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COEXISTENCE OF QUBIT EFFECTS

PETER STANO, DANIEL REITZNER, AND TEIKO HEINOSAARI

Abstract. We characterize all coexistent pairs of qubit effects.
The characterization consists of three disjoint conditions which are
easy to check for a given pair of effects. Known special cases are
shown to follow from our general characterization theorem.

1. Introduction

Optimal solutions for quantum information processing tasks require
typically observables (POVMs) which do not have projections as their
elements. Generally, an element of an observable, called an effect,
can be any operator bounded by the zero and the identity operators.
For instance, an optimal observable for unambiguous discrimination of
two non-orthogonal pure states has three elements and none of them
is a projection [4]. Another example is provided by informationally
complete observables, which do not have any non-trivial projections as
their elements [2].

A measurement of an observable gives information of all effects which
are in its range. For instance, a symmetric informationally complete
qubit observable has four outcomes. We can sum two effects corre-
sponding to two different outcomes, which simply means collecting the
measurement results of these two outcomes together. Different pairings
produce information of expectation values of all σx, σy and σz , and this
therefore proves the informational completeness of the observable.

This arises the following question on the structure of observables:
when two effects A and B can be contained in a single observable?
Two effects are called coexistent if they are in this kind of relation. For
two projections coexistence is simply equivalent to their commutativity.
For generic effects, such a simple characterization is not known.

In this work we give a complete characterization of the previously
stated coexistence problem in the case of two qubit effects. In Section
2 we recall the coexistent problem in a precise formulation. In Section
3 we present the main result of this paper - a characterization theorem
of coexistent pairs of qubit effects. We also show that already known
special cases are easily recovered from the theorem. A detailed proof
of the characterization theorem is given in appendices. In Appendix
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1 we recall some general facts on coexistence which are needed in our
investigation. Appendix 2 then concentrates on the details of the proof.

2. The coexistence problem

Let H be a complex separable Hilbert space. An operator A on H
is an effect if

0 ≤ 〈ψ |Aψ 〉 ≤ 1

for all ψ ∈ H. In terms of operator inequalities this reads

O ≤ A ≤ I ,

where O and I are the zero operator and the identity operator, respec-
tively. We denote by E(H) the set of effects.

An observable G is a normalized effect valued measure, also called
positive operator valued measure (POVM). It is defined on a measur-
able space (Ω,F), where Ω is the set of measurement outcomes and
F ⊆ 2Ω is the σ-algebra of possible events. If the system is in a vector
state ψ and a measurement of G is performed, the probability of getting
a measurement outcome belonging to an event X is 〈ψ |G(X)ψ 〉.

For a singleton set {ω}, we denote Gω ≡ G({ω}). Clearly, if Ω is a
discrete set, then G is determined by the effects Gω, ω ∈ Ω. A generic
effect G(X) is recovered by formula

G(X) =
∑

ω∈X

Gω .

We can also look on the structure of observables from the other side:
given two effects, we can ask whether they originate from a single ob-
servable. This concept, called coexistence, was first studied by Ludwig
[7].

Definition 1. Effects A,B ∈ E(H) are coexistent, denoted A m B, if
there exists an observable G : F → E(H) and events X, Y ∈ F such
that

A = G(X), B = G(Y ) . (1)

An observable G giving A and B as in (1) is called a joint observable
for A and B. The coexistence problem can be now formulated in the
following way.

Coexistence problem:

Given an effect A, characterize all effects B which are
coexistent with it.
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The following simple observation shows that when we are studying
the coexistence of two effects, we can resctrict to four outcome joint
observables.

Proposition 1. Effects A and B are coexistent if and only if there
exists an observable G with four outcomes {1, 2, 3, 4} such that

A = G1 + G2, B = G1 + G3 . (2)

Proof. Trivially, if a four outcome observable G satisfying (2) exists,
then A and B are coexistent. Assume then that A and B are coexistent
and let G : F → E(H) be an observable such that A = G(X), B = G(Y )
for some X, Y ∈ F . We denote X ′ = Ω\X and Y ′ = Ω\Y , and we set

G̃1 = G(X ∩ Y ), G̃2 = G(X ∩ Y ′), G̃3 = G(X ′ ∩ Y ), G̃4 = G(X ′ ∩ Y ′).

