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The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation
of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of
the corner transfer matrix renormalization group method using a recursive construction of asymmetric transfer
matrices. Studying the phase transition, the mean-field universality is captured by means of a precise analysis of
thermodynamic functions. The correlation functions and the density-matrix spectra always decay exponentially
even at the transition point, whereas power-law behavior characterizes criticality on the Euclidean flat geometry.
We confirm the absence of a finite correlation length in the limit of infinite negative Gaussian curvature.

DOI: 10.1103/PhysRevE.86.021105 PACS number(s): 05.50.+q, 05.70.Jk, 64.60.F−, 75.10.Hk

I. INTRODUCTION

An increasing interest in the thermodynamic behavior of
various physical models on non-Euclidean (curved) surfaces
has been persisting for about two decades, due to recent
experimental fabrication of soft materials with conical geom-
etry [1] and magnetic nanostructures which exhibit negatively
curved geometries [2–4]. Curved geometries are also relevant
in the theory of quantum gravity [5,6]. In this context, several
statistical models have been investigated on simple negatively
curved geometries, such as the Ising model [7–9], the q-state
clock models [10,11], and the XY model [12].

A typical example of the negatively curved geometry is
represented by the two-dimensional discretized hyperbolic
surface (lattice) which is characterized by a constant negative
Gaussian curvature. Among the varieties of lattice surfaces,
we choose, for simplicity, a group of regular lattices that
are constructed as tiling of congruent polygons of the pth
order with the coordination number q. On the hyperbolic
(p,q) lattices, the relation (p − 2)(q − 2) > 4 is satisfied, in
contrast to the relation (p − 2)(q − 2) = 4 on the Euclidean
flat geometry. Figure 1 shows two examples, the (3,7) and
(3,13) lattices where the whole lattice is mapped onto the
Poincaré disk [13].

In general, the number of the lattice sites within a
certain area increases exponentially with its diameter on such
hyperbolic lattices. This exponential increase limits efficiency
of numerical studies of statistical models, such as the Ising
model on the (p,q) lattice. In particular, applications of Monte
Carlo simulation face difficulties in the scaling analysis around
the phase transition. Also, transfer matrix diagonalization can
not easily be applied due to the nontriviality in the construction
of the row-to-row transfer matrices.

Despite these difficulties, one can evaluate the partition
function by means of Baxter’s corner transfer matrix
formalism [14] even for the hyperbolic (p,q) lattices. In this
article, we use a flexible numerical implementation of Baxter’s
method, so-called the corner transfer matrix renormalization
group (CTMRG) algorithm, which has been used as a tool
in the computation of the partition function for (flat) two-
and three-dimensional classical spin systems [15–17]. In our

previous papers [9,10,18,19], we considered the hyperbolic
(p,q) lattices, typically for the case with q = 4, where
the whole lattice can be divided into four quadrants, i.e.,
the “corners.” For the Ising model on the (p,4) lattices, the
mean-field universality was found [7,9].

The hyperbolic (p,q) lattice with an arbitrary coordination
number q other than four has not been addressed by use
of the CTMRG method yet. For this case, the numerical
renormalization procedure of the corner transfer matrices
requires a technical extension upon the established numerical
procedure for the (p,4) lattices. In this article, we introduce
a new procedure which is valid for general values of q and
find the thermodynamic properties of the Ising model on a
wider class of the (p,q) lattices. In particular, the triangular
tessellation (p = 3) and the coordination number q � 6 are
investigated as representative examples.

This article is organized as follows. In Sec. II, we define
the Ising model on the (p,q) lattices. In Sec. III, the
recurrent renormalization algorithm of the CTMRG method
is introduced. The application of CTMRG to the (3,q) lattices
is explained starting from q = 6 and increasing q. Numerical
results on the spontaneous magnetization and energy are pre-
sented in Sec. IV, with a detailed analysis of the q dependence
of the phase transition temperature and the corresponding
scaling exponents. In Sec. V, the quantum entropy and the
scaling behavior of the correlation functions are observed.
We also analyze the effects of the Gaussian curvature on the
correlation length. We summarize the result in the last section.

