
ar
X

iv
:0

90
3.

34
65

v1
 [

qu
an

t-
ph

]
 2

0
M

ar
 2

00
9

An Efficient Circuit for the Quantum Walk Update Rule

Chen-Fu Chiang∗ Daniel Nagaj† Pawel Wocjan‡

March 23, 2009

Abstract

We show how to efficiently implement quantum update rules corresponding to arbitrary
sparse classical walks (Markov chains). These rules are required to realize quantum walks as
defined by Szegedy [8]. Our efficient construction settles the often-raised objection against this
core element of quantum walk based algorithms. The key component we use is Grover and
Rudolph’s method for preparing coherent versions of probability distributions that are obtained
by discretizing efficiently integrable probability densities [15].

1 Introduction

For many tasks, such as simulated annealing [1, 2], computing the volume of convex bodies [3] and
approximating the permanent of a matrix [4, 5] (see references in [6] for more), the best approaches
known today are randomized algorithms based on Markov chains (random walks) and sampling. A
Markov chain on the state space Ω is described by a stochastic matrix P = (pxy)x,y∈Ω. Its entry
pxy is equal to the probability of making a transition from state x to state y in the next step. If the
Markov chain P is ergodic (see e.g. [7]), then there is a unique probability distribution π = (πx)x∈Ω

such that πP = π. This probability distribution is referred to as the stationary distribution.
Moreover, we always approach π from any initial probability distribution, after applying P infinitely
many times. For simplicity, we assume that the Markov chain is reversible, meaning that the
condition πxpxy = πypyx is fulfilled for all distinct x and y. The largest eigenvalue of the matrix
P is λ0 = 1. The corresponding eigenvector is equal to the stationary distribution π. How fast a
given Markov chain approaches π is governed by the second eigenvalue λ1 of P (which is strictly
less than 1), or viewed alternatively, by the eigenvalue gap δ = 1 − λ1 of the matrix P . This
determines the performance of random walk based algorithms whose goal is to sample from the
stationary distribution π.

In [8], Szegedy defined a quantum walk as a quantum analogue of a classical Markov chain.
Each step of the quantum walk needs to be unitary, and it is convenient to define it on a quantum

∗School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA.
Email: cchiang@eecs.ucf.edu

†Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences, Dúbravská
cesta 9, 84215 Bratislava, Slovakia, and Quniverse, Ĺı̌sčie údolie 116, 841 04, Bratislava, Slovakia. Email:
daniel.nagaj@savba.sk

‡School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA.
Email: wocjan@eecs.ucf.edu

1

http://lanl.arXiv.org/abs/0903.3465v1

system with two registers H = HL ⊗HR. The quantum update rule is any unitary that acts as

U |x〉L |0〉R = |x〉L
∑

y

√
pxy |y〉R (1)

on inputs of the form |x〉L |0〉R for all x ∈ Ω. (Its action on inputs |x〉L |y 6= 0〉R can be chosen
arbitrarily.) Using such U , we define two subspaces of H. First,

A = span{U |x〉L |0〉R} (2)

is the span of all vectors we get from acting with U on |x〉L |0〉R for all x ∈ Ω, and second, the
subspace B = SA is the subspace we get by swapping the two registers of A. Using the quantum
update, we can implement a reflection about the subspace A as

RefA = U (2 |0〉 〈0|R − I)U †. (3)

Szegedy defined a step of the quantum walk as

W = RefB · RefA, (4)

a composition of the two reflections about A and B. This operation is unitary, and the state

|ψπ〉 =
∑

x

∑

y

√
πxy |x〉1 |y〉2 , (5)

where π is the stationary distribution of P , is an eigenvector of W with eigenvalue 1. Szegedy [8]
proved1 that when we parametrize the eigenvalues of W as eiπθi , the second smallest phase θ1 (after
θ0 = 0) is related to the second largest eigenvalue λ1 of P as |θ1| >

√
1 − λ1. This can be viewed as

a square-root relationship ∆ >
√
δ between the phase gap ∆ = |θ1 − θ0| of the unitary operator W

and the spectral gap δ = |λ0 − λ1| of P . This relationship is at the heart of the quantum speedups
of quantum walk based algorithms over their classical counterparts.

