. However, in the presence of Bn,
the exterior gap is also topological. As shown in Fig. 3, the
interplay between the two gaps leads to a rich phase
diagram with reentrance behavior. For instance, if j�lj>
j�j and �s ¼ 0, the system is in the nontopological phase

but still fully gapped by the magnetic fields. With increas-
ing �s, first the exterior (interior) gap closes and reopens,
bringing the system into the topological phase. Then, upon
further increase of�s, the interior (exterior) gap closes and
reopens, bringing the system back into the nontopological
phase.
We note that case IB allows the presence of a MF in

weaker uniform magnetic fields, see Fig. 3. If the nano-
magnets generating Bn can be arranged such that the field
penetration into the bulk superconductor is minimized, as
illustrated in Fig. 1, much stronger oscillating than uniform
fields can be applied, opening up the possibility to generate
MFs in systems with small g factors.
The system is in the fermion phase, if

� ¼ �þ	n þ	z; and

�s <min
n
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z ��2
q

;<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n ��2
q o

;
(8)

where the phases 	z;n are defined by ei	z;n ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z;n ��2
q

þ i�Þ=�z;n. The corresponding wave func-

tions are listed in the Supplemental Material [26]. In this
regime, two MFs (both localized at x ¼ 0) fuse to one
fermion bound state. Such bound state fermions are known
to have a fractional charge e=2 [27–30], as first discovered
in the Jackiw-Rebbi model [23,31]. We note that such FFs
appear also in the Su-Schrieffer-Heeger model [27], where
they arise as a purely orbital effect due to site-dependent
hoppings. In contrast, the FFs found here are a spin effect
and arise from Zeeman interactions with nonuniform mag-
netic fields. If neither of the inequalities (6)–(8) is satisfied,
the system is in the trivial phase without any bound state at
zero energy.
Detuning from the conditions in Eq. (8), the two zero-

energy solutions are usually split, becoming a fermion-
antifermion pair at energies �E. Importantly, FFs do not
require the presence of superconductivity. For example, if
�s ¼ 0 and � ¼ 0, the two bound states have energy

EFF ¼ � �z�n sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z þ�2
n � 2�z�n cos�

q : (9)

We note that the splitting vanishes at � ¼ n�, n integer,
due to the chiral symmetry ofH 4kso at these special values

[31]. In contrast, the MF remains at zero energy for all
values of �, which is a direct manifestation of the stability
of the bound state within the topological phase (despite
the fact that the MF wave function depends on �, see
Supplemental Material [26]).
To determine the full phase diagram, we have performed

a systematic numerical search for all bound state solutions
with energies inside the gap and determined the null
space of the Wronskian. The results are plotted in Fig. 3.
The bright yellow lines inside the colored area in Fig. 3
correspond to zero-energy FFs satisfying Eq. (8). At the

FIG. 3 (color online). Phase diagram for case I supporting three
phases: the trivial phase with no bound states (white area), the
topological phase with one MF (green area), and the fermion
phase with two FFs (colored area). The color in the fermion phase
encodes the ratio of the fermion energy to the system gap, which
varies from zero (bright yellow) to one (black). Note that the
central region of the topological phase corresponds to case IA,
while the four corner regions to case IB. Here, (a) �n=�s ¼ 3,
� ¼ 0, while (b) �n=�s ¼ 3, � ¼ �=4. Note that �z < 0 and �
correspond to �z > 0 and �þ �. By comparing (a) with (b)
and by calculating the dependence on � [(c) �=�s ¼ 0:4,
�z=�s ¼ 2], we note that the topological phase is insensitive to
� in contrast to the fermion phase. The position of a zero-energy
FF depends not only on � and � [see (a)-(c)], but also on �z and
�n [(d) �=�s ¼ 1:5, � ¼ �=4] in agreement with Eq. (10).
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point where the lines touch the topological phase (shown
in green), the gap closes and reopens, and the zero-energy
FF transmutes into a MF. In the fermion phase away from
the zero-energy line the two solutions split (the bigger the
splitting the darker the color), until they finally reach the
gap (black boundaries) and disappear. The fermion phase
exists only for certain values of the phase shift �, in
contrast to the topological phase, which, again, is not
sensitive to �, see Fig. 3(c). Moreover, the fermion phase
is also sensitive to the relative orientation of B and Bn, see
Fig. 3(d). In the same panel, we see that outward regions
are more suitable for a fractional charge observation than
the central region, where energies of the bound states are
very close to the gap edge.