II. LATTICE MODEL

Consider the Ising model with the Hamiltonian

H(σ ) = −J
∑
{i,j}

σiσj − h
∑
{i}

σi (1)

defined on the hyperbolic (p,q) lattices. We here use the
standard notation (p,q) where the first integer p corresponds
to the regular polygons with p sides (or vertices) and where the
second one q stands for the coordination number, which is the
number of polygons meeting in each vertex. Throughout this
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FIG. 1. Poincaré disk representation of the hyperbolic lattices
created by triangular tessellation p = 3 with the coordination
numbers q = 7 (left) and q = 13 (right).

article, we focus on the triangular tiling on the (3,q) lattices
only. The Ising spin variables σi =↑ or ↓ are located on the
vertices. The first term in H(σ ) represents the ferromagnetic
coupling (J > 0) between the nearest-neighboring Ising spins
σi and σj , and the second represents the effect of the external
magnetic field h. Then, the partition function

Z =
∑
{σ }

exp

[
−H(σ )

kBT

]
(2)

is given by the sum of the Boltzmann weights over all spin
configurations which are denoted by {σ }. Here, kB and T ,
respectively, are the Boltzmann constant and the temperature.

On any (p,q) lattice, the Boltzmann weight of the whole
system can be represented as the product of the local
Boltzmann weights attributed to the particular p-gons. In
this study, we define the local Boltzmann weights which are
consistent with the triangular tessellation (p = 3). For a reason
we explain in the following, each local Boltzmann weight WB

is constructed by a pair of adjacent triangles σaσbσd and σbσcσd

as shown in Fig. 2. The local Boltzmann weight WB for this
pair of the triangles is then given by

WB(σaσbσcσd )

= exp

[
J

2kBT
(σaσb + σbσc + σcσd + σdσa + 2σbσd )

+ h

qkBT
(σa + 2σb + σc + 2σd )

]
. (3)
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FIG. 2. (Color online) Graphical representation of the extension
process of the left transfer matrix L̃6, the right transfer matrix R̃6,
and the corner transfer matrix C̃6 on the (3,6) lattice which are
defined by Eqs. (5)–(7). The filled symbols correspond to the variables
which have to be summed up. The two-state and multistate variables,
respectively, are denoted by σ and ξ .

The factor 2 of 2σbσd arises from the fact that σb and σc are
shared by two triangles, under the tessellation of “bitriangular”
Boltzmann weights. Also, the factor 2 appears in 2σb and 2σd

since the effect of external magnetic field h should be counted
for both upper and lower triangles. Under these factorizations,
we proceed the calculation by the CTMRG method [9,15].

The standard numerical formalism based on the diagonal-
ization of the row-to-row transfer matrix is not easily applied
under hyperbolic geometries. It has been shown that the
CTMRG method works as an alternative [18] when the (p,4)
lattice is considered under the condition p � 4. Recall that the
(p,4) lattice can be divided into four equivalent quadrants by
two perpendicular geodesics, and it is easily understood that
each quadrant corresponds to the corner transfer matrix [9,18].
Such division of the whole system is not generally admissible
for the (3,q) lattices, which is under our interest, in particular,
when q is odd; we tackle this case in the following.

III. RECURRENT RG SCHEME

Let us consider the generalization of the CTMRG method
to the (3,q) lattice with q � 6. The Boltzmann weight of the
whole (3,q) lattice can be represented by the product of the
q identical corner transfer matrices Cq surrounding the central
spin σ . In this picture, we can express the partition function in
the product form

Z(p,q) =
∑

σ

∑
ξ1,ξ2,...,ξq

q∏
j=1

Cq(σξj ξj+1), (4)

where ξj and ξj+1, which appear as the parameters of the
corner transfer matrix Cq (σξj ξj+1), are the block spin variables
corresponding to chains of the spins from the central spin σ

towards the system boundary. We have assumed the cyclic
order around σ , and thus ξq+1 ≡ ξ1 is satisfied. Throughout this
paper, we use the counterclockwise index ordering for the spin
variables included in corner transfer matrices Cq(σξj ξj+1),
starting from any one of the two-state variables from σa to σd .
Also, the renormalized spin variables ξi are aligned in the same
ordering, as shown on the red triangles in Figs. 2, 3, and 4.

Let us explain the recursive construction of the corner
transfer matrix Cq(σξj ξj+1) with respect to the successive area
expansion of the whole system [9]. For a tutorial purpose, we
start from the (3,6) lattice where the system is on the flat
surface, and treat the cases q > 6 afterward.