Szegedy’s generalized quantum walk model is used in many of the recent quantum walk al-
gorithms for searching [10], quantum simulated annealing [11], quantum sampling [12, 13] and
approximating partition functions based on classical Markov chains [6]. For all these algorithms,
an essential step in implementing the quantum walk W is the ability to implement the quantum
update rule (1). For the basic search-like and combinatorial algorithms, an efficient implementa-
tion of the corresponding quantum walks is straightforward. However, for complicated transition
schemes coming from Markov chains like those for simulated annealing or for approximating parti-
tion functions of the Potts model, the situation is not so clear-cut. Recently, we have often heard
objections claiming that in those cases it could be hard to efficiently apply U , thus destroying the
speedups achieved by the quantum walk-based algorithms.

The common answer about the implementation of U relies on the methods for efficient simulation
of sparse Hamiltonians [14]. When there is only a small number of neighbors connected to each x,
one might try these methods. However, the subtle quantum walk algorithms require U to work with
high precision. A careful analysis of this simulation approach reveals that to sufficiently suppress
the errors introduced in the simulation process, the simulation methods can indeed become too
costly and destroy the originally claimed quantum speedups.

1Nagaj et al. give a simpler way to prove this relationship using Jordan’s lemma in [9].

2

We have an answer to this problem. The key component of our quantum update is based on
Grover and Rudolph’s method of preparing states corresponding to efficiently integrable probability
distributions [15]. In our case, the quantum samples we need to prepare correspond to probability
distributions that are supported on at most d states of Ω, which implies that they are efficiently
integrable. Thus, we can use the method [15] to obtain an efficient circuit for the quantum update.
Note that Childs [16], investigating the relationship between continuous-time [17] and discrete-time
[18] quantum walks has also recently utilized this approach [15] for a different task – simulating
sparse Hamiltonians on a star-like graph. Also, the basic trick underlying Grover and Rudolph’s
method, preparing superpositions by subsequent rotations, was first proposed by Zalka [19].

This is our main result about the quantum update rule U , the essential ingredient in the
implementation of the quantum walk defined as the quantum analogue of the original Markov
chain:

Theorem 1 (An Efficient Quantum Update Rule). Consider a reversible Markov chain on the
state space Ω, with |Ω| = 2m, with a transition matrix P = (pxy)x,y∈Ω. Assume that

1. there are at most d possible transitions from each state (P is sparse),

2. the transition probabilities pxy are given with t-bit precision, with t = Ω
(

log 1
ǫ

+ log d
)

,

3. we have access to a reversible circuit returning the list of (at most d) neighbors of the state x
(according to P), which can be turned into an efficient quantum circuit N :

N |x〉 |0〉 · · · |0〉 = |x〉 |yx
0 〉 · · ·

∣

∣yx
d−1

〉

, (6)

4. we have access to a reversible circuit which can be turned into an efficient quantum circuit T
acting as

T |x〉 |0〉 · · · |0〉 = |x〉|pxyx

0
〉 · · · |pxyx

d−1
〉. (7)

Then there exists an efficient quantum circuit Ũ simulating the quantum update rule

U |x〉 |0〉 = |x〉
∑

y

√
pxy |y〉 , (8)

where the sum over y is over the neighbors of x, and pxy are the elements of P , with precision

∥

∥

∥

(

U − Ũ
)

|x〉 ⊗ |0〉
∥

∥

∥
≤ ǫ (9)

for all x ∈ Ω, with required resources scaling linearly in m, polynomially in log 1
ǫ

and linearly in d
(with an additional poly(log d) factor).

The paper is organized as follows. In Section 2, we describe the alternative approaches one
could take to implement the quantum update and discuss their efficiency. In Section 3 we present
our algorithm based on Grover & Rudolph’s state preparation method. We conclude in Section 4
and present the remaining details for the quantum update circuit, its required resources, and its
implementation in Appendix A.

