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We analyze the depth of the memory of quantum memory channels generated by a fixed unitary transfor-
mation describing the interaction between the principal system and internal degrees of freedom of the process
device. We investigate the simplest case of a qubit memory channel with a two-level memory system. In
particular, we explicitly characterize all interactions for which the memory depth is finite. We show that the
memory effects are either infinite, or they disappear after at most two uses of the channel. Memory channels
of finite depth can be to some extent controlled and manipulated by so-called reset sequences. We show that
actions separated by the sequences of inputs of the length of the memory depth are independent and constitute
memoryless channels.
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I. MEMORY EFFECTS

Schrödinger equation implies that an evolution of a closed
quantum system is unitary. However, this ideal picture of
closed and isolated quantum system is very difficult to
achieve experimentally. Unavoidable interactions between
the system and its environment result in a nonunitary evolu-
tion. Fortunately, under some specific though quite realistic
conditions the dynamics of the system can be described with-
out the necessity of explicit consideration of the environ-
ment’s degrees of freedom. The crucial assumption of open
system dynamics is that initially, the system is statistically
completely independent of the environment degrees of free-
dom affecting its time dynamics. It means that a preparation
procedure is completely uncorrelated from the evolution pro-
cess.

For example, a photon source �e.g., laser� is independent
of an optical cable used for the transmission. Only after in-
serted into the optical cable the photon is affected by its
properties resulting in a state change. Although the interac-
tion between the photon and the cable is driven by
Schrödinger equation, the photon itself undergoes a nonuni-
tary evolution. In particular, let us denote by �1 the initial
state of the photon and by � the initial state of the environ-
ment represented by the optical cable. The input-output
transformation then reads

�1 → �1� = Trenv�U�1 � �envU
†� = E1��1� . �1.1�

By definition, the mapping E describing the quantum process
�channel� is linear, completely positive, and trace-preserving.

But not only the photon state has changed. Also, the en-
vironment degrees of freedom evolved into

�env� = Tr1�U�1 � �envU
†� = F��env� . �1.2�

This concurrent �1� mapping F acting on the environment
system is a valid channel, because it is linear, completely
positive, and trace-preserving. Let us note that such concur-
rent channel depends only on the input system state, hence
for any channel E acting on a system there exist many con-
current channels F acting on the memory, and vice versa.

If the same optical cable is used once more, then

�2� = E2��2� = Tr�U�2 � �env� U†� , �1.3�

and E1�E2 in general. Moreover,

�12 = Trenv�U2U1��1 � �2 � �env�U1
†U2

†� � E1��1� � E2��2� ,

�1.4�

where U1 �U2� acts on the environment and the first �second�
system. We see that subsequent usages of the same process
device �e.g., optical cable� are not necessarily independent.
Usually, a time intervals in between the usages are suffi-
ciently large so that the environment relaxes into its original
initial state, hence �12=E1 � E1��1 � �2�. If this holds for any
number of uses, we say that the device is memoryless and its
action can be fully described by means of quantum channels,
i.e., completely positive trace-preserving linear maps. How-
ever, our goal is to investigate the cases when the relaxation
processes are not sufficiently fast �or are not happening at
all� to guarantee the same conditions for each run of the
experiment �e.g., photon transmission�. Such devices are de-
scribed by quantum memory channels. In particular, we will
focus on characterization and properties of those memory
channels, for which the memory effects are finite.

The research subject of quantum memory channels is rela-
tively new. Once the nature of the memory mechanism is
known it can be exploited to increase the information trans-
mission rates. Moreover, in this case the entangled encoding
strategies can significantly overcome the factorized ones.
Thus, the capacities �either classical or quantum� of quantum
memory channels are not necessarily additive. Naturally, the
research is mostly focused on investigation of transmission
rates for particular classes of memory channels �2–14�. Re-
cently, attention has been paid to an interesting class of so-
called bosonic memory channels �15–23� and also to
memory effects in the transmission of quantum states over
the spin chains �24–26�. Our aim is to investigate the struc-
tural properties of quantum memory channels rather than to
analyze their communication capabilities. A general frame-
work and structural theorem for quantum memory channels
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was given in the seminal work of Kretschmann and Werner
�27�. In �28�, the discrimination of general quantum memory
channels was investigated, and in �29� the concept of repeat-
able quantum memory channels was introduced and ana-
lyzed. In �27�, the authors introduced the concept of forgetful
quantum memory channels and showed that these memory
channels form a dense subset of all quantum memory chan-
nels. For such memory channels the state of the memory is
“forgotten” after a certain number of uses. In other words,
after n uses of the memory channel the �n+1�th output state
is approximately the same whatever was the original state of
the memory. Our task is to identify those channels, for which
the output state is exactly the same and to analyze the
memory depth once the size of the memory system is fixed.

