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Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms

in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with

nearest-neighbor interactions can be for small values of s. While FF spin-1=2 chains are known to have

unentangled ground states, the case s ¼ 1 remains less explored. We propose the first example of a FF

translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some

signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced

strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain

scales as 1
2 lognþOð1Þ, where n is the number of spins. We prove that the energy gap above the ground

state is polynomial in 1=n. The proof relies on a new result concerning statistics of Dyck paths which

might be of independent interest.
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The presence of long-range entanglement in the ground
states of critical spin chains with only short-range inter-
actions is one of the most fascinating discoveries in the
theory of quantum phase transitions [1]. It can be quanti-
fied by the scaling law SðLÞ � logL, where SðLÞ is the
entanglement entropy of a block of L spins. In contrast,
noncritical spin chains characterized by a nonvanishing
energy gap obey an area law [2] asserting that SðLÞ has a
constant upper bound independent of L.

One can ask how stable is the long-range ground state
entanglement against small variations of Hamiltonian
parameters? The scaling theory predicts [1,2] that a chain
whose Hamiltonian is controlled by some parameter g
follows the law SðLÞ � logL only if L does not exceed
the correlation length �� jg� gcj��, where � > 0 is the
critical exponent and gc is the critical point. For larger L
the entropy SðLÞ saturates at a constant value. Hence,
achieving the scaling SðLÞ � logL requires fine-tuning of
the parameter g with precision scaling polynomially with
1=L posing a serious experimental challenge.

The stringent precision requirement described above
can be partially avoided for spin chains described by
frustration-free (FF) Hamiltonians. Well-known (noncrit-
ical) examples of such Hamiltonians are the Heisenberg
ferromagnetic chain [3], the Affleck-Kennedy-Lieb-Tasaki
model [4], and parent Hamiltonians of matrix product
states [5]. More generally, we consider Hamiltonians of a
form H ¼ P

jgj�j;jþ1, where �j;jþ1 is a projector acting

on spins j, jþ 1, and gj > 0 are some coefficients. The

Hamiltonian is called frustration-free if the projectors
�j;jþ1 have a common zero eigenvector c . Such zero

eigenvectors c span the ground subspace of H. Clearly,
the ground subspace does not depend on the coefficients gj

as long as they remain positive. This inherent stability
against variations of the Hamiltonian parameters motivates
a question of whether FF Hamiltonians can describe criti-
cal spin chains.
In this Letter we propose a toy model describing a FF

translation-invariant spin-1 chain with open boundary con-
ditions that has a unique ground state with a logarithmic
scaling of entanglement entropy and a polynomial energy
gap. Thus our FF model reproduces some of the main
signatures of critical spin chains. In contrast, it was
recently shown by Chen et al. [6] that any FF spin-1=2
chain has an unentangled ground state. Our work may also
offer valuable insights for the problem of realizing long-
range entanglement in open quantum systems with an
engineered dissipation. Indeed, it was shown by Kraus
et al. [7] and Verstraete et al. [8] that the ground state of
a FF Hamiltonian can be represented as a unique steady
state of a dissipative process described by the Lindblad
equation with local quantum jump operators. A proposal
for realizing such dissipative processes in cold atom sys-
tems has been made by Diehl et al. [9]. Prior to our work,
an example of a FF spin chain with 21-dimensional spins
and a linear scaling of the entanglement entropy was found
by Irani [10]; see also [11]. It was conjectured in [12] that
generic FF chains with d-dimensional spins and projectors
of rank r have only highly entangled ground states with
probability 1 provided that d � r � d2=4 (which requires
d � 4).
Main results.—We begin by describing the ground state