The FF could be detected by comparing the local
charge density at, say, the left end of the nanowire for
two different phases, where one phase supports FFs
while the other one does not. This difference should
then reveal the fractional charge e=2 of the left FF. In
particular, in the absence of superconductivity, one can
compare the phase with � ¼ 0 (FF present) to the one
with � ¼ �=2 (no FF). In the presence of superconduc-
tivity, the local charges of the system in the fermion phase
(FF present) and in the trivial phase (no bound states) can
be compared. For example, changing the sign of the
uniform field transfers the system between the two phases
[see Fig. 3(a)].

Case IIa.—We now briefly comment on two additional
geometries with a spatially varying magnetic field with a
period 2kso. To keep the following discussion concise, we
set� ¼ 0 and state the results for E ¼ 0 bound states only.
We begin with a field perpendicular to the SOI vector �
and given byBn;x¼ x̂Bncosð2ksoxÞ orBn;y¼ ŷBn sinð2ksoxÞ
(an oscillating field) or ðBn;x þ Bn;yÞ=2 (a helical field).

Such a field mixes the exterior and interior branches, see
Fig. 2. The corresponding Hamiltonian is H?

2kso
¼ H þ

�n�3�1�1. The spectrum is given by

E2
? ¼ ð@�FkÞ2 þ ½�2

n þ �2
z=4� þ ð�s � �z=2Þ2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@�FkÞ2�2

n þ ½�2
n þ �2

z=4�ð�s � �z=2Þ2
q

:

(10)

Repeating the procedure used above, we derive the
condition for the topological phase as

�z >�sj1� �2
n=�

2
s j: (11)

Again, the phase boundary to the topological phase corre-
sponds to the parameters at which the system is gapless,
i.e., �z ¼ �sj1��2

n=�
2
s j. We note that in the presence of

a spatially periodic magnetic field MFs may emerge at
substantially weaker uniform magnetic fields. The fermion
phase occurs if

j�nj> �s and �z <�sð�2
n=�

2
s � 1Þ: (12)

The rest of the parameter space corresponds to the non-
topological phase. The corresponding wave functions for
MFs and FFs are given in the Supplemental Material [26].
Case IIb.—Finally, we comment on an oscillating field

aligned with the SOI vector � and given by Bn ¼
ẑBn cosð2ksoxþ �Þ. This field couples the interior and
exterior branches (see Fig. 2). The corresponding

Hamiltonian is H k
2kso

¼H þ�nð�3�3�1 cos���2 sin�Þ,
with the spectrum given by

E2
k ¼ ð@�FkÞ2 þ

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n þ �2
z

4

s
�

�
�z

2
��s

�352

: (13)

The topological phase is determined, again, by Eq. (13),
and the corresponding MF wave functions are given in
the Supplemental Material [26]. We note once more that
MFs can be observed in weaker uniform magnetic fields.
Interestingly, in this configuration the fermion phase is
absent, demonstrating the sensitivity of the FFs to the
B-field orientation.
Interactions.—Electron interactions play an important

role in one-dimensional systems [32] and, in particular,
for MFs [21,33]. For example, the interior gap opened by a
uniform magnetic field is strongly enhanced by interac-
tions [20], and so we expect the same renormalization to
occur here for both gaps. This is indeed the case, as we
show next. For this, we perform a renormalization group
analysis for both the uniform and the periodic field.
Following Ref. [24] we arrive at the effective Hamiltonian
H ¼ P

l

R
dx
2�HlðxÞ in terms of conjugate boson fields, 	e;i

and �e;i, with

Hl ¼ �½ðr	lÞ2 þ ðr�lÞ2� þ �l

a
cosð2 ffiffiffiffi

K
p

	lÞ; (14)

where we have suppressed quadratic off-diagonal terms
being less relevant compared to the cosine terms. The
index l ¼ eðiÞ denotes the exterior (interior) branch, a the
lattice constant,K2¼ð�s=Ksþ�cKcÞ=ð�c=Kcþ�sKsÞ, and
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�c=Kc þ �sKsÞð�s=Ks þ �cKcÞ

p
=2. Here, �c;s are

the charge (c) and spin (s) velocities and Kc;s the corre-

sponding Luttinger liquid parameters [32]. The gaps �l

opened by magnetic fields are renormalized upwards by

interactions and given by ~�l ¼ �lð�@�F=�laÞð1�KÞ=ð2�KÞ.
For GaAs (InAs) nanowires [21,24], we estimate an
increase by about a factor of 2 (4). The enhanced
Zeeman gaps allow the use, again, of materials with lower
g factors.
Conclusions.—The interplay between spatially varying

magnetic fields and Rashba SOI in a hybrid nanowire
system leads to a rich phase diagram with reentrance
behavior and with fractionally charged fermions that get
transmuted into Majorana fermions at the reopening of the
topological gap.
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