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The goal of comparison is to reveal the difference of compared objects as fast and reliably as pos-
sible. In this paper we formulate and investigate the unambiguous comparison of unknown quantum
measurements represented by non-degenerate sharp POVMs. We distinguish between measurement
devices with apriori labeled and unlabeled outcomes. In both cases we can unambiguously conclude
only that the measurements are different. For the labeled case it is sufficient to use each unknown
measurement only once and the average conditional success probability decreases with the Hilbert
space dimension as 1/d. If the outcomes of the apparatuses are not labeled, then the problem is
more complicated. We analyze the case of two-dimensional Hilbert space. In this case single shot
comparison is impossible and each measurement device must be used (at least) twice. The optimal
test state in the two-shots scenario gives the average conditional success probability 3/4. Interest-
ingly, the optimal experiment detects unambiguously the difference with nonvanishing probability

for any pair of observables.

PACS numbers: 03.65.Wj, 03.65.Ta, 03.67.-a

I. INTRODUCTION

Unavoidable randomness is one of the most impor-
tant paradigms of quantum theory. As a consequence,
its typical predictions and conclusions have a statistical
and probabilistic essence. However, there are exceptions
E, B, @, B] For example, a photon passing through a ver-
tical polarizer will pass the second vertical polarizer with
probability 1. In such “certain” cases, the goal is not to
acquire a complete description of quantum systems, but
rather to identify some features of interest. In this pa-
per we investigate a variant of an unambiguous quantum
comparison problem ﬂa, EL , @], i.e., a task in which the
aim is to compare a pair of quantum devices.

It is an interesting question how the quantum systems
can be compared and which of the quantum properties
are comparable. For example, the velocity of quantum
particles is a well defined property only under very spe-
cific conditions. In general, the probability distribution
of velocities is the correct description of the dynamical
properties of quantum particles. Therefore, in quantum
case it is typical that the comparison problem is naturally
a statistical problem. This is in contradiction with the
usual approach to comparison tasks, which are based on
individual events rather than on statistics. It could seem
counter-intuitive, but individual experimental clicks can
provide us with a definite and unambiguous answer even
if the description is statistical. In general, the goal is
to design an experiment accepting quantum devices as
free parameters and producing events we can associate
with three conclusions: i) same, ii) different, and iii) no
conclusion.

So far, the unambiguous comparison problem has been
studied in the cases of pure states ﬂa, ] and unitary
channels ﬂ, @] In this paper we analyze the unambigu-
ous comparison of quantum measurements. Suppose that

we are given a pair of experimental setups implementing
qubit measurements, each of them designed by a different
experimentalist. Is there a way to unambiguously com-
pare their performance? Especially, are they same or
different? As independent experimentalists we can think
of these experimental setups as black boxes, producing
outcomes after a qubit is inserted. Our conclusions then
have to be based on the acquired measurement outcomes.

For quantum measurements, there are two natural
variations of the comparison problem. First of all, we
can ask whether the given black boxes are identical. This
means that they produce the same measurement outcome
statistics in any state. In particular, also the labeling of
the outcomes is similar. For instance, two Stern-Gerlach
apparatuses oriented in opposite directions are consid-
ered to be different in this strict sense. However, they can
be made identical by simply re-labeling the outcomes in
one of them. Thus, the other way to compare two black
boxes is to ask whether they are equivalent, i.e., identical
after suitable re-labeling of the outcomes.

As an example, suppose we are comparing whether
two Stern-Gerlach apparatuses are identical. A singlet
state of two qubits inserted into the measurements can-
not lead to the same outcomes unless the measurement
devices (including the labeling) are different. If labeling
of the outcomes is not given or it is part of the com-
parison problem, then we can perform this singlet-based
test for all possible labelings independently. Finding the
same unambiguous conclusions in all of them leads to a
conclusion also for measurements without apriori labels.
Since for each of the Stern-Gerlach apparatuses we have
two different choices of labels, we need to perform the
singlet-based comparison four times, i.e. each of the ap-
paratuses is used 4 times. We will show that there are
also better strategies in which each of the unlabeled ap-
paratuses is used only twice.
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The paper is organized as follows. In Section [l we
shortly recall the mathematical description of quantum
observables. Sections [T and [[V] explain the concepts of
unknown quantum measurement apparatuses and apriori
information. The unambiguous comparison of measure-
ments with labeled outcomes is presented in Section [V]
and for apparatuses with unlabeled outcomes in Section
VI In the last Section [VIIl we summarize the obtained
results. Some of the techical details are given in the Ap-
pendix.

II. OBSERVABLES

The statistics of quantum measurements is described
by positive operator valued measures (POVM). In what
follows we consider only measurements with finite num-
ber of outcomes. For simplicity, we assume that these
outcomes form an index set J, = {1,...,n}. The asso-
ciated POVM is a mapping A from J,, into the set of
effects E(H), i.e. a set of positive operators E on Hilbert
space H such that O < E < I, where O is the zero opera-
tor and I is the identity operator. Moreover, the POVM
is normalized to identity i.e. Ay +---+ A, = I, where
A; = A(i). The effects serve as a proper mathematical
representation of observed quantum events (experimen-
tal clicks). A probability to observe an effect F is given
by the trace formula

pe = tr[oE] (2.1)

where o is a state of the measured quantum system.