of our model. The three basis states of a single spin will be
identified with a left bracket l � ½, right bracket r ��, and
an empty space represented by 0. Hence a state of a single
spin can be written as �j0i þ �jli þ �jri for some
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complex coefficients �, �, �. For a chain of n spins, basis
states jsi correspond to strings s 2 f0; l; rgn. A string s is
called a Motzkin path [13] if and only if (i) any initial
segment of s contains at least as many l’s as r’s and (ii) the
total number of l’s is equal to the total number of r’s. For
example, a string lllr0rl0rr is a Motzkin path while
l0lrrrllr is not since its initial segment l0lrrr has more
r’s than l’s. By ignoring all 0’s one can view Motzkin paths
as balanced strings of left and right brackets. We are
interested in the Motzkin state jMni, which is the uniform
superposition of all Motzkin paths of length n. For ex-
ample, jM2i � j00i þ jlri and jM3i � j000i þ jlr0i þ
jl0ri þ j0lri, and

jM4i � j0000i þ j00lri þ j0l0ri þ jl00ri þ j0lr0i
þ jl0r0i þ jlr00i þ jllrri þ jlrlri:

Let us first ask how entangled is the Motzkin state. For a
contiguous block of spins A, let �A ¼ Trj6�AjMnihMnj be
the reduced density matrix of A. Two important measures
of entanglement are the Schmidt rank �ðAÞ, equal to the
number of nonzero eigenvalues of �A, and the entangle-
ment entropy SðAÞ ¼ �Tr�Alog2�A. We will choose A
as the left half of the chain, A ¼ f1; . . . ; n=2g. We will
show that

�ðAÞ ¼ 1þ n=2 and SðAÞ ¼ 1

2
log2nþ cn; (1)

where limn!1cn ¼ 0:14ð5Þ. The linear scaling of the
Schmidt rank stems from the presence of locally
unmatched left brackets in A whose matching right brack-
ets belong to the complementary region B ¼ ½1; n�nA. The
number of the locally unmatched bracketsm can vary from
0 to n=2 and must be the same in A and B leading to long-
range entanglement between the two halves of the chain. In
the Supplemental Material [14], we prove that the Schmidt
decomposition of the Motzkin state can be written as

jMni ¼
Xn=2
m¼0

ffiffiffiffiffiffiffi
pm

p jC0;miA � jCm;0iB; (2)

where jC0;mi and jCm;0i are normalized uniform super-

positions of all strings s 2 f0; l; rgn=2 with exactly m
unmatched left and right brackets, respectively, while
pm is some probability distribution. The scaling of SðAÞ ¼
�Pmpmlog2pm can be understood by identifying Motzkin
paths with trajectories of a particle hopping on a semi-
infinite 1D lattice that start and end at the boundary. The
Motzkin state jMni then represents the uniform superpo-
sition of all such trajectories, while m is the coordinate of
the particle after n=2 steps. Using the standard Brownian
motion picture as a crude approximation, one should
expect that the distribution of m has a width roughly

ffiffiffi
n

p
which explains the scaling SðAÞ � ð1=2Þlog2ðnÞ. A formal
analysis performed in the Supplemental Material [14]
shows that pm �m2 expð�3m2=nÞ for n 	 1.

Although the definition of Motzkin paths may seem very
nonlocal, we will show that the state jMni can be specified
by imposing local constraints on nearest-neighbor spins.
Let � be a projector onto the three-dimensional subspace
of C3 � C3 spanned by states j0li � jl0i, j0ri � jr0i, and
j00i � jlri. Our main result is the following.
Theorem 1: The Motzkin state jMni is a unique ground

state with zero energy of a frustration-free Hamiltonian

H ¼ jrihrj1 þ jlihljn þ
Xn�1

j¼1

�j;jþ1; (3)

where subscripts indicate spins acted upon by a projector.
The spectral gap of H scales polynomially with 1=n.
Discussion.—Our result raises several questions. First,

one can ask what is the upper bound on the ground state
entanglement of FF spin-1 chains and whether the Motzkin
state achieves this bound. For example, if the Schmidt rank
�ðLÞ for a block of L spins can only grow polynomially
with L, as it is the case for the Motzkin state, ground states
of FF spin-1 chains could be efficiently represented by
matrix product states [15] (although finding such represen-
tation might be a computationally hard problem [15]). We
conjecture that for spin-2 chains one can achieve a power
law scaling of SðAÞ in Eq. (1) by introducing two types of
brackets, say, l � ½, r ��, l0 � f, and r0 �g, such that
bracket pairs lr and l0r0 are created from the ‘‘vacuum’’

