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We present a Hamiltonian quantum-computation scheme universal for quantum computation. Our Hamiltonian
is a sum of a polynomial number (in the number of gates L in the quantum circuit) of constant-norm, time-
independent, two-body interaction terms. Furthermore, each qubit in the system interacts only with a constant
number of other qubits in a three-layer, geometrically local layout. The computer runs in three steps—it starts
in a simple initial product state, evolves according to a time-independent Hamiltonian for time of order L2

(up to logarithmic factors), and finishes with a two-qubit measurement. Our model improves previous universal
two-local-Hamiltonian constructions, as it avoids using perturbation gadgets and large energy-penalty terms in
the Hamiltonian, which would result in a large required run time.
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I. INTRODUCTION

Part of today’s effort at achieving a realization of a quantum
computer is turning away from the traditional quantum-
circuit model with sequential application of unitary gates
[1]. Instead, measurement-based computation [2], cluster-state
quantum computation [3], topological quantum computation
[4], computation by quantum walks [5], adiabatic quantum
computation (AQC) [6], and the usage of adiabatic gate
teleportation [7] are some of the recently explored alternatives.

Universal quantum computation is possible even with
restricted control of only a few of the qubits [8]. We can
restrict the limitations on time-dependent control even more
and use a system with time-independent interactions. Such a
Hamiltonian quantum computer (HQC), or ergodic quantum
computer [9] runs in three stages. First, it starts in a simple
initial computational-basis product state. Second, the system
undergoes Schrödinger time evolution for some time. Finally,
we measure a few of the qubits in the computational basis
to obtain the answer to the computation. However, so far the
universal systems involved at least three local (long-range)
interactions [10,11], or two-local nearest-neighbor interactions
(on a chain) of high-dimensional particles (qudits) [12–14].
Lloyd [15] has shown that the HQC model is universal, not
needing even the adiabatically slow change of the interaction
strengths seen in [16]. The computer “runs” (as a quantum
walk) in an invariant computational subspace, and the relevant
excited states of the Hamiltonian also contain the result of the
computation.

Until now, the only universal quantum computation model
with a two-local qubit Hamiltonian with restricted time
control was an AQC model. It relies on slow change of the
Hamiltonian, keeping the system in its ground state. The
proofs of universality of the AQC [16–18] rely on techniques
from Kitaev’s Quantum Merlin Arthur (QMA) complete local
Hamiltonian problem [19]. The two-local version of this is
based on [20,21] (with restricted terms in [22]), with a gap
over the ground state lower-bounded by a high-degree inverse
polynomial in the circuit size L. The required runtime of
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this model (to ensure adiabatic evolution) is a high-degree
polynomial in L.

We present a universal two-local-Hamiltonian quantum
computer construction in the HQC model with a polynomial (in
L) number of constant-norm interaction terms. The runtime of
this model is now only L2, and time control of the interactions
is not necessary anymore (except for initial product-state
preparation). We construct our two-body, qubit Hamiltonian
without using perturbation gadgets, by combining the railroad
switch [23] and entangled-clock [11] ideas, ensuring that the
evolution of a simple initial product state does not leave
the computational subspace. Furthermore, there is a possible
three-layer layout of our system so that each qubit interacts
only with a constant number of spatially local neighbors. Our
construction thus increases the list of classes of Hamiltonians
that are difficult to simulate on a classical computer. On the
other hand, by simplifying the particle dimension, interaction
geometry, types, and strengths, we present a model that is
getting closer to realistic Hamiltonians, available, e.g., in a
superconducting quantum-computing architecture [24].

II. EVOLUTION WITHIN A GOOD SUBSPACE

Consider a quantum circuit U = ULUL−1 . . . U2U1 with L

at most two-local unitary gates. We would like to obtain the
result of U acting on some n-qubit initial state |ϕ0〉, i.e., to
measure the first (output) qubit of the state U |ϕ0〉. Instead of
working with just the n “work” qubits of |ϕ0〉, we utilize a
quantum system with two registers Hw ⊗ Hc, work and clock.
The work register holds the work qubits and the clock register
contains pointer states corresponding to the progress of the
computation. Consider now the “line” of states

|ψt 〉 = (UtUt−1 . . . U2U1|ϕ0〉) ⊗ |t〉c (1)