For an operator X, we denote by Ilx the projection
onto the support of X. For effects and states we then
have £ < Il and ¢ < II,. Moreover, the condition
tr [oE] > 0 is equivalent to IIgII, # O.

We say that observable is sharp if each effect com-
posing the POVM is a projection, ie., E; = EJQ for
all j. If, moreover, E;H is a one-dimensional subspace
of H for each j, then the observable is non-degenerate.
In such case we can write E; = |¢;)(¢;| = ¢, and
(Y| v¥r) = k. In fact, each orthonormal basis of the
Hilbert space defines a sharp non-degenerate POVM. We
denote by M the set of all non-degenerate sharp observ-
ables. It is closed under the action of the unitary group
U(d) transforming A = {A;} € M into an observable
AY consisting of effects .Ag-] =UA;U".

IIT. UNKNOWN BLACK BOX

We shall think of an unknown measurement appara-
tus as of a black box accepting physical systems and
producing one of n distinguished outcomes. For sharp
non-degenerate observables each of the outcomes is asso-
ciated with a one-dimensional projection. We distinguish
two types of black boxes leading to two different concepts
of equivalence of observables and affecting the formula-
tion of the comparison problem, too. In principle, we

can meet with measurement outcomes that are either la-
beled, or not. If the outcomes are not labeled, we assign
a number j € J,, to each of them. However, in such case
the ambiguity of relabeling must be taken into account
and equivalence of observables should be compatible with
this freedom. Let us spell these definitions explicitly.

Definition 1. Observables A : J,, — E(H) and B : J,, —
E(H) are identical if A; = B; for all j.

Definition 2. Observables A : J,, — E(H) and B : J,, —
E(H) are equivalent (in the unlabeled sense) if there exist
a permutation 7 : J,, — J, such that A; = By ;) for all
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It follows from the definition that equivalence class
of an unlabeled observable consists of POVMs with the
same range, i.e. the elements of the set of unlabeled mea-
surements can be understood as unordered collections of
effects summing up to identity. The comparison of unla-
beled measurements can hence be seen as a comparison
of ranges of POV Ms.

A single usage of a measurement device tells us that
an effect F associated with the observed outcome has
support overlapping with the support of p, i.e. IIgll, #
O. However, in the unlabeled case this information does
not tell us too much about the particular effect associated
with the observed outcome. Let us consider an unlabeled
measurement described by effects {A1,...,A,} forming
a particular POVM once the ordering is fixed. In fact,
since we assume that the labeling is chosen in random
way, for each artificially named outcome the predicted
probability is the same, i.e.

pJ(A) = %ZU’ [QAW(J)} = % th [QAj/] _ % ,

where we used the fact that n! is the total number of
permutations on .J,,, (n—1)! is the number of them having
a specific label j’ on the fixed (jth) position.

Using the apparatus once more we can distinguish
whether the observed outcomes coincide, or not. After
fixing the labels 1, ..., n of the measurement device, the
probability to observe a pair of outcomes j, k reads

1
Pjk (A4) = ] Ztr [QAﬂ(j) ® Aﬂ(k)} (3.1)

—1)!
= (TLT)ZU[QAJ" ®@Ay] i j=k;
j/

= w Z tr oA @ Aw]

J'#K

if j#k,

where (n — 2)! is the number of permutations resulting
in fixed operators Aj/, Ajs for outcomes j, k. Let us note
that the values of p;; do not depend on particular values
of j,k, but only on their relative relation whether j =
k, or j # k. Consequently, the probability to find the



same/different outcomes in two shots reads

Psame = NPj; = Ztr [Q-AJ ®AJ] ;

J

paig = n(n — 1)pjr = Ztr [0A; @ Ag] .
J#k

We used the fact that for n-valued measurement used
twice there are in total n pairs of same outcomes and
n(n — 1) pairs of different outcomes. In this two-shot
scenario the probabilities psame, pai depend on particular
properties of effects A1, ..., A,, hence they contain some
information about A.

IV. APRIORI INFORMATION

From now on, we assume that otherwise unknown
measurement apparatuses are described by sharp non-
degenerate observables. This assumption represents a
very important part of our apriori information. As such,
they are in direct correspondence with orthonormal bases
and have the same number of outcomes as the dimension
of the Hilbert space (n = d). Let us fix an orthonor-
mal basis [11),...,]¢q) and denote by Ag»] the projec-
tions onto vectors Uly;), where U is a unitary operator
defined on H. The projections AY, ..., AY form a non-
degenerate sharp observable AY. Moreover, every non-
degenerate sharp observable is of the form AY for some
unitary operator U. We assume that each AY is equally
likely, therefore we have to average our expectations over
all observables AY using the Haar measure on the unitary
group U(d).