00 in a maximally entangled state ðjlri þ jl0r0iÞ= ffiffiffi
2

p
. We

expect the modified model with two types of brackets to
obey a scaling SðAÞ � ffiffiffi

n
p

, while its gap will remain lower
bounded by an inverse polynomial. One drawback of the
model based on Motzkin paths is the need for boundary
conditions and the lack of the thermodynamic limit. It
would be interesting to find examples of FF spin-1 chains
with highly entangled ground states that are free from this
drawback. Finally, an intriguing open question is whether
long-range ground state entanglement (or steady-state
entanglement in the case of dissipative processes) in 1D
spin chains can be stable against general local perturba-
tions, such as external magnetic fields.
Proof of Theorem 1. To prove the first part of the theorem

we shall need a more local description of Motzkin paths.
Let� ¼ f0; l; rg. Wewill say that a pair of strings s, t 2 �n

is equivalent, s� t, if s can be obtained from t by a
sequence of local moves

00 $ lr; 0l $ l0; 0r $ r0: (4)

These moves can be applied to any consecutive pair of
letters. For any integers p, q � 0 such that pþ q � n
defines a string

cp;q � r . . . r|ffl{zffl}
p

0 . . . 0|ffl{zffl}
n�p�q

l . . . l|ffl{zffl}
q

: (5)

In the Supplemental Material [14] we prove the following
simple fact.
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Lemma 1. Any string s 2 �n is equivalent to one and
only one string cp;q. A string s 2 �n is a Motzkin path if

and only if it is equivalent to the all-zeros string, s� c0;0.
This shows that the set of all strings �n can be parti-

tioned into equivalence classes Cp;q, such that Cp;q

includes all strings equivalent to cp;q. In other words, s 2
Cp;q if and only if s has p unmatched right brackets and q

unmatched left brackets. Accordingly, the set of Motzkin
paths Mn coincides with the equivalence class C0;0.

Let us now define projectors ‘‘implementing’’ the local
moves in Eq. (4). Define normalized states

j	i � j00i � jlri; jc li � j0li � jl0i;
jc ri � j0ri � jr0i

and a projector � ¼ j	ih	j þ jc lihc lj þ jc rihc rj.
Application of� to a pair of spins j, jþ 1 will be denoted
�j;jþ1. If some state c is annihilated by every projector

�j;jþ1, it must have the same amplitude on any pair of

equivalent strings; that is, hsjc i ¼ htjc iwhenever s� t. It
follows that a Hamiltonian H� ¼ P

n�1
j¼1 �j;jþ1 is FF and

the ground subspace ofH� is spanned by pairwise orthogo-
nal states jCp;qi, where jCp;qi is the uniform superposition

of all strings in Cp;q. The desired Motzkin state jMni ¼
jC0;0i is thus a ground state of H�. (It is worth mentioning

that not all states jCp;qi are highly entangled. For example,

jCn;0i ¼ jri�n is a product state.) How can we exclude the

unwanted ground states jCp;qi with p � 0 or q � 0? We

note that C0;0 is the only class in which strings never start

from r and never end with l. Hence a modified Hamiltonian
H ¼ jrihrj1 þ jlihljn þH� that penalizes strings starting
from r or ending with l has a unique ground state jC0;0i.
This proves the first part of theorem 1.

Spectral gap.—Let 
2 > 0 be the smallest nonzero ei-
genvalue of the HamiltonianH defined in Eq. (3). An upper
bound 
2 � Oð1= ffiffiffi

n
p Þ can be easily derived by construct-

ing a low-energy excited state as explained in the
Supplemental Material [14]. The main technical contribu-

tion of this Letter is a lower bound 
2 � n�Oð1Þ. Below we
sketch the main ideas involved in the proof.

