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Theory of spin relaxation in two-electron laterally coupled Si/SiGe quantum dots
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Highly accurate numerical results of phonon-induced two-electron spin relaxation in silicon double quantum
dots are presented. The relaxation, enabled by spin-orbit coupling and the nuclei of 29Si (natural or purified
abundance), is investigated for experimentally relevant parameters, the interdot coupling, the magnetic field
magnitude and orientation, and the detuning. We calculate relaxation rates for zero and finite temperatures
(100 mK), concluding that our findings for zero temperature remain qualitatively valid also for 100 mK. We
confirm the same anisotropic switch of the axis of prolonged spin lifetime with varying detuning as recently
predicted in GaAs. Conditions for possibly hyperfine-dominated relaxation are much more stringent in Si than in
GaAs. For experimentally relevant regimes, the spin-orbit coupling, although weak, is the dominant contribution,
yielding anisotropic relaxation rates of at least two orders of magnitude lower than in GaAs.
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I. INTRODUCTION

Since the proposal of Loss and DiVincenzo,1 electron spins
in semiconductor quantum dots have been in the perpetual
focus of research on spintronics.2–4 In GaAs-based qubits,
which are the state of the art, the essential gate operations1,5,6

for quantum computation7,8 have been demonstrated.9–18

But GaAs possesses a serious handicap for coherent spin
manipulations—the nuclear spins.19,20 Controlling this source
of decoherence is of major interest and an active field of
research.18,21–26

Alternatives to III-V semiconductors with inherent nuclear
spins are systems composed of atoms without nuclear magnetic
moments, such as Si and C.27–29 Natural silicon consists of
three isotopes: 28Si (92.2%), 29Si (4.7%), and 30Si (3.1%).30

Hereof only 29Si has nonzero nuclear spin (I = 1/2), and pu-
rification can further reduce its abundance down to 0.05%.31,32

For this reason, silicon-based quantum dots have become the
new focus of interest, and recent progress emphasizes their
perspectives.33–36 Another advantage of silicon8,29 over GaAs
is a larger g factor, which allows spin manipulations in smaller
magnetic fields. On the other hand, device fabrication of silicon
dots is more challenging,37 the spin-orbit interactions are
weaker, and the dots must be smaller due to a larger effective
mass.

Bulk silicon has six equivalent conduction-band minima
located on the � lines, at kv ≈ 0.84k0 toward the six X

points of the Brillouin zone, where k0 = 2π/a0 with a0 =
5.4 Å the lattice constant.38–40 They are typically referred to
as � valleys or X valleys. In general, their degeneracy is
lifted by strain, or by the presence of an interface.39,41 In a
(001)-grown silicon heterostructure, the four in-plane valleys
are split by at least 10 meV from the two lower-lying ±z

valleys, resulting in a twofold conduction-band minimum.
This remaining degeneracy is further split if the perpendicular
confinement is asymmetric, resulting in an energy difference
called the ground-state gap.42–49 As the valley degeneracy is
believed to be the main obstacle for silicon-based quantum
computation,46,50,51 a large valley splitting is desired. If this
is the case, the multivalley system can be reduced to an

effective single-valley qubit, a potentially nuclear-spin-free
analog to the well-known GaAs counterpart.50,51 In fact, many
recent experiments performed on Si/SiGe quantum dots have
no evidence of valley degeneracy,33–35,52–54 indicating that the
splitting is large enough to justify a single-valley treatment. On
the other hand, a recent proposal of valley-defined qubits uses
the valley degree of freedom as a tool for gate operations.55

This requires precise control of the ground-state gap, a
challenging task for the future. In this work we assume that
the valley splittings are larger than the typical energy scale
of interest so that the effective single-valley approximation is
valid.

The spin relaxation and decoherence have been inves-
tigated theoretically and experimentally in silicon-based
single and double dots from single- to many-electron
occupancy.34,35,50,53,54,56–67 Our work completes these findings
by a global, quantitative understanding of two-electron lateral
silicon double quantum dots. We investigate the spin-orbit
and hyperfine-induced relaxation rate as a function of interdot
coupling, detuning, and the magnitude and orientation of
the external magnetic field for zero and finite temperatures,
and for natural and isotopically purified silicon. We pay
special attention to the spin hot spots,68 and investigate
individual relaxation channels. This work is an extension
to the findings in Ref. 69 for GaAs, and we highlight the
differences between these two materials. We fix the double-dot
orientation with respect to the crystallographic axes to that
which is used most often in experiments. Our choices for other
parameters are similarly guided by realistic values. Although
we cannot present results for the complete parametric space,
by exploring most direct experimental controls we expect the
presented picture of double-dot two-electron spin relaxation
in Si to be exhaustive, meaning the results listed below will
remain qualitatively correct also beyond the specific parameter
choices we make.