If the outcomes are labeled, then due to our apri-
ori information a particular sequence of outcomes j =
(J1s---sJr) € Jgx -+ X Jq can be observed in r usages of
the apparatus with the average probability

7; = /dUtr [gAle ® - ® Aﬁ{} . (4.1)

Further, let us discuss how the considered apriori in-
formation affects the formulas for probabilities in the un-
labeled case. For the purposes of later analysis it is suf-
ficient to investigate only the experiments in which the
apparatus is used at most twice. Thus, if the observable
is unlabeled and r = 2, then the average probability to
observe the outcomes j, k reads

P = [ dUpa(AY). (42)
where p; (AY) is specified in Eq.(B1). Since
/ dUAY @ AY = / dUAY, & AY (4.3)

for all j # k,j’ # k' and j = k,j’ = K/, respectively, it

follows that
> / dUAY & AY
J

Z/dUAgf@AkU = d(d—l)/dwddu YOYL,
ik

d/dwww,

where di; denotes the integration over all vectors or-
thogonal to 1. To simplify the expressions we replaced
the integration over unitary group by integration over
pure states ¥. In summary, we get

Py = / ay trlop ® 9] | (4.4)

By = / iyt [y ® 1] . (4.5)

We see that p;;, and p;; do not depend on particular
values of indexes j, k, which are anyway chosen by us and
cannot be distinguished. As before, we can discriminate
only whether the outcomes are the same, or different,
with probabilities given by formulas

Psame — dpjj = d/dw tr [97/J®1/)] ’
paw = d(d—1)py, = d(d — 1) / dibdip, tr [ov @ 1] .

In comparison, for labeled observables in two shots we
distinguish d? different outcomes with probabilities

7 = / e lep ©v] , Ty = / dpdi. tr]ov ® b

V. COMPARISON OF LABELED
OBSERVABLES

In the considered measurement comparison problem
we are given a pair of measurement devices measuring
some non-degenerate sharp observable A and B. In this
section we assume that the outcomes of these devices are
labeled by numbers 1,...,d. We start with the simplest
experimental scenario in which each of the apparatuses
is used only once. Our goal is to find a test state o
and divide the potential outcomes (j, k) into three fami-
lies associated with three conclusions: i) observables are
identical, ii) observables are different (not identical), iii)
no conclusion (inconclusive result).

Using a pair of labeled measurements (each of them
once) we distinguish d? different outcomes (j, k) appear-
ing with probabilities g5 that depend on the equivalence
of A and B

A+ B) / dUdvir oAU @ BY],  (5.1)

Tp(A=B) = / e [oAV @ AY] . (52)



Our a prior information manifested in the integration
J dU causes that probabilities p;i (A # B) and pjr(A =
B) do not depend on particular values of j, k, but only on
their mutual relation j = k, or j # k. That is, whatever
test state is used, we can split the outcomes at most into
two classes, hence only two out of three conclusions can
be made.

In general, conclusion y based on the observation of
an outcome z is unambiguous, if for all possible options
except y the conditional probability p,(z # y) vanishes.
Since in our case the outcomes (j, k) are divided into
two subsets, x € {same, diff }, in order to conclude that
the observables are different the condition g, (A = B) =
0 must hold for some outcome x. Similarly, if we can
conclude that A = B, then there must exist an outcome
x such that g, (A # B) = 0. We refer to such conditions
as the unambiguous no-error conditions. Their validity is
necessary in order to call formulation and solution of the
problem unambiguous. Outcomes not associated with
unambiguous conclusions lead to an inconclusive result.
The smaller is the probability of the inconclusive outcome
the better is the solution.

Let us note that

/dwd}@k . (d_ 1)!k! P+

C(dAE—1) R (5.3)

where Pﬂ' . is the projection onto the completely sym-
metric subspace of H®* and dj, = tr [P} ;] = %

the dimension of that subspace. For a fixed vector v

/dwmf?’“ - /mt

- %U — WP (54)

d(p (p®k

where we used Hf/; to denote the subspace of H orthog-

onal to |[¢) € H.
We will use these identities in the evaluation of the
probabilities p;; and p;. In particular,

7, (A#£B) = /dwdcptr [0y ® o] = %tr lo] , (5.5)

A2 ) = [ddprlevo el = Huld, (60)
T5(A=B) = [dvulows ] = LulePs] (57)
TuA=B) = [dvrlovo v

= ﬁtr [g(é] QI — d—12P1+2) . (5.8)

We see that if the measurement devices are different
(A # B), then for all test states o the probabilities
7j; (A # B) and g, (A # B) do not vanish for any out-
come. Because of that the equality of the observables

cannot be concluded unambiguously.

4

Denoting by P, =1 ®1 — Pl‘g the projection onto the
antisymmetric subspace of H ® H we can rewrite
1 . 1 d—1 .
a[@]— d_2P12 = EPlz + mPH.
Since this is positive full-rank operator it follows that
also G;;,(A = B) > 0 for all test states. Therefore, the
occurence of different outcomes cannot be used to unam-
biguously conclude that the measurements are different.
However, g;;(A = B) = 0 if II, < Pj,, hence using a
test state supported on the antisymmetric subspace and
observing the same outcomes implies that A # B with
certainty.

In summary, the identicality of unknown sharp non-
degenerate observables cannot be unambiguously con-
firmed if each of the labeled apparatuses is used only
once. Using an antisymmetric test state o and observing
the same outcomes on both apparatuses lead us to un-
ambiguous conclusion that the apparatuses are different.
For fixed observables A # B the conditional probability
of unambiguous conclusion reads

QSame(Aa B) = ZtI’ [QA] ® BJ] .