This defines an observable G̃ with the required properties. �

For any nontrivial effect A (i.e. A is not of the form λI for some
0 ≤ λ ≤ 1), there are effects which are not coexistent with it [8,
Lemma 1]. If A is a projection (i.e. A = A2), then the answer to the
coexistence problem is simple and well-known: an effect B is coexistent
with A exactly when AB = BA. Generally, however, a solution to the
coexistence problem is not known. In the next section we present a full
solution to the coexistence problem in the case of a qubit system, i.e.
two dimensional Hilbert space H = C2.

3. Qubit effects and their coexistence

Qubit effects A and B can be parametrized by vectors (α, a), (β,b) ∈
R4 in the following way:

A =
1

2
(αI + a · σ), 0 ≤ a ≤ α ≤ 2 − a , (3a)

B =
1

2
(βI + b · σ), 0 ≤ b ≤ β ≤ 2 − b . (3b)

Here σ ≡ (σ1, σ2, σ3) is the vector of Pauli matrices, and we have
denoted a ≡ ‖a‖, b ≡ ‖b‖.

We are now considering A to be fixed and we are looking for all
effects B (hence all parameters β and b), which are coexistent with A.
In order to formulate the characterization theorem, we first introduce
the following function S from E(H) to [0, 1],

S(A) ≡ S(α, a) :=
1

2

(
a2 + α(2 − α) −

√
(α2 − a2)[(2 − α)2 − a2]

)
.

(4)
The following properties of S are easy to confirm:

(a) S is continuous;
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(b) S(I −A) = S(A);
(c) S(UAU∗) = S(A) for every unitary operator U ;
(d) S(A) = 1 iff A is a non-trivial projection (i.e. A2 = A and

O 6= A 6= I);
(e) S(A) = 0 iff A is a trivial effect (i.e. A = λI for some 0 ≤ λ ≤

1).

Due to these properties, we interpret the number S(A) as a quantifi-
cation of the sharpness of A. The following facts follow directly from
the definition of S,

(f) for a fixed α, the function a 7→ S(α, a) is increasing;
(g) S(1, a) = a2;
(h) S(α, α) = α.

For simplicity, we formulate the main theorem below in the case of
0 < α ≤ 1 and 0 < β ≤ 1. We note that if A is defined by parameters
α and a, then I − A corresponds to 2 − α and −a. Therefore, the
other cases when α > 1 or β > 1 can be recovered from this result by
applying Proposition 2 in Appendix 1.

It follows from Proposition 3 in Appendix 1 that only the relative
angle between a and b is relevant for their coexistence — not their
absolute directions. In the following it is thus convenient to denote by
b‖ the component of b in the direction of a and b⊥ the length of the
projection of b in the plane perpendicular to a. The coexistence of B
with A then depends on parameters b‖, b⊥ and β.

Theorem 1. An effect B is coexistent with A if and only if it falls into
one of the following (disjoint) cases:

(C1) if β ≤ 1 − S(A), A m B irrespectively of b;
(C2) if β > 1 − S(A) and |b‖ − b0| ≥ l, then A m B;
(C3) if β > 1 − S(A) and |b‖ − b0| < l, then A m B if and only if

b⊥ ≤ 1

2a

√
[(2 − α)2 − a2]{a2 − [a(b‖ − b0) + (1 − β)]2}

+
1

2a

√
[α2 − a2]{a2 − [a(b‖ − b0) − (1 − β)]2} , (5)

where

b0 =
1

a
(1 − α)(1 − β) , (6)

l =
1

a

√
(1 − α)2 − β[(1 − α)2 + 1 − a2] + β2 . (7)

The case (C3) is the only one where (for fixed β) the coexistence
of A and B imposes a nontrivial restriction on the length of vector
b. We also note that the shortest vector b for which (5) is equality
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is the one with b‖ = b0.
1 Since for fixed β the shorter b, the smaller

the sharpness S(B), we interpret the directions along these shortest
vectors2 to represent operators which are mostly restricted if we require
coexistence with A.