We find that due to the small spin-orbit coupling the spin
relaxation rates are typically at least two orders of magnitude
lower than in comparable GaAs dots, and that the relaxation
rate peaks at spin hot spots are very narrow in parameter space.
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For detuned double dots, the energy spectrum close to the
singlet-singlet anticrossing is qualitatively different from the
GaAs counterpart, due to the rather small single-dot exchange
coupling compared to the anticrossing energy. We also find
that the hyperfine-induced relaxation rates of natural silicon
are typically two and more orders of magnitude lower than
the spin-orbit-induced relaxation rates. The hyperfine-induced
rates of purified silicon are further suppressed by about two
orders of magnitude compared to those in natural silicon.
Although the anomalous regime of nuclei dominating the
relaxation, which we identified in GaAs,69 exists also in Si,
here the different material parameters make it much harder to
observe in practice. We therefore conclude that, concerning the
relaxation, the nuclear field is negligible. Thus, the anisotropy
of the spin-orbit field manifests itself in all the relaxation rates
we calculated, yielding the electrically controlled directional
switch of the easy passage70 (a particular orientation of the
magnetic field for which the relaxation as a function of some
parameter is significantly lower than for other orientations),
previously found in GaAs.69 A temperature of 0.1 K does not
change our findings in any qualitative way.

II. MODEL

We consider a (ẑ = [001])-grown top-gated Si/SiGe het-
erostructure defining a laterally coupled double quantum dot
within the silicon layer with a fraction of 29Si isotopes. The
double dot is charged with two electrons and not coupled
to leads. Assuming the validity of the effective single-valley
approximation,50 the Hamiltonian in the two-dimensional and
the envelope function approximation reads

H =
∑
i=1,2

(Ti + Vi + HZ,i + Hso,i + Hnuc,i) + HC. (1)

The operators of position r and momentum P are two dimen-
sional, where x̂ = [100] and ŷ = [010]. The single-electron
terms are labeled by the electron index i. The kinetic energy is
T = P2/2m, with the kinetic momentum P = −ih̄∇ + eA, the
effective electron mass m, and the electron charge −e. For an
external magnetic field given by B = (B‖ cos γ,B‖ sin γ,Bz),
where γ is the angle between the in-plane component of
B and x̂, the vector potential in symmetric gauge reads
A = Bz(−y,x)/2. We neglect the orbital effects of the in-plane
magnetic field component, which is a good approximation
up to roughly 10 T for common heterostructures.71 The
electrostatic potential,

V = h̄2

2ml4
0

min{(r − d)2,(r + d)2} + eE · r, (2)

consists of the biquadratic confinement51,72 and the external
electric field. For E = 0, the potential is minimal at ±d. The
dimensionless ratio 2d/l0 will be in further called the interdot
distance. The single dot scale is given by the confinement
length l0, and equivalently by the confinement energy E0 =
h̄2/(ml2

0). The electric field E is applied along the dot main
axis d, where the angle δ gives the in-plane orientation with
respect to x̂. Turning on E shifts the potential minima relative
to each other by the detuning energy ε = 2eEd. The geometry
is plotted in Fig. 1 of Ref. 73.

The Zeeman term is HZ = (g/2)μBσ ·B, with the vector
of Pauli matrices σ = (σx,σy,σz), the effective Landé factor
g, and the Bohr magneton μB. The spin-orbit coupling,
Hso = Hbr + Hd, includes the Bychkov-Rashba3,74 and the
generalized Dresselhaus Hamiltonians,3,75–77

Hbr = (h̄/2mlbr)(σxPy − σyPx), (3)

Hd = (h̄/2mld)(−σxPx + σyPy), (4)

parametrized by the spin-orbit lengths lbr and ld. In this work
we assume interface inversion asymmetry and choose lbr and
ld of comparable strength, according to Ref. 77. The nuclear
spins of 29Si predominantly couple through the Fermi contact
interaction20,78,79

Hnuc = β
∑

n

In · σ δ(R − Rn), (5)

where β is a constant, In is the spin of the nth nucleus at the
position Rn, and R = (r,z) is the three-dimensional electron
position operator. Here we need to consider the finite extension
of the wave function perpendicular to the heterostructure
interface. We assume it is fixed to the ground state of a
hard-wall confinement of width w. This defines the effective
width,80

hz =
[ ∫

dz|ψ(z)|4
]−1

, (6)

which evaluates to hz = 2w/3. Finally, the Coulomb inter-
action is HC = e2/4πε|r1 − r2|, with the material dielectric
constant ε.