J

(5.9)

On average

Toame (A # B) = dg,;(A + B) = é .

This value gives the average conditional success proba-
bility for revealing the difference of the compared labeled
non-degenerate observables. It is independent of the used
test state, however, the unambiguous no-error conditions
restricts the possible test states to so-called antisymmet-
ric states, i.e. those supported only in the antisymmetric
subspace spanned by Pj;. Let us stress that if we choose
a test state p = d%Pf, then gsame(A, B) > 0 whenever

A+ B.

VI. COMPARISON OF UNLABELED
MEASUREMENTS

In this section we assume that the outcomes of mea-
surement devices are not labeled. As previously, our goal
is to design an experiment from which we are able to
unambiguously conclude whether these apparatuses are
same or not. But same now means that the observables
are equivalent in the unlabeled sense.

Consider a pair of known but unlabeled measurements
A and B. A single usage of each of the apparatuses leads
us to outcome j on A-apparatus and a on B-apparatus
with probability

1 1
Pja= 3 Z tr[oAy @ Ba] = ﬁtr lo] - (6.1)

j’.a’

Since this probability is independent on whether A = B
or A # B none of the outcomes can be used to make



a conclusion. In fact p;, is independent of particular
observables at all. Hence, we need to use the unlabeled
apparatuses more times. In particular, if each of them is
used twice, then

Pikab = it Somn 0 [0Ar() ® An(r) @ Bri(a) @ By
d—12t1‘ [Q-Asamc ® Bsamc] if ] = kv a=>b
- mtr [QAsame & Bdiff] if j = ka a 7& b
B mtr [Q-Adiff ® Bsamc] if ] 7£ kv a=>b
wartr [0Aair ® Baig]  if j#k,a#b,
where
Asame = Y A @ Aj, Aaie =Y A; ® Ay,
J j#k

and similarly for Bsame and Bgig. We see that irrespec-
tively whether A = B or A # B probability pjx ., de-
pends only on the mutual relation of the outcomes j, k
and a, b of the two usages of the measurement A respec-
tively B. Hence, it is meaningful to distinguish at most
four corresponding classes of outcomes.

For unknown A and B (A # B) restricted to be
non-degenerate sharp observables the probability to find
the same outcomes on apparatus A and the same out-
comes on apparatus B, respectively, can be expressed as

Psame,same — tr [Qogﬁf)same] with

O.A#B

same,same

1
= dzﬁ/dUdVAg%me ®B¥me

= dz/dwd¢w®¢®<p®sﬁ

= d’Raame ® Reame ; (6.2)

where the factor d? stands for the number of same out-
come pairs that can be observed on individual appara-
tuses and we used the definitions

_ 1
Rsame = /di/”/)@)l/}: P+7
do

1

_ 1
Rt = / i1 @by — ST — L pt
d do

Similarly, for other outcomes we find that

Ogtii;féﬁiﬂ = d*(d — 1)°Rair ® Rais (6.3)

Oa‘tiéf'ame = d2 (d - 1)ﬁdiff & ﬁsarnc (64)
Oiflidiff = d2 (d - 1)ﬁsamc & ﬁdii’-h (65)

providing A # B. Let us define operators

e same = Pib ® P (6.6)
H;ifnzeg,diff =Ph® I, (6.7)
Hﬁi?fé,lzame =T ® Py, (6.8)
Hﬁi?féiiff =Tl ® I3, (6.9)

that project onto the supports of operators OA#B

same,same’
A#B A#£B A#B .
same,diff? Odiff,samc’ Odiff,diff’ respectlvely.

If A= B, then

O.A:B

same,same

1
= d2 ﬁ dUAgamc ® AsUamc

=d/dw¢®w®w®w
+d(d—1)/dwdmw®¢®m®m,

where, in the second term the integration over di); runs
over all vectors orthogonal to a fixed . In a general case
the operators (9;47;6 = [dUAY © AY read

O;}u:nf,diff:d(d_l)/w®w®[¢®¢L+¢L®w]
d' / /
oy [revev e,
Ofi8ume = dld-1) [0 0L 86 E v+ v @]
d! , ,
+m/¢ QY| YR Y,
O(ﬁgﬁiﬂzd(d_l)/¢®¢L®[¢®¢L+¢L®¢]
d! , ,
oy [ vevL oW e + ¥ ol
gy vevLeLey ¥ el

d‘ ! !
+m/¢®¢i®‘/’ Y
(6.10)

where for simplicity we do not write explicitly the Haar
measures di, di’, dip, di)’, and 9,1’ are vectors or-
thogonal to ¢ and ¢, . Of course, (¢ |1 ) = (¢ | ) =
0. Since for qubits the Hilbert space is two dimensional
the terms containing ¢’ ® ¢/, do not appear in these ex-
pressions for qubits. There are no two orthogonal vectors
to a fixed v in such case.

Let us note that the integration leading to (9;043‘163 in-

cludes the integration covered in (9;04;3 . Therefore,

o8 <178 (6.11)
which implies that whenever p,,(A # B) =
tr [g(’)ij] 0, then also py ,(A = B) = tr [QOé;B] =0,
hence, in two shots we cannot unambiguously conclude
that the apparatuses are the same. We can only approve
the difference of measurement devices.