Recall that a string s 2 fl; rg2m is called a Dyck path if
and only if any initial segment of s contains at least as
many l’s as r’s, and the total number of l’s is equal to the
total number of r’s. For example, Dyck paths of length 6
are lllrrr, llrlrr, llrrlr, lrlrlr, and lrllrr. Let Dm be the
set of all Dyck paths of length 2m andD be the union of all
Dm with 2m � n. We shall connect a pair of Dyck paths s,
t 2 D by an edge if and only if they are related by
insertion or removal of a consecutive lr pair. This defines
a graph G ¼ ðD; EÞ that we shall call a Dyck graph. Let
Mn be the set of all Motzkin paths of length n.

The first step in the proof is to relate the gap of H to the
gap of a stochastic matrix P describing a random walk on
the Dyck graph. This step is accomplished by deforming
the Hamiltonian H such that the terms responsible for

creation and annihilation of pairs of brackets become a
small perturbation. The FF property allows us to choose the
deformation such that it does not change the ground state,

while the spectral gap shrinks at most by a factor n�Oð1Þ.
The analysis uses the projection lemma of [16] and the
exact formula for the spectral gap of the Heisenberg chain
found by Koma and Nachtergaele [3]. Finally, we use the
standard gap-preserving reduction from stoquastic
Hamiltonians [17] to stochastic matrices. It allows us to
prove the following.

Lemma 2. The gap of H coincides up to a factor n�Oð1Þ
with the gap of a stochastic matrix P describing a random
walk on the Dyck graph. For any edge ðs; tÞ of the Dyck
graph, the transition probability from s to t is Pðs; tÞ ¼
�ð1=n3Þ and Pðs; sÞ � 1=2. The unique steady state is

�ðsÞ ¼ 1

jMnj
n
2m

� �
for s 2 Dm: (6)

Furthermore, �ðsÞPðs; tÞ ¼ �ðtÞPðt; sÞ for all s, t 2 D.
Since the proof involves a combination of well-known

techniques, we defer it to the Supplemental Material [14].
Note that the gap of P refers to the difference 1� 
2ðPÞ,
where 
2ðPÞ is the second-largest eigenvalue of P.
To bound the spectral gap of P we shall connect any pair

of Dyck paths s, t 2 D by a canonical path �ðs; tÞ
on the Dyck graph G ¼ ðD; EÞ, that is, a sequence
s0; s1; . . . ; sl 2 D such that s0 ¼ s, sl ¼ t, and ðsi; siþ1Þ 2
E for all i. The canonical paths theorem [18] shows that
1� 
2ðPÞ � 1=ð�lÞ, where l is the maximum length of a
canonical path and � is the maximum edge load defined as

� ¼ max
ða;bÞ2E

1

�ðaÞPða; bÞ
X

s;t: ða;bÞ2�ðs;tÞ
�ðsÞ�ðtÞ: (7)

The key new result that allows us to choose a good family
of canonical paths is the following.
Lemma 3. Let Dk be the set of Dyck paths of length 2k.

For any k � 1 there exists a map f: Dk ! Dk�1 such that
(i) the image of any path s 2 Dk can be obtained from s by
removing a single consecutive lr pair, (ii) any path t 2
Dk�1 has at least one preimage in Dk, and (iii) any path
t 2 Dk�1 has at most four preimages in Dk.
The lemma allows one to organize the set of all Dyck

paths D into a supertree T such that the root of T
represents the empty path and such that children of any
node s are elements of f�1ðsÞ. The properties of f imply
that Dyck paths of length 2m coincide with level-m nodes
of T , any step away from the root on T corresponds to
insertion of a single consecutive lr pair, and any node ofT
has at most four children. The five lowest levels of the
supertree T are shown in Fig. 1 in the Supplemental
Material [14]. Hence the lemma provides a recipe for
growing long Dyck paths from short ones without over-
using any intermediate Dyck paths. It should be noted
that restricting the maximum number of children to four

is optimal since jDkj ¼ Ck � 4k=
ffiffiffiffi
�

p
k3=2, where Ck is

PRL 109, 207202 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

207202-3



the kth Catalan number. Our proof of lemma 3 based on
the fractional matching method can be found in the
Supplemental Material [14]. This method appears to be
new and might be interesting in its own right.