3

2 Alternative Ways of Implementing the Quantum Update

Before we give our efficient method, we review the alternative approaches in more detail, discussing
their shortcomings. We know of three other ways how one could think of implementing the quantum
update. The first two are based on techniques for simulating Hamiltonian time evolutions, while
the third uses a novel technique for implementing combinatorially block-diagonal unitaries.

The first method is to directly realize the reflection RefA as exp(−iΠAτ) for time τ = π
2 , where

the projector ΠA onto the subspace A turns out to be a sparse Hamiltonian. Observe that the
projector

ΠA =
∑

x∈Ω

|x〉〈x| ⊗
∑

y,y′∈Ω

√
pxy

√
pxy′ |y〉〈y′|

is a sparse Hamiltonian provided that P is sparse. Thus, we can approximately implement the
reflection RefA by simulating the time evolution according to H = ΠA for the time τ = π

2 . The
same methods apply to the reflection RefB, so we can approximately implement the quantum
walk W (P), which is a product of these two reflections. The requirements of this method scale
polynomially in 1

ǫ
, where ǫ is the desired accuracy of the unitary quantum update.

The second approach is to apply novel general techniques for implementing arbitrary row-
and-column-sparse unitaries, due to Childs [20] and Jordan and Wocjan [21]. Similarly to the first
method, it relies on simulating a sparse Hamiltonian for a particular time. However, the complexity
of this method again scales polynomially in 1

ǫ
.

The third alternative is to utilize techniques for implementing combinatorially block-diagonal
unitary matrices. A (unitary) matrix M is called combinatorially block-diagonal if there exists a
permutation matrix P (i.e., a unitary matrix with entries 0 and 1) such that

PMP−1 =

B
⊕

b=1

Mb

and the sizes of the blocks Mb are bounded from above by some small d. The method works as
follows: each x ∈ Ω can be represented by the pair {b(x), p(x)}, where b(x) denotes the block
number of x and p(x) denotes the position of x inside the block b(x). The unitary M can then be
realized by

1. the basis change |x〉 7→ |b(x)〉 ⊗ |p(x)〉,

2. the controlled operation
∑B

b=1 |b〉〈b| ⊗Mb , and

3. the basis change |b(x)〉 ⊗ |p(x)〉 7→ |x〉.

The transformations Mb can be implemented using O(4s) elementary gates based on the decompo-
sition of unitaries into a product of two-level matrices [22]. The special case d = 2 is worked out in
the paper by Aharonov and Ta-Shma [23]. The reflection RefA = 2ΠA − I then has the form

RefA =
∑

x∈Ω

|x〉〈x| ⊗





∑

y,y′∈Ω

√
pxy

√
pxy′ |y〉〈y′| − δy,y′



 ,

where δy,y′ = 1 for y = y′ and 0 otherwise. Viewed in this form, we see that RefA is a combinatorially
block-diagonal unitary matrix, with a block decomposition with respect to the ‘macro’ coordinate

4

x. Inside each ‘macro’ block labeled by x, we obtain a ‘micro’ block of size d corresponding to all
y with pxy > 0 and many ‘micro’ blocks of size 1 corresponding to all y with pxy = 0 after a simple
permutation of the rows and columns. The disadvantage of this way of implementing quantum
walks is that its complexity scales exponentially with d, the maximum number of neighbors for each
state x.

In the next Section, we show how to implement the quantum update rule by a circuit with the
number of operations scaling linearly with the sparsity parameter d (with additional poly(log d)
factors) and polynomially in log 1

ǫ
.

3 Overview of the Quantum Algorithm

Our efficient circuit for the Quantum Update Rule

U |x〉L |0〉R = |x〉L
d−1
∑

i=0

√

pxyx

i
|yx

i 〉R (10)

works in the following way:

1. Looking at x in the ‘left’ register, put a list of its (at most d) neighbors yx
i into an extra

register and the corresponding transition probabilities pxyx

i
into another extra register.