In contrast to the original CTMRG formulation [15], it is
important to introduce two different kinds of “half-row transfer
matrices” Lq and Rq , which are used for the area expansion
of the corner transfer matrix. On the (3,6) lattice, the area
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FIG. 3. (Color online) The expansion process of L̃7, R̃7, and C̃7

on the (3,7) lattice.
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FIG. 4. (Color online) The expansion process of L̃13, R̃13, and
C̃13 for the (3,13) geometry.

expansions of the transfer matrices L6 and R6 are performed
as

L̃6(σdσaσbσcξ1ξ2) = WB(σaσbσcσd )L6(σdσcξ1ξ2), (5)

R̃6(σcσdσaσbξ1ξ2) = WB(σaσbσcσd )R6(σcσbξ1ξ2), (6)

where the position of each spin variable is graphically depicted
in Fig. 2. Similarly, the corner transfer matrix C̃6 is expanded
as

C̃6(σdσaσbξ1ξ4) =
∑

σc,ξ2,ξ3

WB(σaσbσcσd )L6(σdσcξ3ξ4)

× C6(σcξ2ξ3)R6(σcσbξ1ξ2). (7)

The recursive expansion procedure in CTMRG can be initiated
by setting L6(σaσbσcσd ) = R6(σdσaσbσc) = WB(σaσbσcσd )
and C6(σaσbσd ) = ∑

σc
WB(σaσbσcσd ) where the multispin

variables ξ are identical with the Ising ones σ at the beginning.
In the following, we do not write spin variables explicitly for
bookkeeping.

We now generalize the above-mentioned expansion process
for the (3,q) lattices, when q � 7, where the hyperbolic surface
geometry is realized. Drawing the lattice, such as shown in
Fig. 1, and analyzing the inner structure of the corners, one
can derive a set of recursive relations. The q-dependent corner
transfer matrix

C̃q =
∑
σc,ξ ′s

WBLqCqRq (8)

is a slight modification of Eq. (7). The relation is graphically
shown in Figs. 3 and 4 for the two representative cases.
Similarly, for the “half-row transfer matrices,” we obtain

L̃q =
∑
ξ ′s

WBCnq

q LqC
nq

q , (9)

R̃q =
∑
ξ ′s

WBCnq

q RqC
nq

q , (10)

where nq is the multiplicity of Cq given by

nq =
⌊

q − 6

2

⌋
≡ max

{
n ∈ Z | n � q − 6

2

}
. (11)

In contrast to Eqs. (5) and (6), the corner transfer matrices
appear in the expansion process of Lq and Rq when q � 7.
The extended transfer matrices L̃q , R̃q , and C̃q reenter the right
hand sides of Eqs. (8)–(10).

The expansion process successively increases the system
size by expanding the matrix dimensions of L̃q , R̃q , and C̃q .
To prevent the exponential grow of computational effort, we
introduce the density-matrix renormalization scheme [9,15].

Let us express the block-spin transformation by the matrix
URG. The transfer matrices are “compressed” by the RG
transformation

(U †
RGL̃qURG)/‖U †

RGL̃qURG‖2 → Lq,

(U †
RGR̃qURG)/‖U †

RGR̃qURG‖2 → Rq, (12)

(U †
RGC̃qURG)/‖U †

RGC̃qURG‖2 → Cq .

We introduced the normalization factor ‖ . . . ‖2 in order to
avoid the numerical overflow in the expression of the partition
function.

The central issue concerns the definition of the RG
transformation. In the density-matrix renormalization scheme,
URG is created by diagonalization of the reduced density matrix
ρ which may be represented in a non-Hermitian (asymmetric)
form

ρ = Trenv|ψ〉〈φ|. (13)

The trace is taken over the spin variables belonging to the
environment as proposed by DMRG [15,20]. The states |ψ〉
and |φ〉 correspond to two parts of the whole lattice. The
Boltzmann weight for these two parts can be calculated as the
product of the corner transfer matrices

ψ(σξαξβ) =
∑

ξ1ξ2,...,ξk

C(σξαξ1)C(σξ1ξ2) . . . C(σξkξβ), (14)