for t = 0, . . . ,L. These states encode the progress of the
quantum circuit U acting on the initial state |ϕ0〉, and the
state |ψL〉 contains the result of the quantum circuit acting on
|ϕ0〉. Denote the span of these states Hϕ0

cmp = span{|ψt 〉} and
call it the computational subspace. Our approach is to use a
system whose Hamiltonian does not induce transitions out of
Hϕ0

cmp. This makes the dynamics of this model and its required
running time simple to analyze.
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FIG. 1. The pulse clock—a line of L + 1 qubits ct with a single
active site (train). The states |t〉c are encoded as |0 . . . 010 . . . 0〉, with
qubit ct in the state |1〉. When the train moves from ct−1 to ct , gate
Ut is applied to two work qubits.

We start with Feynman’s Hamiltonian [25]:

HF =
L∑

t=1

(Ut ⊗ |t〉〈t − 1|c + U
†
t ⊗ |t − 1〉〈t |c)︸ ︷︷ ︸

H
(t)
F

. (2)

Observe that the computational subspace is invariant under
HF . The restriction of HF to Hϕ0

cmp is

HF

∣∣
Hϕ0

cmp
=

L∑

t=1

(|ψt 〉〈ψt−1| + |ψt−1〉〈ψt |), (3)

a quantum walk on the “line” of states |ψt 〉. We now use
a pulse clock encoding |t〉c = |0 . . . 0ct−1 1ct

0ct+1 . . . 0〉 of the
clock register states, using L + 1 qubits (see Fig. 1). We can
make the terms in the Hamiltonian (2) at most four local, as
the gates Ut are at most two local and we can use two-local
operators for the clock-register transitions

|t〉〈t − 1|c = I ⊗ |01〉〈10|ct−1,ct
⊗ I. (4)

Writing it like this, we obtain a four-local Hamiltonian
different from HF . However, its restriction to Hϕ0

cmp is again
(3), generating the desired quantum walk on a line starting
with the initial state |ψ0〉 = |ϕ0〉|0〉c. The last step of the HQC
model is then to measure the clock register and the output
work qubit. If we find the clock register in the state |L〉c, we
obtain the answer to the computation. We boost the probability
to actually measure |L〉c (or in our case, |1〉cL

) by adding
many identity gates at the end of the circuit U . This means
that measuring |1〉ct>L

is enough to ensure the output work
qubit holds the output of U , and is thus enough to ensure
BQP (bounded-error quantum polynomial-time, i.e. standard
quantum computation) universality.

An alternative way of boosting the final probability without
extending the clock is to use perfect state-transfer methods
[26]. Our desired evolution in the computational basis corre-
sponds to the movement of a single excitation. Using tuned
(but still at-most-constant-norm) terms allows us to enforce
the progress of a single excitation through the clock register
so that it appears perfectly at the other end of a chain at a
particular time.

III. THE RAILROAD SWITCH

We now modify the clock register, introducing a rail-
road switch gadget [23,25]. This will give us a three-local
Hamiltonian equal to (3) when restricted to the computational
subspace. The pulse clock (see Fig. 1) can be viewed as a
train running on a single track. When it goes between stations
ct−1 and ct , the transition in HF ensures that the gate Ut is
applied to the corresponding work qubits in the work register.
The railroad switch (see Fig. 2) introduces four extra stations

FIG. 2. (Color online) The three-local railroad switch gadget for
the application of a controlled-NOT (CNOT) gate between work qubits
q1 and q2. The state of the control (train master) qubit q1 in the work
register decides whether the train moves to the upper or lower track
from ct−1 (and backward from ct ). On the upper track, we flip the
target work qubit q2 when the train moves from u1 to u2.

between ct−1 and ct , allowing the train to run on two tracks. The
train is allowed to move to the upper or lower track depending
on the state of a “train master”—one of the work qubits q1.
Furthermore, the target work qubit q2 is flipped onto the upper
track as the train moves from u1 to u2. The computational
paths running on the upper and lower tracks interfere at station
ct . This gadget facilitates the application of a CNOT gate on the
work qubits q1 and q2.