2. Using the list of probabilities, prepare the superposition

d−1
∑

i=0

√

pxyx

i
|i〉S (11)

in an extra ‘superposition’ register S.

3. Using the list of neighbors, put
∑d−1

i=0
√
pxyx

i
|yx

i 〉R |i〉S in the registers R and S.

4. Clean up the S register using the list of neighbors of x and uncompute the transition proba-
bility list and the neighbor list.

We already assumed we can implement Step 1 of this algorithm efficiently. The second, crucial
step is described in Section 3.1. Additional details for steps 3 and 4 are spelled out in Appendix
A. Finally, the cleanup step 4 is possible because of the unitarity of step 1.

3.1 Preparing Superpositions à la Grover and Rudolph

The main difficulty is the efficient preparation of (11). We start with a list of transition proba-
bilities {pxyx

i
, 0 ≤ i ≤ d− 1} with the normalization property

∑d−1
i=0 pxyx

i
= 1. Our approach is an

application of the powerful general procedure of [15]. The idea is to build the superposition up
in log d rounds of doubling the number of terms in the superposition (see Figure 1). Each round
involves one of the qubits in the register S, to which we apply a rotation depending on the state of
qubits which we have already touched.

For simplicity, let us first assume all points x have exactly d neighbors and that all transition
probabilities pxyx

i
are nonzero, and deal with the general case in Section 3.2. To clean up the

5

Figure 1: The scheme for preparing the superposition
∑d−1

i=0

√

q
(log d)
i |i〉 in log d rounds.

notation, denote qi = pxyx

i
. Working up from the last row in Figure 1 where q

(log d)
i = qi, we first

compute the d− 1 numbers q
(k)
i for i = 0, . . . , 2k − 1 and k = 0, . . . , (log d) − 1 from

q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. (12)

The transition probabilities sum to 1, so we end with q
(0)
0 = 1 at the top.

Our goal is to prepare |ψlog d〉 =
∑d−1

i=0
√
qi |i〉. We start with log d qubits in the state

|ψ0〉 = |0〉1 |0〉2 · · · |0〉log d . (13)

In the first round we prepare

|ψ1〉 =

(
√

q
(1)
0 |0〉1 +

√

q
(1)
1 |1〉1

)

|0〉2 · · · |0〉log d (14)

by applying a rotation to the first qubit. A rotation

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

, (15)

by θ
(1)
0 = cos−1

√

q
(1)
0 does this job. In the second round, we apply a rotation to the second qubit.

However, the amount of rotation now has to depend on the state of the first qubit. When the first
qubit is |0〉, we apply a rotation by

θ
(2)
0 = cos−1

√

√

√

√

q
(2)
0

q
(1)
0

, (16)

Analogously, when the first qubit is |1〉, we choose

θ
(2)
1 = cos−1

√

√

√

√

q
(2)
2

q
(1)
1

. (17)

6

Observe that the second round turns (14) into

|ψ2〉 =

(
√

q
(2)
0 |00〉1,2 +

√

q
(2)
1 |01〉1,2 +

√

q
(2)
2 |10〉1,2 +

√

q
(2)
3 |11〉1,2

)

|0〉3 · · · |0〉log d . (18)

Let us generalize this procedure. Before the j-th round, the qubits j and higher are still in the
state |0〉, while the first j − 1 qubits tell us where in the tree (see Figure 1) we are. In round j, we
thus need to rotate the j-th qubit by

θ
(j)
i = cos−1

√

√

√

√

q
(j)
2i

q
(j−1)
i

, (19)

depending on the state |i〉 which is encoded in binary in the first j− 1 qubits of the ‘superposition’
register S.

Applying log d rounds of this procedure results in preparing the desired superposition (11), with
the states |i〉 encoded in binary in the log d qubits.