Let us note that the concept of finiteness of the memory
we are going to use is different as the one introduced in Ref.
�30�, where the finiteness means the size of the memory sys-
tem. In our case, the finiteness is related rather to the depth
of memory effects. Our ultimate goal is to clearly formulate
this concept and investigate the simplest case of qubit
memory channels. We want to characterize those memory
channels for which the memory depth is finite. Such memory
channels can potentially mimic memoryless channels, paying
the cost of larger inputs.

In the following, Sec. II, we will formalize the language
of quantum memory channels. In Sec. III, we will formulate
the problem in general settings. The qubit case will be inves-
tigated in details in Sec. IV. The results are summarized in
Sec. V.

II. PRELIMINARIES

Let us denote by H a Hilbert space of the studied quan-
tum system and by L�H� a set of bounded linear operators
on H. A state � is any positive linear operator on H of unit
trace, i.e., ��0 and tr���=1. A linear map E on the set of
trace class operators is called a channel if it is completely
positive �L�H � Hanc��X�0 implies �E � Ianc��X��0� and
trace-preserving �tr[E�X�]=tr�X��. The famous Stinespring
dilation theorem says that any channel can be realized as a
unitary channel on some extended Hilbert space, i.e.,

E�X� = tranc�U�X � �anc�U†� �2.1�

for some unitary operator U�L�H � Hanc� and some state
�anc.

By a process device, we will understand any fixed piece
of hardware transforming quantum system from their initial
state to some final state. In each individual use, it is de-
scribed by some quantum channel, i.e., ����=E���. It
is memoryless if its joint action on n subsequent inputs is
factorized and in each run it is the same, i.e., E1. . .n=E1
� ¯ � E1 for all n=1,2 , . . .. If such property does not hold,
then no single channel can be used to describe the quantum
process device. The process device is in general described
by an infinite sequence E1 ,E12, . . . of channel acting on
H ,H � H , . . ., respectively. The causality requirement that
the actual action does not depend on future inputs implies
that

trn E12. . .n�X1,2,. . .,n−1 � Yn� = E1,2,. . .,n−1�X1,2,. . .,n−1� ,

for all X ,Y. In the seminal work �27� it was shown that such
causal quantum memory channel can be always expressed as
a concatenation of unitary channels describing a sequence of
interactions between the individual inputs and some fixed
memory system, i.e.,

E1,2,. . .n��12. . .n� = trmem�Un . . . U1��12. . .n � �mem�U1
† . . . Un

†� ,

where �mem is a state of an ancillary system called memory
and the bipartite unitary operator Uj acts nontrivially only on
the jth input and the memory system. This representation is
not unique and by definition we assume that we do not have
direct access to the memory system.

In what follows, we shall restrict to a specific type of
quantum memory models, in which the interactions are de-
scribed by the same unitary operator, i.e., U1=U2= ¯ =Un
=U. Let us note that for general considerations this case
covers the most general situation. In particular, let U1 ,U2 , . . .
be the sequence of unitaries defining a quantum memory
channel �potentially Uj�Uk�. We can define a unitary opera-
tor W=� j=0

� Uj � �j+1��j� on H � Hmem � H�, where H� is
the Hilbert space of the linear harmonic oscillator �being part
of the memory system� and Uj are the unitaries associated
with the quantum memory channel. In this sense, any quan-
tum memory channel is generated by a fixed unitary operator
U=W and some initial memory state �mem. However, such
reduction requires infinite memory system.