The energy relaxation is enabled by phonons, whereas
spin-orbit interactions allow for a spin flip. In a (001)-grown
quantum well of silicon, the electron-phonon coupling for
intravalley scattering is the deformation potential of transverse
acoustic (TA) and longitudinal acoustic (LA) phonons, given
by60,64,81–84

Hep = i
∑
Q,λ

√
h̄Q

2ρV cλ

Dλ
Q[b†Q,λe

iQ·R − bQ,λe
−iQ·R], (7)

where

Dλ
Q = (

dêλ
Q · Q̂ + uêλ

Q,zQ̂z

)
. (8)

The phonon wave vector is Q = (q,Qz), and Q̂ = Q/Q. The
polarizations are given by85 λ = TA1,TA2,LA, the polariza-
tion unit vector reads ê, and the phonon annihilation (creation)
operator is denoted by b (b†). The mass density, the volume of
the crystal, and the sound velocities are given by ρ, V , and cλ,
respectively. The efficiency of the electron-phonon coupling is
set by the dilatation and shear potential constants d and u,
respectively.

We define the relaxation rate (the inverse of the lifetime T1)
as the sum of the individual transition rates to all lower-lying
states. Each rate (from |i〉 to |j 〉) is evaluated using Fermi’s
golden rule at zero temperature,

�ij = π

ρV

∑
Q,λ

Q

cλ

∣∣Dλ
Q

∣∣2|Mij |2δ
(
Eij − Eλ

Q

)
, (9)
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where Mij = 〈i|eiQ·(R1+R2)|j 〉 is the matrix element of the
states with energy difference Eij , and Eλ

Q is the energy of
a phonon with wave vector Q and polarization λ. In this work
we focus on the singlet (S) and the three triplets (T−,T0,T+) at
the bottom of the energy spectrum.

Our numerical method is discussed in Refs. 86. The
extension to include the hyperfine coupling, Eq. (5), was
introduced in Ref. 69. In this work, the two-electron basis
for the configuration-interaction method consists of 1156
Slater determinants, generated by 34 single-electron orbital
states. The discretization grid is typically 135 × 135. The
relative error for energies is below 10−5. The reliability
of our code is confirmed by the evaluation of Eq. (9) in
an analytically solvable regime—weakly coupled dots in
low magnetic fields. For details of this calculation, see
Appendix A.

We use the parameters of a SiGe/Si/SiGe quantum well
grown along the ẑ = [001] direction with a germanium
concentration of 25%. The two-dimensional electron gas is
defined in the thin silicon layer with tensile strain.38,87 The
in-plane effective mass is isotropic, given by the transverse
mass of the X valley states,41 and we use m = 0.198me,88

where me is the free-electron mass. The effective Landé factor
is g = 2.44,89 Other material parameters read cl = 9150 m/s
(for LA phonons), ct = 5000 m/s (for TA phonons), ρ =
2330 kg/m3, and ε = 11.9ε0.90 The choice of deformation
potential constants is not unique,83,84,91 and we use d = 5 eV
and u = 9 eV according to Ref. 90. The hyperfine-coupling
parameter reads β = −0.05 μeV nm3, and 29Si has spin I =
1/2. For natural silicon, the 29Si abundance is 4.7%, and we use
an abundance of 0.01% for purified silicon. For the spin-orbit
coupling strength we choose lbr = 38.5 μm and ld = 12.8
μm.77,89 The confinement length is l0 = 20 nm (E0 = 1.0
meV), in line with realistic dot sizes.53,92 The double dot is ori-
ented as d || [110]. The magnetic field is in plane unless stated
otherwise.
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FIG. 1. (Color online) Calculated conversion between the single-
electron tunneling energy T (x axis), the two-electron exchange
coupling J (left y axis), and the interdot distance 2d/l0 (right y
axis), neglecting nuclear spins. The arrow gives Enuc, Eq. (10), of
natural silicon.
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FIG. 2. (Color online) Calculated energies of the lowest states,
varying (a) the interdot coupling (at B = 3 T) and (b) the detuning
(at B = 0.5 T, 2d/l0 = 2.85). Singlet states are given by dashed and
triplets by solid lines. In (a), the energy of T0 is subtracted, and in (b),
the quadratic trend in E is subtracted. The arrow in (a) marks where
J = Enuc (for natural silicon).

III. RESULTS: UNBIASED DOUBLE DOT

We parametrize in our model the coupling of the double
quantum dot by the dimensionless interdot distance 2d/l0.
The corresponding experimental observables are the tunneling
energy T (single-electron occupancy) and the exchange
coupling J (two-electron occupancy). The conversion between
these three equivalent parameters is plotted in Fig. 1 for clarity.

The numerically calculated energy spectrum of the unbi-
ased double dot is shown in Fig. 2. In this section, we choose
a magnetic field of B = 3 T. For the single dot (d = 0) the
exchange coupling J = E(T0) − E(S) is JSD = 0.19 meV. The
Zeeman energy EZ = gμBB exceeds J for magnetic fields
beyond 1.7 T. Consequently, we find in Fig. 2(a) that T− is the
ground state for all interdot distances. The singlet therefore has
an anticrossing with an excited triplet in the strong-coupling
regime, here at J = 75 μeV for our choice of parameters. This
scenario is hardly met in comparable GaAs double quantum
dots, because the required magnitude of the magnetic field is
above 10 T. The silicon spectrum resembles the GaAs spectrum
for magnetic fields below 1.7 T.