φ(μξγ ξδ) =
∑

ξ1ξ2,...,ξ�

C(μξγ ξ1)C(μξ1ξ2) . . . C(μξ�ξδ), (15)

where we introduced the condition k + � + 2 = q. The most
optimal choice is to consider k = nq+5 and � = nq+4 with
nq given by Eq. (11). We have used letter μ for the two-state
variable of φ just for distinction from σ of ψ , and this choice is
convenient when we construct the reduced density matrix. The
normalized partition function can be written asZ(3,q) = 〈ψ |φ〉.
As an example, we obtain k = 3 and � = 2 for the (3,7) lattice
with the corresponding Boltzmann weights

ψ(σξαξβ) =
∑
ξ1ξ2ξ3

C(σξαξ1)C(σξ1ξ2)C(σξ2ξ3)C(σξ3ξβ),

(16)
φ(μξγ ξδ) =

∑
ξ1ξ2

C(μξγ ξ1)C(μξ1ξ2)C(μξ2ξδ).

Notice that if q is even, k = � = q

2 − 1 resulting in
|ψ〉 ≡ |φ〉. For this choice, the reduced density matrix ρ is
always Hermitian (symmetric). However, for any odd q, ρ

becomes non-Hermitian (asymmetric). This may lead to severe
numerical instabilities. In order to avoid them, we symmetrize
the reduced density matrix. We, therefore, consider an equally
weighted reduced density matrix

ρ(σξα|μξβ) = 1

2

∑
ξγ

ψ†(σξαξγ )φ(μξβξγ )

+φ†(σξαξγ )ψ(μξβξγ ). (17)

Having tested both formulations of the reduced density
matrix, Eqs. (13) as well as (17), we encountered numerical
instabilities for the non-Hermitian case only, especially in the
vicinity of the phase transition. Otherwise, both density-matrix
formulations yield the identical thermodynamic properties.
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IV. MAGNETIZATION AND ENERGY

Since the detailed analysis of the phase transitions deep
inside the hyperbolic lattice is of our interest, we concentrate
on the bulk properties of a sufficiently large inner region of the
lattice [8,18], although the influence of the system boundary
is not negligible at all for the discussion of the thermodynamic
properties of the system. The bulk spontaneous magnetization
is an example where the value can be calculated by

M = Tr(σρ)/Tr ρ (18)

in the CTMRG formulation. Without loss of generality, we
set the coupling constant J and the Boltzmann constant kB to
unity, and all thermodynamic functions are evaluated in the
unit of kB.

We now consider one-point functions of the Ising model on
the series of (3,p) lattices in the thermodynamic limit. First
of all, let us check the validity of our numerical procedure
as explained in the previous section. We perform a test
calculation for the flat (3,6) lattice. Keeping only m = 20
states of the multispin variables ξ [9,18,20], the obtained
spontaneous magnetization is shown in Fig. 5. The estimated
transition temperature Tc = 3.641 is quite close to the exact
value Tc = 4/ ln 3 ≈ 3.640 96 [14].

Now, we focus on the hyperbolic surfaces. In Fig. 5, we
also plot the temperature dependence of the spontaneous mag-
netization M for the coordination numbers from 7 � q � 20.
The full and the dashed curves, respectively, distinguish the
even and odd values of q. As we show later, the system is
always off critical whenever q � 7, even at the transition
temperature. We, therefore, use the notation T

(q)
pt instead of

T
(q)

c for q � 7; we also use T
(6)

pt for q = 6 in order to unify the
notation.

If a small magnetic field h is applied at the transition
temperature T

(q�7)
pt , the cubed induced magnetization M3 is

always linear around h = 0. Thus, the model satisfies the
scaling relation M(h,Tpt) ∝ h1/δ with the scaling exponent
δ = 3. This value is known for the mean-field universality of
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FIG. 5. Spontaneous magnetizations M with respect to temper-
ature T for 6 � q � 20. The inset shows the linear behavior of the
cubic power of the induced magnetization M3 with respect to the
magnetic field h around the transition temperatures T

(q)
pt .
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FIG. 6. The squared spontaneous magnetization M2 is linear with
respect to the normalized temperature near the transition point. This
corresponds to β = 1

2 . Inset: the linearity of the M8 is observed only
when q = 6 where β = 1

8 .

the Ising model and is in full agreement with our previous
results for the hyperbolic (p � 5,4) lattices [18].