Let us stress that only if the input states are uncorrelated,
�12. . .n=�1 � �2 � ¯ � �n, then the transformation of each
input state is described by a quantum channel. Otherwise, the
channel model is not applicable. On one side, this is indeed a
restrictive condition, however, on the other side, it is experi-
mentally very relevant. The channel En, defined as

En��n� = tr1,. . .,n−1�E1,2,. . .n��1 � �2 � ¯ � �n�� , �2.2�

transforming the nth input, in general, depends on all previ-
ous inputs �1 , . . . ,�n−1. If this is the case for all n, then we
say that the memory is infinite. The other extreme is the
memoryless case, when U=V � Vmem and the channel En is
completely independent of any input. For example, if Hmem
	H and U=Vswap is the swap operation �Vswap� � �Vswap

†

=� � ��, then En��n�=�n−1, thus, En is a complete contrac-
tion of the state space into the state � j−1, which describes the
�n−1�th input. In such case, the memory is of finite depth,
because En depends solely on the input state �n−1.

In general, we say that a memory of the quantum memory
channel generated by a unitary operator U is of depth �U, if
for each n the channel En does not depend on the initial
memory state �mem, neither on the particular choice of input
states � j for all j�n−�U. Or, alternatively, the depth is �U if
for each n the channel En is independent of the inputs pre-
ceding �n−�U�th run of the process device including the
original memory state �mem. For example, the SWAP operator
is of depth 1, i.e., �Vswap

=1.
Our goal is to analyze which interactions U generate

memory channels with finite memory irrespective of the ini-
tial state of the memory system.
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III. FINITE-DEPTH MEMORY

The channel E j transforming a given input � j is generated
by the interaction U and the state of the ancilla � j in the jth
run of the process device. All the parameters the channel E j
depends on are only mediated through the memory state � j.
Choosing an orthogonal operator basis �0 , . . . ,�d2−1 of the
memory system the memory state � takes the form

� = �
k

mk�k, �3.1�

and the resulting channel reads

E���� = �
k

mk trmem�U� � �kU
†� . �3.2�

Let us note that orthogonality is defined with respect to
Hilbert-Schmidt scalar product �A ,B�hs= tr�A†B�.

If for a fixed unitary operator U and arbitrary input state �
we have trmem�U� � AU†�=O for some operator A, then the
induced channels E are independent of parameter tr��A�. It
follows from the fact that the operator A / tr�A†A� can be
taken to be an element of the orthonormal operator basis 
�k�
and �=�ktr���k��k. The set of all such operators A form a
linear subspace of L�H� and we call the corresponding state
parameters tr��A� irrelevant, because E does not depend on
them. Let us note that the identity operator I is never irrel-
evant, i.e., trmem�U�� � I�U†��O. Therefore, without loss of
generality we can set �0= I /�d and, consequently, due to or-
thogonality the other elements of the operator basis are trace-
less, i.e., tr��k�=0 for all k�0. Thus, the irrelevant operators
are necessarily traceless. In such basis, the states � take the
form �= 1

d I+m� ·��, hence they are uniquely represented by
�d2−1�-dimensional vectors m� �so-called Bloch vectors�. The
entries of each vector m� can be split into relevant and irrel-
evant ones. We will focus on the behavior of the relevant
parameters mediating the memory effects.

Using the process device n times the memory undergoes
an evolution

�n+1 = Fn��n� = ¯ = Fn ¯ F1��mem� , �3.3�

where F j is defined via F j�� j�=trsys�U� j � � jU
†� and �1

=�mem is the initial state of the memory system. Let us define
a channel G=Fn¯F1. This channel potentially depends on
all input states �1 , . . . ,�n, hence, consequently, the memory
state �n+1 and also the channel En+1 depend on �1 and all
inputs �1 , . . . ,�n. If the memory is finite and of the depth n,
then En+1 does not depend on �1 whatever collection of input
states �1 , . . . ,�n was used. This happens if the relevant pa-
rameters of �n+1 do not depend on the memory state �1. Let
us note that �n still may depend on input states �1 , . . . ,�n,
however, it is independent on any input preceding �1. As it is
required this feature is invariant in time. That is, Es+n+1 is
independent of memory state �s and also on all input states
� j with j	s.