With this interpretation the division of coexistence condition to three
different situation (C1)–(C3) can be intuitively understood in the fol-
lowing way. The first class (C1) consists of those effects B for which
β [and consequetively the sharpness S(B)] is so small that no choice
of vector b can prevent the coexistence of A and B. If β is above the
given treshold, then there exists an interval for b‖, where there is a non-
trivial restriction on the length of vectors b if A and B coexist. The
center of the interval is b0, which represent the most strict restriction,
and the width of the interval is 2l. The second class (C2) then consists
of those effects B for which b‖ is outside the interval and which are
coexistent with A even if their sharpness is the highest possible (i.e.
S(B) = β). The third class (C3) represents effects for which their
sharpness is nontrivially restricted if they are to coexist with A.

In Fig. 1 we present four illustrative examples. Fig. 1a demonstrates
the case (C1) where β < 1 − S(A), and hence all effects with this β
coexist with A. In Fig. 1b we keep the parameters α and a unchanged
while β is enlarged such that β > 1−S(A). The interval with nontrivial
restriction on the length of vectors b appears – for b‖ outside this
interval (C2) applies, while for b‖ inside (C3) applies. Note that the
center of the interval is not zero. In Fig. 1c we have β = 1 and now the
interval is centered at zero, meaning the restriction on the sharpnes of
B is most strict if a and b are orthogonal. Furthermore, l = 1 and
thus (C3) covers all the possible cases. In Fig. 1d we have a = α which
means that A is a multiple of a projection. Nonzero b0 results in a
clearly visible asymmetry in the picture.

In the following examples we demonstrate that the known special
cases follow easily from Theorem 1.

Example 1. Assume that α = β = 1. Using property (e) of S(A),
we see that the coexistence condition (C1) holds if and only if a = 0.
We have b0 = 0, l = 1 and therefore (C2) never occurs. The condition
(C3) now gives

b2⊥ ≤ (1 − a2)(1 − b2‖) . (8)

1The proof is analogous to the proof of (19) which we give later.
2These shortest vectors make angle θ with a so they lie on a cone. The angle θ

is given by tan θ = b⊥/b‖.
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Figure 1. Examples of specification of effects B which
coexist with given effect A. On each figure parameters
α, a, β are fixed, while the b vector components, b‖, and
b⊥ are on x and y axis, respectively. The thick red line
denotes the boundary – A and B coexist if and only if
the vector b is inside the shaded region. The thin black
circle represents the condition onB to be an effect, b ≤ β.
The blue vector represents a shortest vector b laying on
the boundary – its projection to x axis equals b0. The
interval [b0 − l, b0 + l] where a nontrivial restriction on
the length of the allowed vectors b exist is denoted by
the vertical dot-dashed lines. The following parameters
are used: α = 0.6 in every figure and a) a = 0.5, β = 0.6.
b) a = 0.5, β = 0.9. c) a = 0.5, β = 1. d) a = 0.6,
β = 0.9.

Clearly, this inequality also covers the case a = 0. This result has been
derived by Busch [1, Theorem 4.5] in an equivalent form

‖a + b‖ + ‖a− b‖ ≤ 2.

Example 2. Assume that β = 1 and a ⊥ b. The coexistence condition
(C1) holds if and only if a = 0. Since a ⊥ b, we have b‖ = 0 and b⊥ = b,
while b0 = 0 due to β = 1. Therefore (C2) does not occur and a 6= 0

leads to the case (C3) which now reads

b ≤ 1

2

√
(2 − α)2 − a2 +

1

2

√
α2 − a2 . (9)

Clearly, this inequality also covers the case a = 0. This result has been
derived by Liu et al. [6, Theorem 1].
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Example 3. Assume that ‖a‖ = α and ‖b‖ = β. We now have
b0 = (1−α)(1− β)/α and l2 = (α+ β2 − 1)/α2. Since b = β, A and B
coexist if (C1) or (C2) are satisfied. (C1) holds if and only if α+β ≤ 1,
while in the case α+ β > 1 condition (C2) gives

αb‖ ≤ 2 − 2α− 2β + αβ . (10)

However, α + β ≤ 1 implies (10) and therefore (10) characterizes all
solutions. This inequality is also easily obtained from a result of Molnar
[8, Lemma 2].