In order to observe the scaling relation of the spontaneous
magnetization M in a unified manner, we plot the squared mag-
netization M2 in Fig. 6 with respect to the rescaled temperature
by T

(q�7)
pt . Near the point T = T

(q�7)
pt , the mean-field behavior

M(h = 0,T ) ∝ (T (q)
pt − T )β with β = 1

2 is detected. Note that
on the (3,6) lattice, the exponent is β = 1

8 as displayed in
the inset. To detect the scaling exponent β in a more precise
manner, we calculate the effective exponent

βeff(T ) = ∂ ln
[
M

(
h = 0,T < T

(q)
pt

)]
∂ ln

[
T

(q)
pt − T

] (19)

by means of the numerical derivative. The convergence of
βeff(T ) with respect to T

(q)
pt − T is shown in Fig. 7. It is
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FIG. 7. Convergence rate of the effective scaling exponent. Inset:
scaling of the phase transition temperatures T

(q)
pt versus the integer q.
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FIG. 8. Specific heat as a function of temperature. The open
circles connected by the vertical dotted lines show the discontinuity.
Inset: temperature dependence of the internal energy.

apparent that the mean-field value β = 1
2 is detected for any

q � 7, whereas we confirm β = 1
8 on the flat (3,6) lattice only.

The linear increase of the transition temperature T
(q�7)

pt with
respect to q is shown in the inset where the linearity appears
already around q � 8. This agrees with an intuition where the
mean-field behavior becomes dominant for large coordination
numbers.

Let us analyze the specific heat (or the heat capacity) per
bond

Cv = ∂Eint

∂T
, (20)

where Eint is the internal energy per bond, or equivalently, the
correlation function between the two nearest-neighbor spins

Eint = −J 〈σiσi+1〉 = −J Tr(σiσi+1ρ) (21)

with σi and σi+1 located at the center of the lattice.
Figure 8 shows the results for Cv and Eint. The internal energy
Eint is continuous for all the cases we computed. The presence
of the kink in Eint at the transition temperature for each
q � 7 corresponds to the discontinuity in Cv [18,19]. For these
cases, the scaling exponent α, which appears in the relation

Cv(h = 0,T ) ∝ |T (q)
pt − T |−α

, is zero. It is instructive to point
out that both Cv and Eint in the paramagnetic region are almost
independent on q; the tiny differences are hardly visible on the
scale in the figure.

V. ENTROPY AND CORRELATION

Whenever the reduced density matrix ρ is defined, the von
Neumann (or entanglement) entropy [21]

S = −Tr(ρ log2 ρ) = −
∑

i

ωi log2 ωi (22)

can be used as a characteristic quantity which is of use for
the classification of the phase transition. Figure 9 shows
the temperature dependence of S, which remains finite for
q � 7 even at the transition temperature. The entropies in the
paramagnetic region are also almost independent on q if q � 7
as found for Cv and Eint.
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FIG. 9. Temperature dependence of the von Neumann entangle-
ment entropy. The inset displays the dominant behavior of S for the
(3,6) lattice.

The decay rate of the density-matrix eigenvalues ωi is
shown in Fig. 10 on a semilogarithmic scale for both (3,6) and
(3,9) lattices. We confirm a power-law decay in ωi only at the
transition point of the (3,6) lattice. Note that the eigenvalues ωi

decrease exponentially for q � 7 at the transition temperature.
The exponential decay of the density-matrix spectra is also

reflected in the correlation function

Gi,j = Tr(σiσjρ) (23)

between two distant sites i and j . We place the spin σi at the
center of the system and σj at the system boundary. Therefore,
as the lattice expands its size via the recursive steps in CTMRG,
the distance between these two spins increases progressively.

Figure 11 depicts log10(Gi,j ) as a function of |i − j | for
the (3,6) lattice (open symbols) and the (3,9) lattice (full
symbols). It is evident that the correlation functions always
decay exponentially on the (3,9) lattice regardless of the
temperature. We remark that an analogous exponential decay
of Gi,j has been observed for all q � 7 (not shown). On the
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FIG. 10. Decay of the density matrix spectra for the (3,6) lattice
(filled symbols) and the (3,9) lattice (open symbols).
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FIG. 11. Decay of the correlation functions with respect to
the distance |i − j |. The open and the full symbols, respectively,
correspond to the (3,6) lattice calculated at T = 3.0, 3.641, and 5.0,
and the (3,9) lattice at T = 6.0, 7.608, and 9.0.