The goal is to investigate for which n the concurrent chan-
nel G is deleting all relevant parameters of the memory sys-
tem whatever sequence �1 , . . . ,�n is used. The action of the
channel G on Bloch vectors m� takes the form of an affine
mapping, i.e., m� �g� +Gm� , where gk= 1

d tr��k
†G�I�� and Gkl

=tr��k
†G��l�� for k , l=1. . . . ,d2−1. Since G is a composition

of channels F1 , . . . ,Fn, using the corresponding vectors f� j
and matrices Fj, the action can be expressed as

m� 1 → m� n+1 = �Fn ¯ F1�m� + �Fn ¯ F2�f�1 + ¯ + f�n,

thus G=Fn¯F1 and g� = �Fn¯F2�f�1+ ¯+f�n. The require-
ment of finite depth of the memory implies that relevant
parameters of m� n+1 are independent of m� 1 for all input states
�1 , . . . ,�n, hence, G is singular and maps any vector m� 1 into
the subspace spanned by “irrelevant” operators �k. Let us
note that product of nonsingular matrices is not singular.
Since we do require that G is singular for all sequences of
inputs it follows that each Fj must be singular. If for some
input state � the matrix F is not singular, then sequence ��n

induces a nonsingular matrix G=Fn for arbitrary n. In such
case, the memory depth is infinite. Therefore, the singularity
of the matrices F for all input states � is a necessary �but not
sufficient� condition for U to generate a finite quantum
memory channel.

Let us note that a finite-depth memory channel does not
create any correlations between outputs separated by n uses
if all inputs are factorized �see Appendix�. Consequently, its
actions �separated by n uses� are independent. In this way the
memory process device can be used to implement a memo-
ryless channel, using first n inputs as a reset sequence which
will set the memory system to some particular �although not
arbitrary� state ignoring the outputs and then performing the
channel on next input. The proof of this statement is given in
Appendix.

IV. CASE STUDY: TWO-DIMENSIONAL MEMORY

In this section, we will investigate qubit memory channels
with a two-dimensional memory system. The question is,
what are the possible values of � in such very specific set-
tings? Let us use the basis of Pauli operators 
x ,
y ,
z to
express the qubit states. Then, the memory state takes the
form �1= 1

2 �I+m� 1 ·
� � and can be represented by a three-
dimensional Bloch vector m� 1. Similarly, let us assume that
the system is initially prepared in a state �1= 1

2 �I+r�1 ·
� �. The
action of the concurrent channel F1��1�=trsys�U�1 � �1U†�
can be expressed by means of vector f�1= 1

2 tr�
�F�I�� and ma-
trix F1,jk= 1

2 tr�
 jF1�
k��. In particular, in the language of
Bloch vectors the channel takes an affine form m� 1→ t�+Tm� 1,
hence, in the nth run the memory system is transformed as
m� n→ f�n+Fnm� n, where by m� n we denoted the state of the
memory before the nth use of the process device. As before,
the initial memory m� 1 is transformed as follows:

m� 1 → m� n+1 = �Fn ¯ F1�m� 1 + �Fn ¯ F2�f�1 + ¯ + f�n.

A general two-qubit unitary transformation can be ex-
pressed as follows �see, for example, �31��:

U = �V1 � W1�ei�j�j
j�
j�V2 � W2� , �4.1�

where Vj ,Wj are single-qubit unitary operators and � j are
real numbers. We learned that in order to generate a quantum
memory channel with finite depth of the memory for all in-
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put sequences, it is necessary for U that the induced concur-
rent channels F j are singular. Since local unitary rotations
Vj � Wj do not affect the singularity, it is sufficient for now to
analyze only the unitary operators of the form U
=ei�j�j
j�
j.

For the considered unitary operator U=ei�j�j
j�
j, the ma-
trix F takes the form

F�r�� =  cycz rzcysz − rysycz

− rzcxsz cxcz rxsxcz

rycxsy − rxsxcy cxcy
� , �4.2�

where cj =cos 2� j and sj =sin 2� j. Let us note that due to
symmetry of U with respect to exchange of the system and
the memory, the same matrix describes the channel acting on
the system, only the role of r� is replaced by the initial state of
the memory m� 1.

Evaluating the determinant we get

det F�r�� = rx
2sx

2cy
2cz

2 + ry
2cx

2sy
2cz

2 + rz
2cx

2cy
2sz

2 + cx
2cy

2cz
2.