At large interdot distances, the hyperfine coupling induces
a splitting of S and T0, given by

Enuc = 2

√√√√∣∣∣∣∣
∑
i=1,2

〈φaT0|Hnuc,i |φsS〉
∣∣∣∣∣
2

. (10)

In this regime, the lowest eigenstates are |↑↓〉 = (S + T0)/
√

2
and |↓↑〉 = (S − T0)/

√
2 (see Fig. 3). We evaluate Eq. (10)

by averaging over random nuclear spin ensembles, and obtain
Enuc ≈ 1 neV for natural and Enuc ≈ 0.04 neV for purified
silicon. This implies a crossover to the nuclear-dominated
regime at 2d/l0 � 4.7 [red arrows in Figs. 1, 2(a), and 3]
for natural and at 2d/l0 � 5.4 for purified silicon.

We plot the relaxation rates of the states S, T0, and T+,
denoted in Fig. 2, as functions of the interdot distance and
in-plane magnetic field orientation in Fig. 4. We also give the
relaxation rates of individual channels for the two principal
axes, that is, for the in-plane magnetic field components
parallel and perpendicular to the dot main axis d, in the upper
and lower panels of Fig. 5, respectively. We find that the
relaxation rate of the singlet is highly anisotropic,93 which can
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FIG. 3. (Color online) Schematic energy spectrum of an unbiased
double dot showing the singlet S (dashed line) and the triplet T0 (solid
line). For large interdot distances, the exchange coupling J is given
by the hyperfine splitting Enuc, Eq. (10), and the eigenstates change
to |↓↑〉 and |↑↓〉.

be explained by introducing an effective spin-orbit magnetic
field (see below). The rates are minimal if B ‖ d, reaching the
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FIG. 4. (Color online) Calculated relaxation rates of (a) the
singlet, (b) the triplet T0, and (c) the triplet T+ as functions
of the in-plane magnetic field orientation γ (angle) and the interdot
distance 2d/l0 (radius of the polar plot), for a double dot at B = 3 T.
The x and y axes correspond to crystallographic axes [100] and [010],
respectively. The dot orientation d || [110] is marked by a line. The
x axis is converted to the tunneling energy T and the exchange J , in
addition to 2d/l0. The rate is given in inverse seconds by the color
scale. The system obeys C2v symmetry, so point reflection would
complete the graphs.
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order of tens of milliseconds for any dot coupling strength
(Fig. 5). We call this characteristic an easy passage.70,94 In the
strong-coupling regime, the rate away from the easy passage
is enhanced by orders of magnitude. This results from the
coupling of the singlet with the excited triplet, which favors
the transition into T−. For B ‖ d, the rate at the anticrossing
is extremely sensitive to variations of γ , such that the easy
passage becomes very narrow.

The relaxation rate of T0 is given in Fig. 4(b). We find the
same general anisotropic behavior, which is that the rate is
minimal for B ‖ d. Figure 5 shows that the dominant channel
of the relaxation is the transition T0 → T−. Consequently, there
is no impact from the singlet-triplet anticrossing. However, the
anticrossing of the excited triplet with T0 manifests itself in a
very sharp peak of its rate. This spike is also anisotropic, with
a difference of roughly one order of magnitude [not visible in
Fig. 4(b) due to its resolution].

Figure 4(c) shows the relaxation rate of T+. In addition to
the anisotropic background, there are two spikes of enhanced
rate generated by the anticrossings of T+ with the excited
triplets. The enhancement close to the single-dot regime
originates from the dominant T+ → S transition (see Fig. 5).
Interestingly, the anticrossing of the singlet hardly influences
the overall trend of this relaxation channel.

We plot in Fig. 6 the relaxation rates of a weakly coupled
double dot as a function of in-plane magnetic field. Here we
find the same qualitative behavior for all three panels. As in
Fig. 4, the relaxation rate is minimal for B ‖ d, but there are
no spin hot spots here.

IV. RESULTS: BIASED DOUBLE DOT

In this section we consider a weakly coupled double dot
with a finite detuning energy ε. Figure 7 introduces important
characteristic energies in a schematic energy spectrum. The
state charge character is given in parentheses: (1,1) indicates
that there is one electron in each dot, and (0,2) states that
both electrons are in the same dot. In the spectra, we subtract
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the quadratic trend in the electric field E. In this way, the
(1,1) states are displayed horizontally unless influenced by
anticrossings. The important quantities are the single-dot
exchange coupling JSD, the double-dot exchange coupling
J , and the singlet and triplet anticrossing energy splittings,
labeled in Fig. 7. The single-dot exchange coupling JSD is set
by the material parameters, i.e., the Coulomb interaction, and
the system parameters, i.e., the confinement length. For nonin-
teracting electrons, JSD is equal to the confinement energy E0,