Let us look at the dynamics coming from this Hamiltonian.
Denote the extra clock states (train positions) between |t − 1〉c
and |t〉c as |u1〉c,|u2〉c,|l1〉c,|l2〉c. We replace H

(t)
F in (2) by

H (t)
sw = |0〉〈0|q1 ⊗ (|l1〉〈t − 1|c + |t〉〈l2|c)

+ |1〉〈1|q1 ⊗ (|u1〉〈t − 1|c + |t〉〈u2|c) (5)

+Xq2 ⊗ |u2〉〈u1|c + I ⊗ |l2〉〈l1|c + c.c.

We make all of the terms three local by writing each
clock transition such as |l1〉〈t − 1|c only two-locally as
|01〉〈10|l1,ct−1 . Each term in H (t)

sw then acts nontrivially on
at most one work qubit (q1 or q2), and two clock qubits.
We now augment the line of states (1), taking into account
the intermediary states we introduced. First, write |ψt−1〉 =
(|ϕq1=0

t−1 〉 + |ϕq1=1
t−1 〉) ⊗ |t − 1〉c where |ϕq1=s

t−1 〉 is the part of the
work register with the control qubit q1 in the state |s〉. Define
two extra states between |ψt−1〉 and |ψt 〉:

∣∣ψ1
t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |l1〉c + ∣∣ϕq1=1
t−1

〉 ⊗ |u1〉c,
(6)∣∣ψ2

t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |l2〉c + Xq2

∣∣ϕq1=1
t−1

〉 ⊗ |u2〉c.
These states are again connected as a line, because
〈ψt−1|H (t)

sw |ψ1
t 〉 = 〈ψ1

t |H (t)
sw |ψ2

t 〉 = 〈ψ2
t |H (t)

sw |ψt 〉= 1. We now
use one railroad switch for every CNOT gate,

Hsw =
∑

t :1−qubitUt

H
(t)
F +

∑

CNOT gates

H (t)
sw , (7)

and augment the subspace Hϕ0
cmp by the two extra states (6) for

each of the gadgets. This results in a three-local Hamiltonian
(7), whose restriction to the computational subspace is again
(3), generating a quantum walk on the augmented line (1). Note
that for the single qubit gates, the operator Ut ⊗ |t〉〈t − 1|c is
already three local using the original pulse clock encoding.

IV. A QUBIT-QUTRIT SWITCH

If we allow the use of qutrits (e.g., spin-1 particles) in
our system, we can decrease the locality of interactions from
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FIG. 3. (Color online) The two-local railroad switch gadget made
from qubits (circles) and qutrits (pairs of triangles). The transitions
within a qutrit can be controlled by a train master, e.g., the internal
transition |u1A〉c ↔ |u1B〉c is allowed only when q1 is |1〉. Only on the
upper track do we flip the target work qubit q2 during the internal
qutrit transition |u3A〉c ↔ |u3B〉c.

three to two body. We build the railroad tracks from qutrits,
interspersing them with qubits (so that two qutrits do not
interact), setting up the interactions as in Fig. 3. We can view
the two states of the clock qubits as an empty station |0〉, and a
train |1〉 in it. On the other hand, a qutrit station is either empty
|O〉, or has the train in one of its two stops |A〉 or |B〉. This
allows a two-local interaction to change the state of a work
qubit while changing stations within a qutrit. In the three-local
railroad switch, the train master work qubit q1 decided whether
the train could pass to the upper or lower track (see Fig. 2).
Here, the controlled transitions happen between the internal
stops of the qutrits u1,u5,l1,l5. In addition, we flip the target
work qubit q2 during the internal transition |u3A〉c ↔ |u3B〉c.
The Hamiltonian for the upper track (see Fig. 3) is

H
(t)
23u = |u1A〉〈t − 1|c + |u1B〉〈u1A|c ⊗ |1〉〈1|q1

+ |u2〉〈u1B|c + |u3A〉〈u2|c + |u3B〉〈u3A|c ⊗ Xq2

+ |u4〉〈u3B|c + |u5A〉〈u4|c + |u5B〉〈u5A|c ⊗ |1〉〈1|q1

+ |t〉〈u5B|c + c.c., (8)

where {|u1A〉c,|u1B〉c, . . . } are the clock register states cor-
responding to the eight possible positions of the train on
the upper track. When the clock register has a single
train in it, we can identify the clock states one-locally
(e.g., |u1B〉〈u1B|c = |B〉〈B|u1 ). The transition operators (e.g.,
|u3A〉〈u2|c = |0A〉〈1O|u2,u3 ) can thus be implemented two-
locally. Moreover, the operators involving a work qubit (e.g.,
|u5B〉〈u5A|c ⊗ |1〉〈1|q1 = |B〉〈A|u5 ⊗ |1〉〈1|q1 ) can also be made
two local. Therefore, all the terms in H