It vanishes if and only if at least one of the following con-
ditions hold:

cos 2�x = cos 2�y = 0; �4.3�

cos 2�x = cos 2�z = 0; �4.4�

cos 2�y = cos 2�z = 0. �4.5�

If exactly one of the above conditions holds, for instance
cos 2�x=cos 2�y =0, then

F�r�� = �cos 2�z�0 0 �ry

0 0 �rx

0 0 0
� , �4.6�

is a matrix of rank one and F�r�2�F�r�1�=O. Setting Fj
=F�r� j� we get for all j

m� j+1 = Fjm� j + f� j = Fjf� j−1 + f� j . �4.7�

Since f� j depends only on input state � j the state of the
memory � j+1 depends only on input state � j and � j−1, i.e., on
preceding two input states. Therefore, the memory depth
equals �=2. That is, the jth input state is transformed by a
channel E j

r� j� = Ejr� j + e� j , �4.8�

where Ej ,e� j depends via the memory state m� j on input states
� j−1 and � j−2.

Due to the already mentioned symmetry of U, it follows
that the channel E� acting on the system qubit does not de-
pend on the value of mz, because

E = �cos 2�z�0 0 �my

0 0 �mx

0 0 0
� . �4.9�

The unitary operators U=exp�i� j� j
 j � 
 j� generating the
considered finite memory channels ��x ,�y � 
� /4�� are of
the form

U�z
=

1

2
�I + 
zz + ie−2i�z�
xx + 
yy��
xx

hx
yy
hy , �4.10�

where 
 j j =
 j � 
 j, hj =H�−� j� �j=x ,y ,z� and H� · � is the
Heavyside step function. The remaining options �x, �z
� 
� /4� and �y, �z� 
� /4� correspond to unitary opera-
tors that are locally unitarily equivalent to U�z

. In particular,
it is sufficient to relabel the basis, i.e., instead of using the
eigenbasis of 
z we use eigenbasis of 
x, or 
y in which the
unitary transformations U�x

,U�y
takes the same form.

The freedom as specified in Eq. �4.1� is a bit larger than
that. Replacing the unitary operator U�z

by a more general
one U=V1 � W1U�z

V2 � W2, the concurrent channel F�r��
takes the form

F��r�� = S�F�r��R , �4.11�

where S� and R are orthonormal matrices corresponding to
unitary operators W1 and W2, respectively. Since orthogonal
matrices do not affect the singularity, the matrices F��r�� are
singular. Moreover, it can be rewritten in a more convenient
form as R−1SF�r��R, where S=RS� is a suitable orthogonal
matrix. Using a sequence of input states �1 � ¯ � �n and
defining Fj�=F��r� j�, we get

G� = Fn� ¯ F1� = R−1SFn ¯ SF1R . �4.12�

The question is for which values of n and for which rotations
S the matrices G� �generated by sequences F1 , . . . ,Fn� maps
memory states into the irrelevant subspace.

The matrix R corresponds merely to changing the basis of
memory system and as such does not affect the depth of
memory of the memory channel and can be left arbitrary. We
will not consider it in further calculations. The unitary matrix
W�=W2W1 corresponding to S does not change the relevance
of parameters, because for all operators � and arbitrary U

trmem��I � W��U�� � ��U†�I � W�†��

= �
abcd

tr�W��a��b���d��c�W�†�Aab�Acd
†

= �
abcd

tr��a��b���d��c��Aab�Acd
† = trmem�U� � �U†� ,

�4.13�

where we used the expression U=�abAab � �a��b� for some
orthonormal basis 
�a�� and operators Aab such that U is uni-
tary.

As we have seen in Eq. �4.9�, there is only one irrelevant
parameter mz, because only mz does not enter the expression
in Eq. �4.9�. Consequently, we require for all sequences
F1 , . . . ,Fn the following conditions:

SFnS . . . SF1 =  0 0 0

0 0 0

x1 x2 x3
� , �4.14�

where x1 ,x2 ,x3 are arbitrary numbers, and n will be the depth
of this channel.
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Let us denote by Skl the entries of S and define aj,k
=cos�2�z���rj,ySk1�rj,xSk2� with j=1, . . . ,n and k , l
=1,2 ,3. Then

SFj = 0 0 aj,1

0 0 aj,2

0 0 aj,3
� �4.15�

and the Eq. �4.14� reads

a1,3 . . . an−1,30 0 an,1

0 0 an,2

0 0 an,3
� =  0 0 0

0 0 0

x1 x2 x3
� .