In what follows we are going to specify for which test
states and for which outcomes x,y € {same, diff} the no-
error conditions tr [gijB} = 0 are satisfied and simul-
taneuously, whether the associated conditional success
probability rates psuccess = Da,y = tr [Q(Qﬁfs} > 0 are



nonvanishing. We shall show that for qubits (d = 2)

I esame = Mame same + @same,same ,  (6.12)
Hiﬁﬁ diff Hsamc aiff T Qsame,diff » (6.13)
7 e = TR Same + Qaiff same » (6.14)

Hfﬁﬁﬁlﬁ = Hdlff aig T Qi dift » (6.15)

where Qsamc,samc = Ov Qdiff,diff ?A Qsamc,diff = Qdiff,samc
are projections forming the relevant parts of the supports
of potential test states o enabling us to conclude the dif-
ference. That is, we shall see that three out of four out-
comes can be used to make the unambiguous conclusion.

A-' Osame,same

Evaluating the operator Obdme same We obtain
T Ot = [0+ @ =1) [ @
= d%Png + %ng_&@j, (6.16)
where
Rig_34 = /1/1®2 ® (I —4)®*
— P - P — (Pl + Pha).

Due to positivity of operators in Eq. (6I6) the unam-
biguous no-error conditions require that
tr [QP;E&J =0, ftr [QR12,34P3J2] =0,

hold simultaneously. Hence, the support of R12,34P311
is of interest for us and in particular we should decide
whether it is different from H;‘;fnf came = Pib @ Pify. If
yes, then we can use this outcome for making the unam-
biguous conclusion.

Let us analyze properties of Ri2_34 and its terms.
First of all by definition ]%12_;),4P3J[1 is a positive op-
erator, hence mnecessarily [Ria_34, P5}] = 0 and also
[Pts + Py, Piy] = 0. The support of the projections
P, Plhsy, Pihs, and Pph, contains the completely sym-
metric subspace spanned by Pjhs,. As it is shown in
Appendix it is their greatest joint subspace and since
d2 —|— = — = > () the operator Ri2_34 is indeed supported

on the whole Phay-

It remains to analyze the properties of Ris_s4 P 54 OTL
the subspace Q75 = ® Py, — Piys,. In particular, we
are interested Whether

L o+

<<P|d_2 12~ d%(@l% + Q124)|) >0 (6.17)

for all |¢) from the support of Qf,, where Q123 = Pihs —
Pjbay, Q124 = Ph, — Pjhsy. For qubits these subspaces

are described in details in Appendix[Al where it is shown
that the operator Q123 + Q124 have two nonzero eigenval-
ues 4/3 and 2/3. However, the eigenvectors associated
with 4/3 are from the subspace spanned by Pf; ® Py,
which is irrelevant due to multiplication of Ris_34 by
Pyf;. The eigenvectors associated with the eigenvalue 2/3
are from Pjf, ® P3;, thus (¢|Q123 + Q124]p) < 2/3 for all
lp) € Pl @ Py, > Q. Since do = 3, d3 = 4

1

(|5 Q1

3 (Q123 + Qu24)|p) >

>0. (6.18)

Wl’—‘
GJI>—‘

As a result we have shown that support of R1273,4P3JQl
equals to support of Py ® Pyfj, thus H;‘;m[: came = Pih ®
Py, = H;‘(‘me same- 11l summary, an observation of pairs
of same outcomes on both apparatuses cannot be used to

make any unambiguous conclusion, because Qsame,same =

0.

B. Ouis,aif

In this case our aim is to show that Qaif,qigx # O. For
qubits there are at most two mutually orthogonal vectors,
hence

Ofitn =dd—1) [vovi0GEvL +iL6v).
Let us remind that for larger systems, this expression
contains additional terms. Using the operators Ri3_o4,
Ry4_23 introduced in a similar way as Rjs_34 defined in
the previous section we obtain

Oc-ﬁf}:lcghﬁ = 2(R13724P2JZ + R14723P2J§). (6.19)

Using the same arguments as for ng 34 we find that
R13,24P2f1 is supported on Pfg ® P oy and Ryg— 23P23 is
supported on Pj; ® Pyi. Therefore, for the test state o
we can write the following no-error condition

0 =tr [o(Ps ® Pyy + Pi} @ Py . (6.20)
The completely symmetric subspace P1‘53 4 1s the greatest
joint subspace of Pt ®@ Py, and P, @ Py;. According
to Appendix [AT] the support of Py ® Py; + Py @ Py
is 13 dimensional, because dy = 5 and Qf; = P ®
Py, — Pjhs, and Qf, = P/, @ Py — Py, are both four
dimensional. Since the total Hilbert space H®* for qubits
is 16-dimensional, it follows that test states satisfying the
no-error conditions live in a three-dimensional subspace.
In Appendix [ATlit is shown that this subspace is a linear
span of vectors

k1) = 7(|00>|¢+> [4)[00)),
|ka) = 7(|0011> 1100)) ,
|ks) = (|11>|¢+> (W),

Sl



where [¢T) = %(|01> + [10)). Thus, Qaiffair =
> ki) (rs] < Q1, < P, ® P;; and arbitrary test state
0 < Quig,qie satisfies the no-error condition.