3.2 A nonuniform case

In Section 3.1, we assumed each x had exactly d neighbors it could transition to. To deal with
having fewer neighbors (and zero transition probabilities), we only need to add an extra ‘flag’
register Fi for each of the d neighbors yx

i in the neighbor list. This ‘flag’ will be 0 if the transition
probability pxyx

i
is zero. Conditioning the operations in steps 2-4 of our algorithm (see Section 3)

on these ‘flag’ registers will deal with the nonuniform case as well.

3.3 Precision requirements

We assumed that each of the probabilities pxyx

i
was given with t-bit precision. Our goal was to

produce a quantum sample (11) whose amplitudes would be precise to t bits as well. Let us
investigate how much precision we need in our circuit to achieve this.

For any x, the imperfections in qlog d
i = pxyx

i
(see Section 3.1) come from the log d rotations by

imperfectly calculated angles θ. The argument of the inverse cosine in (19)

a
(j)
i =

√

√

√

√

q
(j)
2i

q
(j−1)
i

(20)

obeys 0 ≤ a
(j)
i ≤ 1. The errors in the rotations are the largest for a

(j)
i close to 0 or 1 (i.e. when

the θ’s are close to π
2 or 0). To get a better handle on these errors, we introduce extra flag qubits

signaling a
(j)
i = 0 or a

(j)
i = 1 (see the Appendix for details). In these two special cases, the rotation

by θ becomes an identity or a simple bit flip. On the other hand, because the q’s are given with t
bits, for a’s bounded away from 0 and 1, we have

√

2−t

1
≤ a ≤

√

1 − 2−t

1
. (21)

7

We choose to use an n-bit precision circuit for computing the a’s, guaranteeing that |ã− a| ≤ 2−n.
Using the Taylor expansion, we bound the errors on the angles θ:

|θ̃ − θ| = | cos−1 ã− cos−1 a| =

∣

∣

∣

∣

(ã− a)
d cos−1 a

da
+ . . .

∣

∣

∣

∣

≤ c1
2−n

√
1 − a2

≤ c12
−n+ t

2 , (22)

because a is bounded away from 1 as (21).
Each amplitude in (11) comes from multiplying out log d terms of the form cos θj

i or sin θj
i . For

our range of θ’s, the error in each sine or cosine is upper bounded by

| sin θ̃ − sin θ| ≤ |θ̃ − θ|, | cos θ̃ − cos θ| ≤ |θ̃ − θ|. (23)

Therefore, the final error in each final amplitude is upper bounded by

∆i =
∣

∣

∣

√

q̃i −
√
qi

∣

∣

∣
≤ c1(log d)2

−n+ t

2 . (24)

Note that the factor log d is small. Therefore, to ensure t-bit precision for the final amplitudes,
it is enough to work with n = 3

2t + Ω(1) bits of precision during the computation of the θ’s. We
conclude that our circuit can be implemented efficiently and keep the required precision.

4 Conclusion

The problem of constructing explicit quantum circuits for implementing arbitrary quantum walks
has not been considered in detail in the literature so far. It has been known that quantum walks
could be implemented using techniques for simulating Hamiltonian time evolutions. However, the
complexity would grow polynomially in 1/ǫ if we were to rely on simulating Hamiltonian dynamics
(see Section 2). This would be fatal for the quantum algorithm for estimating partition functions
in [6] since the quantum speed-up over its classical counterparts would be lost. An alternative for
implementing quantum walks whose running complexity scales logarithmically in 1/ǫ exists, relying
on the implementation of combinatorially block-diagonal unitaries. Its disadvantage is its running
time, growing exponentially in d (see Section 2).

We showed how to efficiently implement Szegedy’s quantum walks W (P) that are derived from
arbitrary classical sparse walks P = (pxy)x,y∈Ω. We constructed a quantum circuit Ũ that ap-
proximately implements the quantum update rule (8) with circuit complexity scaling linearly (with
additional logarithmic factors) in d, the degree of sparseness of P , linearly in m = log |Ω| and
polynomially in log 1

ǫ
, where ǫ denotes the desired approximation accuracy (9).