(3,6) lattice, the correlation function decays as a power law at
the transition temperature, as seen in the inset.

In the following, we compare the Gaussian curvature
associated to the (3,q) lattice with the correlation length at
the transition temperature. There are several ways to define
the correlation length ξq [14,22]. For example, the decay rate
of the correlation function directly provides ξq . This is straight-
forward, but the region of the distance for the fitting analysis
has to be valued carefully. Another possibility consists in using
the largest eigenvalue λ0(q) and the second largest one λ1(q)
of the row-to-row transfer matrix where ξq is determined from

1

ξq

= ln

[
λ0(q)

λ1(q)

]
. (24)

The relation can be generalized to the (3,q � 7) lattices, in
analogy to our previous formulations for the (5,4) lattice [23],
via the construction of the row-to-row transfer matrix

Tq(ξ1σaξ2|ξ ′
1σ

′
aξ

′
2) = Lq(σ ′

aξ
′
1ξ1σa)Lq(σaξ2ξ

′
2σ

′
a). (25)

Using the notation of the recurrence scheme introduced in the
previous section, we calculate ξq by use of Eq. (24).

The Gaussian curvature Kq that corresponds to (3,q) lattice
is given by Ref. [24]

Kq = 1

(iRq)2 = −4 arccosh

[
1

2 sin
(

π
q

)
]
, (26)

where Rq is the curvature radius of the hyperbolic surface.
Recall that Kq must be zero on the Euclidean flat space
(q = 6). Figure 12 shows the relation between Kq and the
shifted transition temperature T

(q)
pt − T

(6)
pt . The lower-left inset

shows complementary information about Rq . The correlation
function ξq calculated around the phase transition for three
different q’s is plotted in the upper-right inset. Notice that ξq

reaches its maximum at the phase transition, which is not well
visible as q increases.

Figure 13 shows the dependence of the correlation length
ξq(T ) at the transition temperature with respect to the curvature
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FIG. 12. Gaussian curvature Kq with respect to the shifted phase
transition temperatures for 6 � q � 20. The inset on the left shows
the related radius of the curvature iRq via Eq. (26), while that on
the right shows the correlation length in the vicinity of the phase
transition.

radius Rq . In order to collect these data, we performed exten-
sive calculations up to 32 digits numerical precision for the
value of q as large as q = 10 000 000 where the corresponding
Gaussian curvature K107 is approximately 900. Note that both
quantities diverge on the (3,6) lattice, and therefore ξ6(T (6)

pt )
and R6 are not shown. Let us focus on the limit Rq → 0,
which corresponds to q → ∞. Evidently, the correlation
length ξq decreases to zero as q tends toward infinity (the
circles). Applying a least-squares fit, we obtain the relation
ξq = 1.44(iRq )0.908 as shown by the thick dotted-dashed curve.
If we consider the error in the calculation of the correlation
length, we can conjecture that ξq is proportional to Rq .

Recall that the specific heat Cv , the internal energy Eint, and
the entanglement entropy S turned out to be weakly dependent
on the value of q in the paramagnetic region T > T

(q)
pt for

q � 6. Thus, it can be conjectured that the disordered state is
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FIG. 13. Asymptotic scaling of the correlation length ξq at the
transition temperatures T

(q)
pt with respect to Rq . The thin dotted lines

serve as a guide to the eye. The inset shows the difference �ξ6−q (T (q)
pt )

in Eq. (27) with respect to q on a double logarithmic scale.
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not modified by the presence of the negative curvature. We,
therefore, compare ξq�7 just at the transition temperature T

(q)
pt

with the correlation length ξ6 at the temperatures T = T
(q)

pt .