Since this relation must hold for all states �, i.e., for all
Bloch vectors r�1 , . . . ,r�n, it is necessary that aj,3
= �rj,yS31�rj,xS32=0 for all vectors r� j, thus, S31,S32=0. Ro-
tation matrices S satisfying such constraint are necessarily of
the form

S = q cos 2� q sin 2� 0

− sin 2� cos 2� 0

0 0 q
� , �4.16�

where q= �1 and �� �0,2�. Therefore,

SFj = 0 0 q�rj,y cos 2� + rj,x sin 2��
0 0 − rj,y sin 2� + rj,x cos 2�

0 0 0
� �4.17�

are matrices of the same form as for Fj only. The same ar-
guments imply that the depth is either 1, or 2, because
SF2SF1=O for all possible matrices F1 ,F2. The unitary ma-
trix W� corresponding to S equals to

W� = � 0 1

− 1 0
��1−q�/2�ei� 0

0 e−i� � . �4.18�

In conclusion, the memory is finite only if the quantum
memory channel is induced by unitary operator U of the
form �in some factorized basis�

U = �V1 � W2
†W��U��V2 � W2� . �4.19�

Moreover, in such case necessarily �U	2, hence, the
memory depth �if not infinite� is surprisingly quite limited. If
�x=�y =�z= /4, then Fj is a zero matrix, Fj 	O, and
U/4=ei/4�j
j�
j =Vswap is the swap operator. In such case,

m� j � m� j+1 = f� j = r� j; �4.20�

r� j � r� j� = m� j = r� j−1, �4.21�

where jth output state equals to �j−1�th input state, i.e.,
�Vswap

=1. In summary, the depth of the memory �U in the
considered case of single-qubit memory systems can achieve
only the values 0,1,2, or infinity.

Classical bits

Let us shortly discuss the case of classical memory chan-
nels. Quantum description covers the classical one in a sense
that classical states are density operators orthogonal in some
fixed �factorized� basis, i.e., they represent probability distri-
butions expressed as diagonal matrices. Similarly, unitary
operators are replaced by permutations, which form a very
specific subgroup of all unitary operators. Having in mind
these restrictions, all the discussed concepts are applicable
for classical systems as well.

A classical bit is the simplest classical system having the
quantum bit as its quantum counterpart. The states are ex-
pressed as density operators p�0��0�+ �1− p��1��1� and there
are only two permutations corresponding to I and 
x, which
flips the bit values. Assuming the memory system is also of
the size of a single classical bit, there are only 4! =24 per-
mutations U describing the classical memory channels of a
single bit. Analyzing all of them we find that the memory
depth can be 0,1, or infinity, because U� describes a permu-
tation only if �= /4, i.e., when it is the SWAP operator.

V. CONCLUSION

For each quantum memory channel describing any quan-
tum process device we can assign a parameter �U meaning
that its nth run depends at most on the previous �U uses.
Equivalently, the input-output action is irrelevant of the state
of the memory after the �n−�U�th use. We call this number
the depth of the memory. We investigated in details the sim-
plest case of qubit memory channels with the memory sys-
tem composed of a single qubit, as well. We showed that
values of the memory depth are restricted and �U
� 
0,1 ,2 ,��. Let us note that in the analogous situation for
classical systems �U� 
0,1 ,��. In particular, �U=0 if U is
factorized, �U=1 if U is the SWAP operator �up to local
unitaries� and �U=2 if

U = ������� � ������� + �������� � � �������� �

+ ie−2i��������� � � �������� + �������� � ������� �� ,

where ���=W2
†W��0� �see Eq. �4.18��, ����=W2

†
xx
hx
yy

hy�0�,
���=V1�0�, ����=V2

†
xx
hx
yy

hy�0�. In all other cases the memory
is infinite.

If the memory depth is finite, then a sequence of input
states can be used to reset the memory system into a fixed
state irrelevant of the initial state of the memory and inputs
preceding the reset input sequence. Applying the same reset
sequence guarantees that in each ��U+1�th use locally the
same channel is implemented. In the Appendix it is shown
that actions of the process device separated by reset se-
quences are indeed uncorrelated.

That is, in each �n+1�th run of the process device, the
same quantum channel is independently implemented pro-
viding that the same reset sequence is used. In this way,
memory channels can be used as memoryless ones. How-
ever, that it is an open problem whether any channel can be
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implemented on some finite-depth memory channel in this
way and also whether there is some bound on the size of the
reset sequence and the memory system. So far, we know that
if we restrict ourselves to single-qubit memory, then such
channels are represented by rank-1 matrices and the reset
sequence is of length at most 2.