(t)
23t are two local,

involving at most one qubit and one qutrit. The Hamiltonian
H

(t)
23l for the lower track is analogous to (8), with correspond-

ing lower-track clock states {|l1A〉c, . . . } and a simple term
|l3B〉〈l3A|c (without flipping q2). Now replace each three-local
switch H (t)

sw (5) with

H
(t)
23 = H

(t)
23u + H

(t)
23l . (9)

The basis of the computational subspace Hϕ0
cmp again needs to

be augmented, similarly to what we did in (6). After |ψt−1〉,
we write the eight states

∣∣ψr
t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |lr〉c + ∣∣ϕq1=1
t−1

〉 ⊗ |ur〉c,
(10)∣∣ψs

t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |ls〉c + Xq2

∣∣ϕq1=1
t−1

〉 ⊗ |us〉c,

FIG. 4. The geometry of the connections of the computational
basis states (10) and (11) implied by the transitions in the Hamiltonian
(9) for the qubit-qutrit two-local railroad switch.

with r ∈ {1A,1B,2,3A} and s ∈ {3B,4,5A,5B}. Moreover, we
have the two “blind-alley” states, with the train trying to use
the track where it does not belong,

∣∣ψ1x
t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |u1A〉c + ∣∣ϕq1=1
t−1

〉 ⊗ |l1A〉c,
(11)∣∣ψ5x

t

〉 = ∣∣ϕq1=0
t−1

〉 ⊗ |u5A〉c + Xq2

∣∣ϕq1=1
t−1

〉 ⊗ |l5A〉c.

The Hamiltonian (9) connects these states with transitions
whose geometry is depicted in Fig. 4. It is a line as we have seen
before, with the two blind-alley states (11). The quantum-walk
dynamics induced on this graph is again similar to the quantum
walk on a line, with mixing time (in the time-averaged sense)
on the order of O(L2) for a convergence parameter choice
ε = L−1, up to logarithmic factors [27].

The crucial fact about this construction is the restriction of
the computation to the computational subspace. Problematic
states coming from the wrong initial state, states with more
than one (or simply no) trains, and bound states on the insides
of the “wrong” tracks are not contained in H|ϕ0〉

cmp, making our
life much easier.

V. A QUTRIT FROM TWO QUBITS

Finally, we take the qubit-qutrit two-local gadgets and
construct the two-local qubit-qubit Hamiltonian using an
entangled encoding of clock states similar to the one in [11].
We map the states of the qutrit into states of two qubits as

|O〉 → |00〉,
|A〉 → |+〉 = 1√

2
(|01〉 + |10〉), (12)

|B〉 → |−〉 = 1√
2

(|01〉 − |10〉).

Instead of the two-local qutrit-qubit operators of the form
(|B〉〈A| + |A〉〈B|) ⊗ Vd , we now use

1
2 (Z1 − Z2) ⊗ Vd, (13)

made of two two-local qubit-qubit terms. Here Z1 and Z2

act on the two clock qubits encoding the qutrit, and Vd acts
on a work qubit. This operator annihilates states of the form
|00〉|ϕ〉 and |11〉|ϕ〉, while inducing a transition |+〉|ϕ〉 ↔
|−〉(Vd |ϕ〉) using two-qubit entangled clock states |+〉 and
|−〉. In the Hamiltonian H23, the active qutrit states also appear
in the transitions such as |1〉ct−1 |O〉u1 ↔ |0〉ct−1 |A〉u1 . Here, this
particular transition becomes |1〉ct−1 |00〉u1,u

′
1
↔ |0〉ct−1 |+〉u1,u

′
1
,
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FIG. 5. (Color online) The geometrically local layout of our
system. Each column represents n work qubits; the full line depicts
the clock register. As the clock progresses, first the gates are applied,
and then the column of work qubits is swapped with the next one using
CNOT gates, pushing the data to the right. Each qubit is involved in
a constant number of two-local interactions. The required number of
work qubits is nL.