FIG. 7. (Color online) Schematic energy spectrum of a biased
double dot without magnetic field. The singlets are given in dashed
lines, the triplets in solid lines.

here 1 meV. For interacting particles, the Coulomb repulsion
has strong impact on the symmetric ground state, the singlet, as
here the electrons tend to group together. The first excited state,
the triplet, is antisymmetric with respect to point reflection at
the dot origin, and therefore less affected. As a consequence,
JSD decreases as the Coulomb interaction strength increases.
For our choice of parameters JSD = 0.19 meV. In contrast, JSD

increases as the confinement length decreases. For instance, a
confinement length of l0 = 17 nm results in JSD ≈ 0.3 meV.
This can be understood as follows.95 On the one hand, a
stronger confinement increases the Coulomb strength due to
smaller effective particle distances |r1 − r2| in HC. This is an
effect somewhat linear in l−1

0 . Then, one could expect JSD to
decrease. However, the confinement energy E0 scales as l−2

0 , by
which the exchange coupling increases in a similar way. This
scaling dominates, such that the single-dot exchange coupling
increases. The double-dot exchange coupling J decreases
exponentially with increasing interdot distance d.96 In the
weak-coupling regime it holds that J 
 JSD, and we choose d

such that J = 0.6 μeV. The anticrossing gap of a spin-alike pair
of states at the (1,1) ↔ (0,2) transition depends on the interdot
distance as well. For increasing d (decreasing J ), these gaps
decrease, that is, the anticrossings vanish as 2d/l0 → ∞.

The numerically calculated energy spectrum is plotted in
Fig. 2(b) for a magnetic field of B = 0.5 T. The spectrum is
qualitatively different from the GaAs double-dot counterpart
(see Fig. 1 in Ref. 69). In a comparable GaAs double dot,
the singlet and triplet anticrossings gaps are small compared
to the single-dot exchange coupling. Consequently, the singlet
anticrossing is well separated from the triplet anticrossing, and
the excited singlet is close to T0 between these anticrossings.

We plot the relaxation rates of the detuned double dot in
Fig. 8. Figure 8(a) corresponds to the first excited state, that is,
S for detuning energies up to 1.97 meV, and T− beyond. At the
singlet-triplet anticrossing, the relaxation rate is very low as
the transferred energy becomes very small. The easy passage
occurs if the external, in-plane magnetic field is perpendicular
to d. The same anisotropy is visible for the relaxation rates of T0

and T+, Figs. 8(b) and 8(c), respectively. There is no signature
of the singlet-triplet anticrossing in the rate because of the exact
compensation of individual relaxation channels. Also, there is
no indication of the crossing of T+ with the excited triplet T−.
This rate behavior—anisotropies, easy-passage directional
switch, and the exact compensation—is analogous to a GaAs
dot and we refer the reader to Ref. 69 for a detailed discussion
and explanation. Other anticrossings with excited triplets (at
ε ≈ 2.47 meV) manifest themselves in extremely narrow
peaks of the rate, not visible in Fig. 8 at the current resolution.

Let us comment on the possible effects of nuclear spins.
Comparing the interaction strengths with the spin-orbit fields,
the former are expected to be negligible. Indeed, the Over-
hauser field characterizing the fluctuating collective nuclear
field20

Bnuc = β

gμB

〈∑
n

In|ψ(Rn)|2
〉

(11)

of natural silicon is of the order of tens of μT; for purified
silicon even one order of magnitude lower. On the other hand,
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excited state [S or T−; see Fig. 2(b)], (b) T0, and (c) T+ as functions
of the in-plane magnetic field orientation γ (angle) and detuning
energy (radius of the polar plot), for a double dot with 2d/l0 =
2.85 (T = 0.1 meV) and B = 0.5 T. The layout with respect to the
crystallographic axes is the same as in Figs. 4 and 6. The rate is given
in inverse seconds by the color scale.

the effective spin-orbit field [xd,yd = (x ± y)/
√

2],70

Bso = B × {
xd

(
l−1
br − l−1

d

)
[110] + yd

(
l−1
br + l−1

d

)
[110]

}/√
2,

(12)

is about 2 mT at B = 1 T. Still, in GaAs we have found that
despite a similar discrepancy, there are cases where the nuclear
field dominates the spin-orbit field, as the latter is quenched
by symmetry-imposed selection rules.69 Here, such a situation
arises, in principle, too. However, due to the differences in
material parameters, it requires an extremely weakly coupled
double dot (J of the order of sub-peV; see Appendix B
for details), usually not pursued in experiments. The matrix
elements of the spin-flipping transitions are in Si therefore
dominated by the spin-orbit fields, rather than nuclear spin
fields, and the same holds for anticrossing gaps. An illustration
is given in Fig. 9.