We can now define the canonical path �ðs; tÞ from
s 2 Dm to t 2 Dk. Any intermediate state in �ðs; tÞ will
be represented as uv where u 2 Dl0 is an ancestor of s in
the supertree and v 2 Dl00 is an ancestor of t. The canoni-
cal path starts from u ¼ s, v ¼ ; and alternates between
shrinking u and growing v by making steps towards the
root (shrink) and away from the root (grow) on the super-
tree. The path terminates as soon as u ¼ ; and v ¼ t. The
shrinking steps are skipped whenever u ¼ ;, while the
growing steps are skipped whenever v ¼ t. Note that any
intermediate state uv obeys

minðjsj; jtjÞ � juj þ jvj � maxðjsj; jtjÞ: (8)

Since any path �ðs; tÞ has length at most 2n, it suffices to
bound the maximum edge load �. Fix the edge ða; bÞ 2 E
with the maximum load. Let �ðm; k; l0; l00Þ be the contribu-
tion to � that comes from canonical paths �ðs; tÞ such that
a ¼ uv 2 Dl0þl00 , where

s 2 Dm; t 2 Dk; u 2 Dl0 ; v 2 Dl00 ;

and such that b is obtained from a by growing v (the case
when b is obtained from a by shrinking u is analogous).
The number of possible source strings s 2 Dm contribut-

ing to �ðm; k; l0; l00Þ is at most 4m�l0 since s must be a
descendant of u on the supertree. The number of possible
target strings t 2 Dk contributing to �ðm; k; l0; l00Þ is at

most 4k�l00 since t must be a descendant of v on the
supertree. Taking into account that �ðsÞ and �ðtÞ are the
same for all s 2 Dm and t 2 Dk, we arrive at

�ðm; k; l0; l00Þ � 4mþk�l0�l00 �ðsÞ�ðtÞ
�ðaÞPða; bÞ ¼

�m�k

�l0þl00Pða; bÞ ;

with

�l ¼ 4l
n

2l

 !�
jMnj:

Here we used Eq. (6). lemma 2 implies that 1=Pða; bÞ �
nOð1Þ. Furthermore, the fraction of Motzkin paths of length
n that have exactly 2l brackets is

�l ¼ Cl

n

2l

 !�
jMnj:

HoweverCl � 4l=
ffiffiffiffi
�

p
l3=2 coincides with 4l modulo factors

polynomial in 1=n. Hence

�ðm; k; l0; l00Þ � nOð1Þ�m�k

�l0þl00
:

By definition, �l � 1 for all l. Also, one can easily check
that �l as a function of l has a unique maximum at l � n=3
and decays monotonically away from the maximum.
Consider two cases. Case (1): l0 þ l00 is on the left

from the maximum of �l. From Eq. (8) one gets
minðm; kÞ � l0 þ l00 and thus �m�k � �minðm;kÞ � �l0þl00 .

Case (2): l0 þ l00 is on the right from the maximum of �l.
From Eq. (8) one gets maxðm; kÞ � l0 þ l00 and thus
�m�k � �maxðm;kÞ � �l0þl00 . In both cases we get a bound

�ðm; k; l0; l00Þ � nOð1Þ. Since the number of choices for m,

k, l0, l00 is at most nOð1Þ, we conclude that � � nOð1Þ and
thus 1� 
2ðPÞ � n�Oð1Þ. lemma 2 now gives the desired
lower bound on the gap of H.
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