In conclusions, we have studied the coexistence of two qubit effects,
that is, when the effects originate from a single observable. We have
solved the general case by providing simple criteria for the coexistence.
We have shown that known special cases follow straightforwardly from
our result.

Appendix 1: General observations on coexistence

In this section we list some general observations which are needed in
the proof of Theorem 1.

Proposition 2. Let A,B ∈ E(H). The following conditions are equiv-
alent:

(i) A and B are coexistent;
(ii) A and I − B are coexistent;
(iii) I − A and B are coexistent;
(iv) I − A and I − B are coexistent.

Proof. It is enough to prove that (i) implies (ii). The other implications
follow by applying this to different combinations of A and I − A with
B and I − B.

Assume that A and B are coexistent and that G is a four outcome
observable satisfying (2). We define another four outcome observable

G̃ by

G̃1 := G2, G̃2 := G1, G̃3 := G4, G̃4 := G3 .

Then
G̃1 + G̃2 = G2 + G1 = A

and

G̃1 + G̃3 = G2 + G4 = G2 + I − G1 − G2 − G3 = I − B .

Thus, A and I − B are coexistent. �

Proposition 3. Let A,B ∈ E(H) and U a unitary operator on H. The
following conditions are equivalent:
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(i) A and B are coexistent;
(ii) UAU∗ and UBU∗ are coexistent.

Proof. It is enough to prove that (i) implies (ii) as the other implication
is obtained by applying this to a unitary operator U∗. Assume that
A and B are coexistent and that G is their joint observable. Then
UG(·)U∗ is a joint observable of UAU∗ and UBU∗. �

Proposition 4. Let A,B1, B2 be effects such that A is coexistent with
both B1 and B2. Then for any 0 ≤ λ ≤ 1, the effects A and λB1 +(1−
λ)B2 are coexistent.

Proof. Let G1 be a joint observable of A and B1 and G2 a joint ob-
servable of A and B2. By Proposition 1 we can assume that both
G1 and G2 have four outcomes: 1, 2, 3, 4. An observable G defined as
Gj = λG1

j + (1 − λ)G2
j for j = 1, 2, 3, 4, is a joint observable of A and

λB1 + (1 − λ)B2. �

Corollary 1. If A and B be coexistent effects. Then A is coexistent
with effect λB for any 0 ≤ λ ≤ 1.

Proof. Choose B2 = O in Proposition 4. �

Appendix 2: Proof of the characterization theorem

3.1. Step 1 - Formulation of the coexistence condition as an

intersection requirement for four circles. We first shortly recall
the formulation of the coexistence condition as an intersection require-
ment for four circles [1], [3]. As shown in Proposition 1, the coexistence
of A and B is equivalent to the existence of a four outcome observable
G. This, in turn, is equivalent to the existence of a single effect G1

satisfying the following operator inequalities [5]:

G1 ≥ O, G1 ≤ A, G1 ≤ B, I + G1 ≥ A+B . (11)

We parametrize G1 in the same way as A and B,

G1 =
1

2
(γI + g · σ), 0 ≤ ‖g‖ ≤ γ ≤ 2 − ‖g‖ . (12)

Conditions (11) can be recast into the following four inequalities,

‖g‖ ≤ γ, (13)

‖a − g‖ ≤ α− γ, (14)

‖b − g‖ ≤ β − γ, (15)

‖a + b − g‖ ≤ 2 + γ − α− β. (16)
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The conclusion from the above is that effects A and B are coexistent
if and only if there exist parameters γ and g such that the inequalities
(13)-(16) are satisfied.