The second possibility we considered was a dot detuned
so far (such small J ) that the singlet and triplet T0 become
degenerate with respect to Enuc. The Hamiltonian eigenstates
change from entangled states into separable states with spin
up or down in the left or right dot, respectively (we show
this schematically in Fig. 3). The figures in Sec. III cover this
regime but the qualitative change in the eigenstate character
has no visible effects on the relaxation rates (verified also
for 2d/l0 > 5; not shown). This is because the relaxation to
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FIG. 9. (Color online) Calculated relaxation rates of a detuned
double dot in an in-plane magnetic field (B = 0.5 T, γ = 3π/4) as
a function of detuning. The straight lines give the spin-orbit-induced
relaxation, the wiggly lines the hyperfine-induced relaxation rates
(natural silicon).

a fully spin-polarized final state T+ from the initial state S

or T0 (or any of their superpositions, such as |↑↓〉) proceeds
through an individual single-dot spin flip, with the transition
matrix element magnitude being essentially the same in all
these cases.

Next we considered direct transitions due to random
nuclear fields without phonon assistance. Such transitions
are possible if the eigenstates have unsharp energies (finite
lifetimes). As the states we are interested in are low lying,
even at finite temperature their energy broadening is so
small that the resulting nuclear-induced spin relaxation is
negligible.

Finally, we considered the consequences of the random
character of the nuclear field, which blurs the electron energies.
This statistical, rather than quantum-mechanical, uncertainty
can be grasped roughly by convoluting the relaxation curves
with a Gaussian with an appropriate width, depending on
which parameter we change, defined ultimately by the energy
gμBBnuc. We find this width to be unnoticeably small—as an
example, the extremely narrow peaks in Fig. 5 survive prac-
tically untouched by such smoothing. We therefore conclude
that unpolarized nuclear spins in natural or purified Si are not
expected to be visible in the electron spin relaxation within the
parametric space we investigate. We find that such a situation
might occur only for very small external fields (B � 0.01 T)
or very weakly coupled dots (J � peV).

The figures presented and results discussed in this article
were for zero temperature. In our model, a finite temperature
amounts solely to allowing for energy-increasing transitions
(phonon absorption), in addition to the phonon emission
processes only which are present at zero temperature. We
analyzed this possibility, adopting a typical experimental
value of 100 mK. We have not found any case where such
additional transitions would change the relaxation rates in any
significant way (figures not shown). Our conclusion from these
investigations is that the relaxation character, most notably its
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anisotropies, will not be influenced by experimentally relevant
subkelvin temperatures.
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APPENDIX A: ANALYTICAL CALCULATION
OF RELAXATION RATES

In this section we analytically calculate the relaxation rate
Eq. (9), adopting several approximations. The calculations
prove useful to explain the physical mechanism and to verify
our numerical results. The validity of the approximations
will be discussed afterwards. In the following, the hyperfine
coupling is neglected.

Approximating the sum in Eq. (9) by an integral, and
rewriting the δ function with respect to the z component of
Q, we obtain (i = j )

�ij = Eij

8π2ρh̄2

∑
λ

∫
dq

∫
dQz

Q

c3
λQ̄

λ
z

∣∣Dλ
Q

∣∣2|Mij |2

× [
δ
(
Qz − Q̄λ

z

) + δ
(
Qz + Q̄λ

z

)]
, (A1)

where Q̄λ
z =

√
E2

ij /(h̄2c2
λ) − q2. Assuming the validity of the

dipole approximation, the matrix element reads

Mij ≈ i〈i|q · (r1 + r2)|j 〉, (A2)

where |i〉 and |j 〉 are the spin-orbit-coupled two-electron
eigenstates. Note that the contribution of the wave function
overlap along the z direction in Mij is about 1,94 which
is consistent with the two-dimensional approximation. We
restrict ourselves to weakly coupled double dots, i.e., d � l0,
and incorporate the effect of spin-orbit coupling perturbatively
via a Schrieffer-Wolff transformation.97–99 The eigenstates
then read (l labels the electrons)

|i〉 = e−iO

(
|i〉0 +

∑
k

∑
l=1,2

0〈k|H̄so,l|i〉0

E0
i − E0

k

|k〉0

)
, (A3)

with the transformation operator O = −∑
l nso,l · σ l/2,

where

nso,l =
(

xl

ld
− yl

lbr
,
xl

lbr
− yl

ld
,0

)
, (A4)

and the effective spin-orbit operator H̄so,l = H̄Z
so,l + H̄

(2)
so,l ,

where

H̄Z
so,l = g

2
μB(nso,l × B) · σ l , (A5)

H̄
(2)
so,l = h̄

4m

(
1

l2
d

− 1

l2
br

)
Lz,lσz,l + const. (A6)

Here, Lz = lz + (e/2)r2Bz, where lz is the operator of angular
momentum. The states in Eq. (A3) labeled with subscript 0 are
eigenstates of the Hamiltonian

H 0 =
∑
i=1,2

(Ti + Vi + HZ,i) + HC; (A7)

their eigenenergies are denoted as E0. We use the Heitler-
London ansatz100 to approximate the eigenstates of Eq. (A7).