Let us optimize the conditional probability

_ A£B
pdiff,diff(A #B)=tr |:Q0di§7diffi| (6.21)
where
1 1 1 1
A£B
Odi?—fé,diff = 4(51 - §P1J5) ® (51 - gP:;Z)
2 4
= I- g(Pfg+P§;)+§P1§®P§;.

Arbitrary pure state |¢) € Qaim,air iS an eigenvector of
projections P, P;l and P, ® P?Il. Therefore, the prob-
ability is independent of the test states ¢ < Qqigm, qir and
reads

_ 4 4
Paig aig(A# B) =1~ 3ts=79g (6.22)
C. Osame,diff

For qubits

O:e‘u:nf,diff = d(d - 1)/1/1®2 QWYL+ ®Y)
2
- d_4P1-;34> )

and since Pjhs, < Prhs, Pihy; 1/ds > 1/dy we can con-
clude that no-error unambiguous condition reads

1
d (d_(Png?’ + Ply)
3

tr [o(Ph3 + Pihy)] = 0. (6.23)

Let us remind that Hiﬁidiﬁ = Pl and P, Ph, <
Pj,. The question is whether H;i;’idiﬁ = Pp, or not.
We know (see Appendix [A]) that P, P, are not or-
thogonal, however, their greatest joint subspace is the
completely symmetric one. The dimension of P, is

12, whereas the total support of Py, + P, is 11 di-

mensional. It follows that there exist a unique vector
such that Hiﬁf)dmgpQ} = |¢q), and, simultaneuously,

H;i;[cg,diff|</)Q> = 0, thus, Qsame,dit = |¢q){pq|. For such
test state the observation of this outcome leads to un-
ambiguous confirmation of the difference of the measure-
ment devices.

D. Odiff,samc

There is no substantial difference in the analysis of this
case and the previous one. We only need to exchange the
role of pairs of indexes 12 and 34. Therefore, there exists
a unique vector |pg) such that 455 lpg) = 0, but

diff ,same
478 log) = P3j2|<p’Q> = [pg). Surprisingly, we shall

diff ,same

see that |pg) = [pg@), which means that the same test
state |og) guarantees the unambiguity of both outcomes
Osame,diﬂ"a Odiff,same'

On the systems j and k& we define a singlet vector as
V) = %(|01>J—k —|10) ). After a short calculation one
can verify that the vector

1 _ _ _ _
leg) = %(W’w ® aq) + 114 ® Pa3)) (6.24)

satisfies all the required properties, i.e. it is symmet-
ric with respect to 1 < 2, 3 < 4 exchanges, i.e.

A#B _ 1TA#B o + _
Hsame,diﬂ'|¢Q> - Hdiff,same|90Q> - |90Q>’ and P123|90Q> -
Phileo) = Phileq) = Pihuleo) = 0, because both

terms of |pg) are antisymmetric exactly in one pair of
all considered triples of indexes.
Using |pg) as the test state we get

_ A#B
psamc,diff(A # B) = <@Q|Osafne,diff|wQ>

4 1 1 _
= §<SDQ|6P1J5®P§Z+§P1§®P34|<PQ>-

Similarly, we find

4 1 1
pdiﬂ',same(A 7é B) = §<SDQ|6P1J5 ® P3J£l + §P12 ® PZ;Z'¢Q> .

Since Phleoq) = Paileq) = leq) implies PLe P leq) =
loq) and

(pQ|P ® Pahleq) = (9ol Pl @ Pyleq) =0,

we obtain

ﬁsamc,diH(A # B) +ﬁdiff,samc("4 7é B) = % . (625)
This gives a better success rate than we achieved for the
outcome Ogig qif.  Unfortunately, |<pQ> o4 Qaifr,aie- In
conclusion, p = 4/9 is the optimal value of the average
success rate for unambiguous comparison of unlabeled
qubit non-degenerate sharp observables in two shots.

Consider a pair of observables A = {¢,¢,}, B =
{@, @1 } such that ¢ # ¢. Then the projections

Odiff,samc - (¢®¢L+¢L®¢)®(¢®¢+¢l®@L)a
Osamc,diff - (¢®¢+¢L®¢L)®(¢®¢L+¢l®@)

The success probability of revealing their difference using
the test state |¢g) reads

psucccss(wv </7> - <¢Q|Osamc7diﬁ + Odiff,samc|<ﬂQ> . (626)

Let us note that in a fixed orthonormal basis |¢), ¥ 1)
the test state |¢g) takes the form

[0a) = = (W52 © ¥E%) + [F* © %) — [y © h))



where [¢)T) = \%(W ®P1)+ L ®@)). Using the iden-
tities | (V] @) | = [(Yrlpr)| = cost, [(P]pL)]| =
[ (¥, |¢)|=sinf a direct calculation gives

1
(0Q|Osame,qait|pQ) = g(d)lew ® oL+ o1 @ p[y§?)