5 Acknowledgments

We would like to thank Rolando Somma, Sergio Boixo and Robert R. Tucci for starting the debate
about the quantum update rules, and Stephen Jordan for helpful discussions on the alternative
methods for implementing them. C. C. and P. W. gratefully acknowledge the support by NSF grants
CCF-0726771 and CCF-0746600. D. N. gratefully acknowledges support by European Project QAP
2004-IST-FETPI-15848 and by the Slovak Research and Development Agency under the contract
No. APVV-0673-07. Part of this work was done while D. N. was visiting University of Central
Florida.

8

|00〉flg

SC

• |φ〉flg

|c〉

θ

|c〉

|b〉 |b〉

|0〉 |θ〉

Figure 2: The Determine Angle Circuit DAC.

A Additional Details for the Efficient Quantum Update Circuit

In this Appendix, we spell out additional details for our Quantum Update circuit as well as draw
the circuit out for a d = 4.

The state space of the classical Markov chain P is Ω, with |Ω| = 2m. The entries of P are pxy,
the transition probabilities from state x to state y. We assume that P is sparse, i.e. that for each
x ∈ Ω there are at most d neighbors yx

i such that pxyx

i
> 0, and their number is small, i.e. d≪ 2m.

Since d is a constant, we can assume without loss of generality that d = 2r. We want to implement
the quantum (8), where |x〉 ∈ C

2m.

A.1 Preparation

Classically, our knowledge of P can be encoded into efficient reversible circuits outputting the
neighbors and transition probabilities for the point x. We will use quantum versions N and T of
these circuits, with the following properties. The neighbor circuit N acts on d copies of C

|Ω| and
produces a list of neighbors of x as

N |x〉L |0〉⊗d = |x〉L ⊗ |yx
0 〉 · · ·

∣

∣yx
d−1

〉

. (25)

All the transition probabilities pxyx

i
are given with t-bit precision. The transition probability

circuit T acts on a register holding a state |x〉 and d copies of
(

C
2
)⊗t

, producing a list of transition
probabilities for neighbors of |x〉 as

T |x〉L |0〉⊗d = |x〉L ⊗ |pxyx

0
〉 · · · |pxyx

d−1
〉. (26)

To simplify the notation, let us label qi = pxyx

i
. We now prepare all the terms q

(k)
i , filling the tree

in Figure (1). Starting from q
(log d)
i = qi, we use an adding circuit (ADD) doing the operation

q
(k−1)
i = q

(k)
2i + q

(k)
2i+1. The probability distribution {qi} is efficiently integrable, so filling the tree of

q
(k)
i is easy, and we can use Grover and Rudolph’s method [15] of preparing quantum samples for

such probability distributions.

A.2 Determining the rotation angles

After the preparation described in the previous Section, we need to compute the appropriate rota-

tion angles θ̃
(k)
i for Grover and Rudolph’s method. For this, we use the Determine Angle Circuit

9

|0〉

EQ

|0〉

|0〉flg1
|φ1〉flg1

|c〉

EQ

|c〉
|0〉flg2

|φ2〉flg2

|b〉 |b〉

Figure 3: The circuit SC handling special cases.

(DAC). This circuit produces

θ
(k)
i = cos−1

√

√

√

√

q
(k)
2i

q
(k−1)
i

, (27)

while also handling the special cases q
(k)
2i = q

(k−1)
i and q

(k−1)
i = 0. For simplicity, let us label

b = q
(k−1)
i , c = q

(k)
2i . The DAC circuit first checks the special cases, and then, conditioned on

the state of the two two flag qubits, computes (27). We draw it in Figure 2, with the special
case-analysing circuit SC given in Figure A.2. Here EQ is a subroutine testing whether two qubits
(in computational basis states) are the same. The first EQ tests the states |0〉 and |c〉, while the
second EQ runs the test on |c〉 and |b〉. We have the following four scenarios depending on the flag
qubits

00 the circuit θ computes normally ,
01, 11 the circuit θ does nothing (keeps angle = 0, as b = c) ,
10 the circuit θ outputs θ = π/2, as c = 0.