We use Eq. (A3) to evaluate the matrix element Mij .
It is straightforward to show that contributions from cou-
pling within the lowest four-dimensional subspace M =
{S,T−,T0,T+} are zero or exponentially suppressed in d/l0.
As a result, the relaxation requires coupling via higher states.
Neglecting the Lz contribution to the effective spin-orbit
coupling Eq. (A6), we obtain

Mij

igμB

=
∑
k /∈M

∑
l=1,2

[
0〈i|(nso,l × B) · σ l|k〉0

E0
i − E0

k

0〈k|qxx1 + qyy1|j 〉0

+ 0〈k|(nso,l × B) · σ l|j 〉0

E0
j − E0

k

0〈i|qxx1 + qyy1|k〉0

]
. (A8)

The singlet is symmetric with respect to the inversion
operator I (point reflection in real space), the triplets are
antisymmetric.86 Consequently, it follows from Eq. (A8) that,
within the dipole approximation, the singlet-triplet transition
is forbidden. We also find that Eq. (A8) forbids a T+ ↔ T−
transition because the effective spin-orbit operator H̄ Z

so,l acts
on only one of the two electron spins. Let us now look at the
transition between T0 and T±.

To evaluate Eq. (A8), we reduce the infinite sum over k

to cover only states within the energy window of about the
confinement energy, h̄2/(ml2

0). Additionally, we can exclude
any singlet from the sum, because the electron-phonon
operator does not act in spin space. What is left can be captured
by the Heitler-London approach.

Let |R0〉 be the (orbital) ground state of a single dot shifted
to the “right” by d, i.e., the Fock-Darwin state of the right
dot with the principal quantum number n = 0 and the orbital
quantum number l = 0. Analogously we define the ground
state of the “left” dot. The properly symmetrized triplet lowest
in energy is

|�T 〉0 = (|R0,L0〉 − |L0,R0〉) ⊗ |T 〉/
√

2. (A9)

The orbitally excited triplets can be constructed analogously,
using |R1〉, and |L1〉, the displaced Fock-Darwin states with
n = 0 and |l| = 1:

|k±〉0 = (|R0,L1〉 − |L1,R0〉 ± (|R1,L0〉 − |L0,R1〉))
⊗|T 〉/2. (A10)

Neglecting the wave function overlap of states localized
in different quantum dots, we calculate the matrix elements
0〈�T |x1|k±〉0 and 0〈�T |y1|k±〉0 analytically, yielding

0〈�T |x1|k+〉0 = l0/
√

8, (A11)

0〈�T |y1|k+〉0 = sgn(l)il0/
√

8, (A12)

and 0〈�T |x1|k−〉0 = 0〈�T |y1|k−〉0 = 0. We use Eqs. (A11)
and (A12) as an approximation for the matrix elements in
Eq. (A8). We also require the matrix elements of Pauli matrices
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respecting the spin quantization axis along B. They read

〈T±|σ 1|T0〉

= e∓iγ

2
√

2

⎛
⎝ cos(γ − θ ) + cos(γ + θ ) ± 2i sin(γ )

sin(γ − θ ) + sin(γ + θ ) ∓ 2i cos(γ )
2 sin(θ )

⎞
⎠,

(A13)

where θ = cos−1(Bz/B‖). The energy differences in Eq. (A8)
are approximated by the confinement energy h̄2/(ml2

0).
With these ingredients, we can solve Eq. (A1), integrating

over the phonon momentum, and obtain

�T0→T− = �T+→T0 = m2l8
0L−2

so

12πρh̄10 (gμBB)7

×
[
c−7
l

(
3

35
2

u + 2

5
ud + 2

d

)
+ c−7

t

4

35
2

u

]
,

(A14)

with the effective spin-orbit length Lso defined by

L−2
so =

{
2
(
l−2
br + l−2

d

)
if θ = 0,

l−2
br + l−2

d − 2 sin(2γ )
lbrld

if θ = π/2.
(A15)

Now we discuss the validity of the approximations used
during the derivation of Eq. (A14). The matrix element Mij is
calculated using the dipole approximation Eq. (A2). It requires
that the energy difference between the transition states, here
T0 and T±, fulfills Eij 
 h̄cλ/ l0.94 Using Eij = gμBB and
cλ = ct , we obtain the condition B 
 1.4 T. We consider also
a weakly coupled double dot, d � l0, to comply with most
experiments. This limit ensures negligible matrix elements
among the states of M, and justifies the Heitler-London
approximation. Here, the spectrum also develops bundles of
eigenenergies separated by the confinement energy h̄2/(ml2