1
+§<¢®2|<P ® oL+ oL @ plp®?)
4
= §|<¢|s0>|2|<¢¢|90>|2'

Since (¢Q|Osame,dit|vQ) = (©@|Oaift same|q) the suc-

cess probability reads

Psuccess (1, ) = g(sin 20)2. (6.27)
It vanishes only if § = 0, or § = 7/2, hence ¥ = ¢, or
1 = @, respectively. As a result we get that the opti-
mal test state detects unambiguously the difference for
any pair of non-equivalent sharp qubit observables with
strictly nonzero success probability. The actual proba-
bility depends on the angle between the observables. In
fact, if sharp qubit POVMs are understood as ideal Stern-
Gerlach apparatuses, then a = 26 is the angle between
the measured spin directions. The probability achieves
its maximum for orthogonal spin directions as one would
expect.

VII. SUMMARY

We have investigated the problem of unambiguous
comparison of quantum measurements. We restricted
our analysis to subset of sharp non-degenerate observ-
ables that can be associated with non-degenerate selfad-
joint operators. Let us note that without any restriction
the comparison problem has only a trivial solution.

We distinguished two different types of measurement
apparatuses depending whether the labels of their out-
comes are apriori given, or not. We give solution to sin-
gle shot comparison of labeled measurements in arbitrary
dimension. For unlabeled measurements the single usage
of each of the apparatuses is not sufficient. In the two
shots scenario we find solution for unlabeled qubit mea-
surement apparatuses. In both cases, the unambiguous
confirmation of the equivalence of measurements is not
possible. Similarly, as in the case of pure states and uni-
tary channels, also for sharp non-degenerate observables
only the difference can be unambiguously concluded.

In summary, for the measurement apparatuses with
labeled outcomes the optimal procedure exploits the so-
called antisymmetric test states. For any such test state o
the success is associated with the observation of the same
outcomes. The difference of observables can be concluded
with the average conditional probability

qsucccss(A # B) = 1/d :

In the case of unlabeled measurements individual out-
comes can be associated with an unambiguous conclusion

(7.1)

test state outcomes

0 Al ++
X ~ A#B
® B +-

®,)

FIG. 1: Illustration of the optimal scheme for unambiguous
comparison of qubit apparatuses leading to unambiguous con-
clusion A # B with average conditional probability 4/9.

only if the support of the test state belongs to at least one
of the subspaces spanned by projections 1 — Hfjg, T,y €
{same, diff}. We showed that only part of the test state
acting on the support of the projections Qsame,same = O,
Qaifr i and Qsame,dif = Qdift,same = |9Q) (¢ | may con-
tribute to the success probability. Out of these possibili-
ties, it turns out that the optimal test state is

pQ) = —
@Q_\/g

for which the average conditional probability of the un-
ambiguous conclusion equals

]_?SUCCGSS(A # B) = 4/9 :

Using such test state and finding on one of the measure-
ment different outcomes, whereas on the second the same
outcomes, we can conclude with certainty that the appa-
ratuses are different. This scheme is illustrated on Fig. Il

(Ith1s @ has) + b1y @ 33)) (7.2)

(7.3)

Let us compare these success probabilities with the
comparison problem for pure states and unitary channels.
In particular, for single shot comparisons
(d—1)/2d,
(d+1)/2d.

(7.4)
(7.5)

Pstate =
punitary =

We see that unlike for states and channels the success
rate for comparison of labeled measurements vanishes as
the dimension is increasing. Unfortunately, for unlabeled
measurements on systems of larger dimensions the situ-
ation is more complex and two shots are not sufficient to
make any unambiguous conclusion. The problem is still
open and will be analyzed elsewhere.

APPENDIX A: SUBSPACES

In this appendix we shall analyze the subspaces of four
quantum systems H®4, especially four qubits. Let us
start with the simpler case of H ® H. Denote by |j) the
basis of ‘H and define

1

lh) = —=(i ®k) £ [k ®j)).

- (A1)



for j < k. For j =k

o) =1i®J). (A2)
These vectors form an orthonormal bases of symmetric
and antisymmetric subspaces of H ® H, i.e. they define
the projections P = > i<k |g0j[k><g0j[k|

We shall use the notation P = PS5 © I3y = PS5 ®
(P4} + Pyy). Let us stress that Pjh,, < Py < P, We
shall be interested in properties of projections that are
substracted from other projections to create the projec-
tions onto the completely symmetric subspace, for exam-
ple, operators Q12 = Py —Pjhs, and Qo3 = Prhs— Pihay.
Similar notations, definitions and relations hold also for
other combination of indexes.

For qubits dimP;, = d?-dy = 12, dimP}, ® Py, = d3 =
9, dimPl'E3 = dimP,, = d-d3 =8 and dimP1'534 =dy =
5, thus, dim@23 = dimQ24 = 3 and Q12 = 7., etc.

1. PL® P, and P,

Let us start with the analysis of the subspace of P},
not contained in P1234, i.e. with Q2. In the first step,
let us spht ng into Q12 = Qp, + Qf,, where Q7, =
P @ P — Py, Q = Pih ® Py, Due to asymmetry
of P, ® P;; in 3 < 4 exchange the projections Pj5;, and
Q1 are orthogonal. For Q7 the situation is more tricky.
Our goal is to design a basis of the support of Q7,. The
completely symmetric subspace P1‘534 is spanned by the
following orthonormal basis

o) = |806ro ® )

Im) = (|<P00®<P01>+|<P01®<P00>)

1
) = \f o © 90+ |/ 2 © 98 + I © i)
) = ﬁ(l%ﬁ ® &) + lod ® 1h))

Ina) = lofi ®@ o1h) .