In summary, for most of the qubit memory channels, the
memory effects have infinite depth. Based on our investiga-
tion of the simplest physical model, we can make a rather
surprising conjecture that the dimension of the memory puts
constraints on the memory depth �U. Unfortunately, we have
not succeeded to find any simple analytic bound expressing
this relation. Similarly, the characterization of general uni-
tary operators generating fine-depth memory channels re-
mains open.
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APPENDIX: CORRELATIONS

Theorem 1. Consider a unitary memory channel U of the
depth n, i.e., �U=n. Then, the actions of the process device
separated by n uses (reset sequence) are not correlated pro-
viding that the reset sequences are not correlated, i.e.,

E��n+1,2n+2� = �En+1 � E2n+2���n+1,2n+2� , �A1�

where �n+1,2n+2 is the joint state of �n+1�th and 2�n+1�th
inputs and E j denotes the action of the memory channel on
its jth input.

Proof. Let us denote by �=R1 � ¯ � Rn the sequence of
input states forming the so-called reset sequence. This se-
quence, together with the memory system �, is inducing a
channel E�

� on the �n+1�th process device input state

E�
� ��� = trres,mem�U�n+1��� � � � ��U�n+1�†� , �A2�

where U�n+1� is the n+1-fold concatenation of the channel U
and � is the state of input system. Let us express the inter-
action U as follows:

U = �
a,b

Aab � �a��b� , �A3�

where Aab are operators acting on the principal system and
vectors 
�a�� form an orthonormal basis of the Hilbert space

of the memory system. The unitarity of U imposes the fol-
lowing normalization conditions on operators Aab:

�
a

Aab
† Aac = �bcI, �

b

AabAcb
† = �acI . �A4�

Defining the operators

Mana0
= �

a1,. . .,an−1

Aa1a0
� ¯ � Aanan−1

�A5�

acting on the Hilbert space of the reset sequence Hres we get

E�
� ��� = �

a0,an,an+1

c0,cn

�a0c0
tr�Mana0

�Mcnc0

† �Aan+1an
�Aan+1cn

†

= �
a,c

�ac�ac��,�� , �A6�

where �ac= �a���c�, Aajaj−1
acts on jth input of the reset se-

quence and �ac�� ,�� are operators defined on the �n+1�th
principal system. These operators depend on � ,�, but not on
the state �.

Then, the finite-memory depth condition implies that for
all memory states � ,�� following relation holds:

E�
� ��� = E�

����� 	 E���� , �A7�

for all states �. Especially, for memory states �= �a��a� we
get E�

�a��a����=�aa�� ,��=�0�� ,�� for all values of a. Us-
ing a general state � we obtain

E�
� ��� = �0��,�� + �

a�c

�ac�ac��,�� , �A8�

and, consequently, the condition �A7� implies that
�ac�� ,��=O for all a�c. In summary,

�ac��,�� = �
an,an+1,cn

tr�Mana�Mcnc
† �Aan+1an

�Aan+1cn

†

= �ac�0��,�� , �A9�

and

E���� = �0��,�� . �A10�

Next, we add another reset sequence �2 followed by next
input �2 and analyze the joint action of the finite-depth
memory process device on the inputs �1 and �2. In such case

E�1��2

� ��1 � �2� = trres,mem�U�2n+2���1 � �2 � �12 � ��U�2n+2�†� = � �a0c0
tr�Mana0

�1Mcnc0

† �Aan+1an
�1Acn+1,cn

†

� tr�Ma2n+1an+1
�2Mc2n+1cn+1

† �Aa2n+2a2n+1
�2Aa2n+2,c2n+1

† = � �a0c0
tr�Mana0

�1Mcnc0

† �Aan+1an
�1Acn+1,cn

†

� �an+1,cn+1
�0��2,�2� = �0��1,�1� � �0��2,�2� = �E�1

� E�2
���1 � �2� ,
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where we have used twice the identity in Eq. �A9�. Let us
note that due to linearity the inputs �separated by the reset
sequence �2� does not have to be factorized and altogether
are described by a density operator �12. In conclusion, the
actions separated by reset sequences take the “memoryless”

form

E�1��2
= E�1

� E�2
. �A11�

This completes the proof. �
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