0),
a fact used to approximate the energy differences in Eq. (A8).
Note that within the restriction of the dipole approximation
(B 
 1.4 T), the Zeeman energy (EZ 
 0.16 meV) is neg-
ligible compared to the confinement energy (E0 = 1 meV).
The Schrieffer-Wolff transformation is the essential tool for a
perturbative treatment of spin-orbit coupling in the double
dot.101 Perturbation theory with the unitarily transformed
Hamiltonian yields results which are higher order in small
quantities compared to the original Hamiltonian.93,101 Finally,
we note that, since Lz is symmetric with respect to the inversion
I , the perturbation H̄

(2)
so,l , Eq. (A6), vanishes for all transitions

T0 ↔ T±.
We compare the analytical formula for the relaxation rate of

the transition T0 → T−, and T+ → T0, given in Eq. (A14), with
the numerical results in Fig. 10. We find perfect agreement for
low magnetic fields, in line with the condition B 
 1.4 T.
For larger magnetic fields, the results significantly deviate
from the B7 power law, due to the breakdown of the dipole
approximation. We also find that the S ↔ T± relaxation
channels, which we found to be zero in the lowest-order dipole
approximation due to their symmetry, show B9 dependence,
indicating that the relaxation is driven by the second-order
term of q. Being of higher order, the relaxation rate, for small
B, is at least one order of magnitude lower than the T0 ↔ T±
transitions.
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FIG. 10. (Color online) Calculated relaxation rates of individual
transition channels as a function of in-plane magnetic field for a
weakly coupled quantum dot. The magnetic field is oriented along
[1̄10] (γ = 3π/4) and the dots along [110] (δ = π/4). The interdot
distance is 2d/l0 = 2.85, yielding the tunneling energy T = 0.1 meV.
The dashed, black line gives the analytical relaxation rate, evaluated
with Eq. (A14).

APPENDIX B: NUCLEAR DOMINANCE

Here we estimate the parameters at which, for the electron
spin relaxation, nuclear spins dominate the spin-orbit fields.
Comparing the strengths of the two effective fields, as is
done in the main text, one does not expect such a situation
to arise, unless at very small (below 10 mT or so) external
magnetic fields. This regime is not usually met in experiments,
where a sizable Zeeman splitting is necessary for electron
spin manipulations and measurements. We have found in
our previous work on GaAs quantum dots69 that, despite
the discrepancy, there are anomalous cases where the above
expectation fails and nuclei are indeed the dominant channel.
This happens in a weakly coupled double dot biased to
the S1,1-S0,2 anticrossing, if the corresponding anticrossing
gap ES-S is small enough. Namely, due to the absence of
the spin-orbit coupling between states T0 and S, the small
magnitude of the nuclear-induced wave function admixture
is compensated by the small energetic distance apart of the
two states. The very same mechanism is also present in Si,
raising the question of the conditions needed for it to become
manifest.

We will illustrate the case by comparing Si to GaAs. For
this, we assume that the single-dot energy E0 and the Zeeman
energy are the same in the two quantum dots, each built in one
of the two materials. We estimate the ratio of the exchange
energies (which characterize the interdot coupling) below for
which the nuclei dominate. As described above, this happens if

gμBBnuc/ES-T � gμBBso/ET -T , (B1)

where the effective magnetic fields are defined in Eqs. (11) and
(12), ES-T is the difference between the energies of the states S

and T0, approximately equal to the S1,1-S0,2 anticrossing gap,
and ET -T is the energy difference between the state T0 and the
closest excited triplet, which we approximate by the orbital
energy scale E0. We define a “critical” ES-T energy difference
by Eq. (B1) with an equality sign. Approximating the two
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electron wave functions by Slater determinants composed
of localized Fock-Darwin states of a single dot, we get the
following auxiliary results, valid for large interdot distances:

ES-S ≈ e2

√
2ε0εrd

exp(−d2/l2
0) (B2)

and

J ≈ exp(−2d2/l2
0)

4d√
πl0

h̄2

ml2
0

. (B3)

Both of these quantities fall off exponentially with increasing
interdot distance in weakly coupled dots. However, the S-S
anticrossing gap scales as the tunneling energy T , whereas
the exchange energy is much smaller, J ∼ T 2/U (here U

is the charging energy).102 With these we get for the ratio of

critical exchange energies

J Si
crit

J GaAs
crit

∼
(

p
(Iβlsoεr )Si

(Iβlsoεr )GaAs

)2

≈ 10−6. (B4)

Here p is the fraction of the isotope 29Si. We have found
previously that in a GaAs quantum dot with parameters typical
in experiments, the nuclear dominance requires exchange
energies of the order of 0.1 μeV. As follows from Eq. (B4),
in silicon the requirements are much more stringent and thus
it is less suitable for such an effect demonstration. The reason
for this is the different material parameters, most importantly
the much weaker coupling of the conduction electrons to the
nuclear spins and the low fraction of atoms with nonzero
nuclear magnetic moment in silicon.
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