Our aim is to specify a basis spanning the support of
L. Since dimPjh,, = 5 and dimP}, ® P;; = 9 it fol-
lows we need to find four mutually orthogonal vectors in
P, ® Py, that are also orthogonal to vectors |n;). It is
straightforward to verify that the following vectors

k1) = 7(|<P00 ® <P01> - |<P31 ® 903_0>)
ko) = ﬁ(lwéo@pfﬁ—lcplﬂ@wé&)
ko) = \/g(lwﬁﬁ ® 1) — lodo ® o) — ot ® o))
Iks) = —=(lphy @ i) — e © ¥ 11))

S

form such a basis.

Let us define a swap operator Sy, = P;l; - P, im-
plementing the exchange of the subsystems a,b. This
operation is unitary and arbitrary permutation can be
written as a composition of swap operations. The follow-

ing identities hold

Py ® Pyfy = Sa3(Py @ Pyf})Sas
P4®P3 = S34(P5 © Py})Sa4,
Pl @ Py = Soa(Pyl; @ Pyf)Sa4 .

The vectors |k1),|k2), |k3) defined with respect to divi-
sion P, ® Pyl; are orthogonal to all vectors |k;), [kh) de-
fined with respect to splittings Pfg ® Py, and P} ® P;g,
ie. Pl ® Ph|r;) = Py ® Psf|r;) = 0. However,
(Kh|Pls @ Pyhi|kb) = (kh| Py ® Pos|kh) = 1/4, because
the vectors |k5) defined with respect to different split-
tings are mutually nonorthogonal. This means that the
4 dimensional projections QILQ, Qfg, QL are not orthog-
onal, however, there is a three-dimensional subspace of
1, (spanned by vectors |;)) orthogonal to both Q7
and Q7
14

2. P+ Ph,

For the purposes of this paper it is of interest to ana-
lyze the relation of the supports of projections Pf§3 and
P1J54. The swap operator S34 can be written as a compo-
sition S34 = S24523524. Consider a vector |¢) belonging
to both subspaces, i.e. Py = Pih,le) = |¢). For such
vector Siz|p) = Sisle) = Sialp) = Saslp) = Saulp) =
|p) and therefore also Ss4|) = S24523524]p) = |p),
hence the state ¢ is symmetric also with respect to ex-
change 3 < 4. Consequently, it is invariant under the
swap of arbitrary subsystems, i.e. it belongs to the com-
pletely symmetric subspace. Therefore, the greatest joint
subspace of supports of Pj5; and P;}, corresponds to the
projection P1J534.

Further we shall prove that the projections Q123 =
Pl — Plhsy and Q124 = Py, — Pihs, are not mutually
orthogonal and we shall specify the support of Q123 +
Q124. It is relatively stragihtforward to verify that the
following unnormalized vectors

lw1) = lego)12]001)34 + 1050013100124 + |050) 281001 )14 »

lw2) = logo ® ©11) — loth @ vdo) + 2lod © vor)
lws) = lefi) 1200134 + |011)13l001) 24 + 077281001 )14 5

form an orthogonal basis of the support of @123. These
vectors are orthogonal to vectors |n;) forming the com-
pletely symmetric subspace. In fact, they are completely
symmetric only with respect to three indexes (123), but
they not with respect to exchanges with the fourth qubit,
hence, Pj, ® P3;|w;) is not proportional to |w;). In the
same way we can design a basis for each @z, in partic-



ular, for Q124

wi) = —lego)i2leor)ss + [@go)14lenr)2s + g0)2alwor)1s
wa) = lego @ ¢i1) — |1t ® ¢o) — 2len: @ vor)

ws) = —leiihzleor)sa + 1011 14l@01)2s + lef)24lw01)13 -
Since (w; |w}, ) = —20;x the pair of unnormalized vectors

|w;), |w}) forms a two-dimensional subspace orthogonal to
remaining vectors. Equal superpositions |wj+> = |wj) +
|w?) are already symmetric in 3 « 4 exchange, hence
|wj+> € P, ® P4;. On the other hand, the vectors |w; ) =
|lwj) — |w}) are antisymmetric in 3 < 4, hence |w;) €
P1J5®P31. It is easy to verify that they are orthogonal, i.e.
<wj+|wj_> = 0, because (w;|w;) = (w}|w}) = 6 and
(wjlw)j) = (Wjlw;) = —2. Moreover, <wj+ |wj+> =38
and <w; |wy ) = 16. Since |w;) = %(|w;r>+|w;>), |w’) =

%(|wj+) — |w;7)) we have

Q23 + Q124 = —

10

where %6|wj_)<wj_| and %|wj+><wj+| are one-dimensional
projections, hence, we get the spectral decomposition of
Q123 + Q124 wWith eigenvalues 2/3,4/3. For our purposes
the relevant part is associated with vectors |w;f), because

|w; ) are not from the support of Pl ® Py
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