In the three dimensional space, each inequality can be viewed as
a ball of allowed vectors g. These four balls are centered in points
0, a, b, and a + b, respectively, with radii given by the right hand
side of the corresponding inequality. A joint observable of A and B
therefore exists if and only if there is a γ such that the intersection of
the four balls is non-empty. Important is that the radii change with
γ, which is a free parameter. To find out whether a joint observable
exists, we have to check the intersection for all γ. The intersection
also shows the freedom in choosing different vectors g – for each γ
when the intersection is non-empty, all points in the intersection can
be chosen as g. From this also follows that a unique effect G1 exists if
and only if there is only one γ such that the four balls intersect and
for this particular γ, they intersect only in one point. (We will see that
the requirement that there is only a single γ where the intersection is
non-empty implies that the intersection is formed by one point only.)

By Proposition 3 in Appendix 1, the coexistence of A and B depends
only on the numbers α, β, a, b and on the relative angle between a and
b. Without any loss of generality, we choose a coordinate system such
that the vector a lies along the x-axis and vector b is in the x-y plane.
Then, if there is a point g in the intersection, its projection to the
x-y plane is also in the intersection, because the projection is closer
then g to each of the centers of the four balls. As we are interested
whether the intersection is empty or not, it is thus enough to study
the intersection in the x-y plane only. Projecting on the x-y plane we
obtain four circles centered in the corners of parallelogram with sides
a and b, which have the radii given in Eq. (13)-(16). The geometry is
summarized in Fig. 2.

3.2. Step 2 – Restriction to the boundary cases. We will answer
the question whether A and B are coexistent by fixing the parameters
α, a, and β and specifying the region in the two dimensional x-y plane
– if, for given α, a, and β, the vector b lies inside the region, then
there exists at least one γ such that the four circles have at least one
common point and then A and B are coexistent.

By Proposition 4, the set of effects B coexistent with A is convex.
Thus, also the allowed region of vectors b is convex. We can therefore
restrict our study to the boundary cases.

The border of the intersection is formed by the borders of the four
circles. If there is γ such that the intersection has nonzero volume,
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1
p r  =2 α − γ

r  = β − γ4

r  =1 γ

2 + γ − α − βr  =3

4
p

p

2
p

3

b

a0

a   b+

Figure 2. A joint observable exists if the intersection
of the four circles is non-empty. The four circles are
centered at corners of a parallelogram with sides a and b.
The circles’ radii are given in the Figure and depend on
γ. For the particular γ used in the figure, the intersection
is empty. Later we will also need the common points of
circles 1 and 2 denoted by p1 and p2 and circles 3 and
4, denoted by p3 and p4.

then there is ǫ > 0 such that for all b′ : ‖b′ − b‖ < ǫ changing vector
b to b′ does not make the nonzero area to disappear; see Fig. 3 for an
illustration. Boundary is therefore formed by such b’s that only such
γ’s exist that the intersection is non-empty but has zero volume.

Two circles can intersect in an area of nonzero volume or in a point.
Another circle can cut out from this either another area of a nonzero
volume or a single point (or make the intersection empty). Again, also
a four circle intersection can be either a nonzero volume area, or a
single point, or empty.

Note that in the same way we can deduce that if the intersection
is of a nonzero volume, there must be an interval of γ‘s leading to
nonzero intersections. That means the following implication holds:
unique γ implies single point intersection (and consequently unique g).
It is, however, not true, that the existence of a single point intersection
implies unique G — for example, there are cases where there are only
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1 2

4

3

Figure 3. An illustrative nonzero volume intersection.
The boundaries of the intersection are defined by the
boundaries of the circles (solid lines). The boundaries 3
and 4 move smoothly when changing vector b. Therefore
there is an upper limit on the change of b under which
it is not possible to make the nonzero volume to disap-
pear.

single points intersections, but γ can be chosen from an interval of
positive length (and also vectors g differ for different γ).