These values are plotted in Fig. 13 by the asterisks. Since T
(q)

pt
almost linearly increases with q for large values of q, the dotted
line goes to the origin of the graph. The circles and the asterisks
in Fig. 13 are of the same order for all q, and this fact supports
our conjecture that Rq represents the only characteristic length
of the hyperbolic lattice and that the phase transition occurs at
the temperature where ξq is of the same order as Rq . Note that
ξ6(T (q)

pt ) > ξq(T (q)
pt ) is always fulfilled as plotted in the inset of

Fig. 13 where we show the difference

�ξ6−q

(
T

(q)
pt

) = [
ξ6

(
T

(q)
pt

) − ξq

(
T

(q)
pt

)]
. (27)

The relation ξ6(T (q)
pt ) > ξq(T (q)

pt ) may be explained by the effect
of the negative curvature that prevents from a kind of loop-back
of the correlation effect. Such suppression is also expected
to be present in higher-dimensional hyperbolic lattices and
could be analytically studied by means of the high temperature
expansion.

We conjecture the reason why the correlation length
remains finite even at the phase transition temperature T

(q)
pt

for q > 6, as follows. First of all, the hyperbolic plane
contains the typical length scale Rq , and it might prevent
scale invariance of the state expected at the criticality. A
more constructive interpretation could be obtained from the
observation on the row-to-row transfer matrix. The calculation
of ξq by means of Eq. (24) requires diagonalization of the
row-to-row transfer matrix Tq(ξ1σaξ2|ξ ′

1σ
′
aξ

′
2) in Eq. (25). The

matrix corresponds to an area which connects (transfers)
the row of the neighboring spins {ξ1σaξ2} with the adjacent
ones {ξ ′

1σ
′
aξ

′
2}. The shape of this area is very different from

the standard transfer matrix on the Euclidean lattice, which
corresponds to a stripe of constant width. On the hyperbolic
surfaces, however, this distance between the spin rows is not
uniform. The distance is minimal at the center of the transfer
matrix, i.e., between the two spins σa and σ ′

a , and it increases
exponentially with respect to the deviation from the center
to the direction of spin rows. Such a geometry [23] could
be imagined from the recurrence construction in Eq. (9). As
a consequence, the transfer matrix has an effective width,
which is of the order of the curvature radius Rq . The region
outside this width contributes as a sort of the boundary spins
that impose mean-field effect to the bulk part. This situation
is analogous to the Bethe lattice, being interpreted here as
(∞,q) lattices [18]. Thus, the Ising universality could be
observed only when the correlation length ξq is far less than the
curvature radius ξq ≪ Rq . As the length ξq increases toward

the transition temperature, we expect a transient behavior to
the mean-field behavior around the point when ξq becomes
comparable to Rq . We are confirming these conjectures and
the details will be reported in our subsequent work.

VI. CONCLUSIONS

We have presented a detailed analysis of various non-
Euclidean lattices forming surfaces with hyperbolic curva-
tures. In addition to our previous works on the (p,4) lattices,
we studied the complementary situation represented by the
(3,q) lattices. This task required a reformulation of the existing
CTMRG algorithm. We, therefore, considered the half-row
transfer matrices and the corner transfer matrices including
asymmetric (non-Hermitian) cases. For the lattices with odd
q’s, we symmetrized the density matrix by the way which has
been accepted by the DMRG community [20].

We treated the Ising model on the (3,q) lattice with
coordination number 6 � q � 107. The phase transition tem-
peratures are determined from the analysis of the magneti-
zation, internal energy, specific heat, and the von Neumann
entanglement entropy. We have shown that the transition
temperature T

(q)
pt linearly increases with q for larger values

of q. The scaling behavior of the thermodynamic functions,
including their related scaling exponents α = 0, β = 1

2 , and
δ = 3, obeys the mean-field universality class. The mean-field
nature of the hyperbolic surfaces is characterized by the
exponential decay of the reduced density-matrix eigenvalues
and the correlation functions even at the transition temperature.

We further evaluated the radius of the Gaussian curvature
Rq for the generic (3,q � 6) lattice geometry and compare
it to the results for the correlation length extracted from the
row-to-row transfer matrix. We found a strongly suppressed
correlation length ξq < 1 at the transition point for any q � 7.
We conjecture that ξq is proportional to Rq in the large q

limit.
In order to elucidate the origin of the mean-field universality

induced by the hyperbolic geometry, our future studies
aim at the treatment of specific hyperbolic geometries with
nonconstant Gaussian curvatures in order to systematically
approach the Euclidean (flat) geometry.
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