and is implemented by

H 100
0+ = 1√

2
|0〉〈1|ct−1 ⊗ (|1〉〈0|u1 + |1〉〈0|u′

1
)

+ 1√
2
|1〉〈0|ct−1 ⊗ (|0〉〈1|u1 + |0〉〈1|u′

1
), (14)

a Hamiltonian built from two-local terms. Note that the states
|0〉|00〉 and |0〉|−〉 are annihilated by it. Similarly, we write
a Hamiltonian H 001

−0 wherever the transition |00〉|1〉 ↔ |−〉|0〉
is called for in the clock register. Restricting ourselves to the
computational subspace with a single train, this new qubit-
qubit two-local Hamiltonian works just like the qubit-qutrit
Hamiltonian (9).

The last necessary ingredients in the construction are single-
qubit unitaries W = |w0〉〈w0| + eiθw |w1〉〈w1| which are not
self-adjoint. Let the target qubit be the train master, allowing
the |w1〉 branch on the upper track and |w0〉 on the lower track.
To make things simpler, we now use a simple pulse-clock
encoding of the qutrit u3 into two qubits u3A and u3B on the
upper track (and similarly on the lower track). In the middle
of the upper track, we then write a two-local interaction term

Hw1 = (eiθw |01〉〈10| + e−iθw |10〉〈01|)u3A,u3B (15)

for the two clock qubits u3A and u3B. On the lower track, we
use (|01〉〈10| + |10〉〈01|)l3A,l3B without the phase shift. The split
into two tracks thus allows us to add a relative phase between
them which applies the single-qubit gate W to the control
work qubit as the computational paths rejoin. The underlying
unitary evolution in the computational subspace then again
remains equivalent to the one induced by (9).

Finally, we can get geometric locality for this construction.
The solution is to use nL work qubits instead of only n, as
in Fig. 5, and wrap the clock register around them four times
per n work qubits, which is reminiscent of [21]. The winding
(in three dimensions) is there to implement a round of gates,
and then to perform a swap of a work qubit column with a
column of ancillas using two CNOT gates. The data thus move
to the next column, and the process continues. Each work

qubit interacts with at most five switches, in some of them as
a control and in some as a target. Altogether, it is involved
in at most 28 two-local qubit-qubit interactions. This is far
away from practical, but nevertheless a constant number of
interactions per particle.

VI. CONCLUSIONS

We presented a universal two-body-Hamiltonian quantum
computer for a three-layer qubit layout, running in three steps:
a simple product-state initialization, evolution for a time O(L2)
(up to logarithmic factors) without time-control requirements,
and a computational basis measurement checking whether the
clock register is in a state |t > L〉c. The state of an output work
qubit then contains the result of the quantum circuit U acting on
the work register of our initial state. Furthermore, our two-body
interactions are also spatially local, with a three-layer layout
of length O(L) and width O(n), where n is the number of
qubits and L the number of gates in the preprocessed circuit.

Although the improvement over previous work might look
only incremental at first sight, it is far from straightforward.
Before, reduction of a three-body to a two-body requirement
on interactions (between qubits) for similar constructions
was possible only by utilizing effective Hamiltonians
made from two-local terms with large norm, arranged in
perturbation gadgets. After rescaling, these implied a tiny
(although still inverse-polynomial) gap in the Hamiltonian,
a large run time, and strict noise-level requirements (if
used in an AQC). Our Hamiltonian is spatially local, built
from O(nL) constant-norm terms In contrast to previous
constructions, our computation scheme based on railroad
switches is polynomially faster. The initial product state
evolves within a computational subspace, and the evolution
is described by a rapidly mixing, continuous-time quantum
walk on a necklacelike graph. Moreover, the interaction types
utilized here (X,Z,ZZ,XX,ZX,YY ) are getting closer to the
actual set of interactions (X,Z,ZZ,XX,ZX) available, e.g., in
superconducting QC architecture [24]. In conclusion, the class
of two-body Hamiltonians presented here (corresponding to
different unitary circuits U ) is universal for BQP problems
and difficult for simulation on a classical computer.
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