(28)

The third option corresponds to c = 0, when all the probability in the next layer of the tree is
concentrated in the right branch. We then simply flip the superposition qubit, using θ = π

2 .

A.3 Creating superpositions and mapping

After the angle is determined, we apply the corresponding rotation to the appropriate qubit in the
superposition register S, as described in Section 3.1. We then uncompute the rotation angle.

Once the final superposition is created in S, we invoke a mapping circuit M . This M acts on
the register holding the names of the d neighbors of x, the superposition register, and the output
register R. It takes yx

j , the name of the j-th neighbor of x, and puts it into the output register as

M |0〉R ⊗ |yx
0 〉 ⊗ . . .⊗ |yx

d−1〉 ⊗ |j〉S = |yx
j 〉R ⊗ |yx

0 〉 ⊗ . . . ⊗ |yx
d−1〉 ⊗ |j〉S . (29)

We can do this, because the names of the states in Ω are given as computational basis states. The
next step is to uncompute the label j in the last register with a cleaning circuit C as

C|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . .⊗ |yx
d−1〉 ⊗ |j〉 =

{

|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . . ⊗ |yx
d−1〉 ⊗ |j〉 if i 6= j

|yx
i 〉R ⊗ |yx

0 〉 ⊗ . . . ⊗ |yx
d−1〉 ⊗ |0〉 if i = j.

(30)

10

Table 1: Required numbers of qubits
Register Type Required number of qubits

x (register L) m
y (register R) m
yx

i (neighbor list) d×m
qi’s (probabilities) (2d− 2) × t
flag qubits 2
θ (rotation angle) n = 3t

2 + Ω(1)
ancillae for computing θ aθ = poly(n) = poly(t)
superposition register S r = log d

These two steps transferred the superposition from the register S (with r = log d qubits), into the
output register R (which has m qubits). The final step of our procedure is to uncompute (clean
up) the lists of neighbors and transition probabilities.

A.4 The required resources

Let us count the number of qubits and operations required for our quantum update rule U based on
a d-sparse stochastic transition matrix P . The number of ancillae required is Ω(dm+dt), where 2m

is the size of the state space and t is the required precision of the transition probabilities. Moreover,
the required number of operations scales like Ω(d rmaθ), where r = log d and aθ is the number
of operations required to compute the angle θ with n = Ω(t)-bit precision. Finally, when we have
t-bit precision of the final amplitudes, the precision of the unitary we applied is

∥

∥

∥

(

U − Ũ
)

|x〉 ⊗ |0〉
∥

∥

∥ ≤ ǫ, (31)

for any x ∈ Ω when t = Ω
(

log d+ log 1
ǫ

)

. The total number of operations in our circuit thus scales
like

Ω

(

mdpoly (log d) +md (log d) poly

(

log
1

ǫ

))

. (32)

Besides the registers for the input |x〉L and output |0〉R, we need d registers (with m qubits) to
hold the names of the neighbors of x, and 2d − 2 registers (with t qubits) to store the transition
probabilities qi. The DAC circuit requires two extra flag qubits and a register with n = 3t

2 + Ω(1)
qubits to store the angle θ. Computing the angle θ requires a circuit with poly(n) qubits. Finally,
the superposition register S holds r qubits. These requirements are summed in Table 1.

To conclude, we draw out the superposition-creating part of the quantum update for d = 4 in
Figure 4. The first two lines represent the superposition register S, in which we prepare

|ϕ〉 =

√

q
(2)
0 |00〉 +

√

q
(2)
1 |01〉 +

√

q
(2)
2 |10〉 +

√

q
(2)
3 |11〉 =

3
∑

i=0

√
qi |i〉 . (33)

11

Figure 4: The efficient Quantum Update, creating the superposition (11) for d = 4. The bottom
two lines represent the ‘superposition’ register S.

References

[1] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by Simulated Annealing, Science, New
Series, vol. 220, No.4598, pp. 671–680 (1983).

[2] V. Černý, A thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulation Algorithm, Journal of Optimization Theory and Applications, vol. 45 , pp. 41–51
(1985).

[3] L. Lovász and S. Vempala, Simulated Annealing in Convex Bodies and an O∗(n4) Volume
Algorithm, Journal of Computer and System Sciences, vol. 72, issue 2, pp. 392–417 (2006).

[4] M. Jerrum, A. Sinclair, and E. Vigoda, A Polynomial-Time Approximation Algorithm for the
Permanent of a Matrix Non-Negative Entries, Journal of the ACM, vol. 51, issue 4, pp. 671–697
(2004).

[5] I. Bezáková, D. Štefankovič, V. Vazirani and E. Vigoda, Accelerating Simulated Annealing
for the Permanent and Combinatorial Counting Problems, SIAM J. Comput., vol. 37, No. 5,
pp. 1429–1454 (2008).

[6] P. Wocjan, C. Chiang, A. Abeyesinghe and D. Nagaj, Quantum Speed-up for Approximating
Partition Functions, arXiv:0811.0596 (2008).

[7] Ch. M. Grinstead, J. L. Snell, Introduction to Probability, American Mathematical Society,
(1997).

[8] M. Szegedy, Quantum Speed-up of Markov Chain Based Algorithms, Proc. of 45th Annual
IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004).

[9] D. Nagaj, P. Wocjan, Y. Zhang, Fast QMA Amplification, in preparation (2009).

12

[10] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via Quantum Walk, Proc. of the
39th Annual ACM Symposium on Theory of Computing, pp. 575–584 (2007).

[11] R. Somma, S. Boixo, H. Barnum, E. Knill, Quantum Simulations of Classical Annealing Pro-
cesses, arXiv:0804.1571 (2008).

[12] P. Richter, Quantum Speed-Up of Classical Mixing Processes, Physical Review A, vol. 76,
042306 (2007).

[13] P. Wocjan and A. Abeyesinghe, Speed-up via Quantum Sampling, Phys. Rev. A, vol. 78,
pp. 042336 (2008).

[14] D. Berry, G. Ahokas, R. Cleve and B. Sanders, Efficient Quantum Algorithms for Simulating
Sparse Hamiltonians, Communications in Mathematical Physics, vol. 270, pp. 359–371 (2007).

[15] L. Grover, T. Rudolph, Creating Superpositions that Correspond to Efficiently Integrable Prob-
ability Distributions, arXiv:quant-ph/0208112 (2002).

[16] A. Childs, On the Relationship between Continuous- and Discrete-time Quantum Walk,
arXiv:0810.0312 (2008).

[17] E. Farhi, S. Gutmann, Quantum computation and decision trees, Phys. Rev. A, 58:915-928
(1998).

[18] J. Kempe, Quantum random walk algorithms, Contemp. Phys., 44, 302-327 (2003).

[19] C. Zalka, Efficient Simulation of Quantum Systems by Quantum Computers, Proc. Roy. Soc.
Lond. A 454, pp. 313–322 (1998).

[20] A. Childs, Personal Communication, March 2009.

[21] S. Jordan, P. Wocjan, in preparation (2009).

[22] M. A. Nielsen, I. L. Chuang, Quantum Information and Computation, Cambridge University
Press, Cambridge, UK (2000).

[23] D. Aharonov and A. Ta-Shma, Adiabatic Quantum State Generation and Statistical Zero
Knowledge, Proc. of the 35th annual ACM symposium on Theory, pp. 20–29 (2003).

13

	Introduction
	Alternative Ways of Implementing the Quantum Update
	Overview of the Quantum Algorithm
	Preparing Superpositions à la Grover and Rudolph
	A nonuniform case
	Precision requirements

	Conclusion
	Acknowledgments
	Additional Details for the Efficient Quantum Update Circuit
	Preparation
	Determining the rotation angles
	Creating superpositions and mapping
	The required resources