From the previous follows that the boundary is formed by such vec-
tors b that there exists γ for which the four circles intersection is a
single point and no such γ exists that the intersection is a nonzero
volume area. We do not say here that only one γ exists where the
intersection is a single point. We will see that there are parts of the
boundary, where an interval of γ’s leads to single point intersections.

We also note here that certain transformations of the plane preserve
also the four circles intersection. Rotation of vectors a and b by the
same angle is one example of transformation, which allowed us to put
vector a along the x-axis. Another useful transformation is the inver-
sion with respect to the axis defined by vector a. In this case a vector
b is transformed from (b‖, b⊥) to (b‖,−b⊥). This symmetry allows us
to restrict to the case b⊥ ≥ 0 – the allowed region for vectors b (and
then also the boundary) is symmetric with respect to axis x.

We conclude that it is enough to characterize the boundary curve
of the allowed region. By convexity, all vectors b inside the boundary
curve lead to coexistence.

3.3. Step 3 - Division of single point intersections into three

cases. Four circles can intersect in one point in three distinct cases:
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inside 3

1 2

inside 4

1

inside 4

2

3

a) b)

c)

1 2

3
4

Figure 4. Three cases when the intersection is a sin-
gle point one. a) Two circle intersect in a single point,
which is inside the remaining two circles. b) Three cir-
cles intersect in a single point, it is not the case a, and
the intersection is inside the fourth circle. c) Four circles
intersect in a single point and it is not the case a, or b.

• 2CI – two circles intersect in one point and this point lies inside
(that is within a positive distance from the boundary) of the
two remaining circles

• 3CI – three circles intersect in one point, but out of these no
two circles intersect in one point and this point lies inside of the
fourth circle

• 4CI – there is a point laying on boundary of all four circles

See Fig. 4 for an illustration of these three cases.

3.3.1. Boundary of the allowed region in the 2CI case. If b is on the
boundary of the allowed region and it is a 2CI case, then there is γ0 such
that two circles intersect in a point that is inside the remaining two
circles and for no γ the intersection has a nonzero volume. Then the
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two circles making the single point intersection can not be circles 1 and
3. It is because both these circles’ radii grow with γ – we could enlarge
γ0 by a small amount such that circles 1 and 3 would intersect in a
nonzero volume and the two remaining circles would not move enough
to leave this area. We would thus obtain a four circle intersection of
a nonzero volume, what is in contradiction with the assumption that
the b is on the boundary. Similarly, the boundary formed by 2CI
can not be due to circles 2 and 4 – they both grow if we decrease γ.
By decreasing γ we could make in an analogous way the four circle
intersection with a nonzero volume. Single point intersection of circles
1 and 2 also can not make a boundary in the space of vectors b, since
they do not change with changing b. Finally, circles 3 and 4 shift by
the same amount when b is changed and therefore also can not define
the boundary. What is left for a 2CI boundary case is a single point
intersection of the circles 2 and 3, which leads to equation b = 2 − β,
which is never the case since we have restricted to the case β ≤ 1 and it
must be b ≤ β. The only possibility is that a single point intersection
is formed by circles 1 and 4, leading to equation b = β. This equation
indeed defines part of the boundary of the allowed region for vectors
b.

We will specify now when vectors b such that b = β are in the
allowed region [and then they are the boundary, since b can not be
larger than β according to condition in Eq. (3b)]. If b = β, then at a
given γ ∈ [0, β], circles 1 and 4 intersect in point γb/b. This point lies
on the boundary of circle 2 if ‖γb/b− a‖ = α− γ, that is if

γ = γM :=
β

2

α2 − a2

αβ − a · b (17)

Since α ≥ a and β ≥ b, the number γM is well defined and positive,
unless a and b are collinear and α = a and β = b. We can, however, put
aside this case, since if a and b are collinear, A and B are coexistent for
any allowed b – this means that on the x-axis the allowed region is the
interval [−β, β]. Since circles 2 and 4 diminish when γ increases, for
γ < γM (γ > γM) the intersection of circles 1 and 4 is inside (outside)
circle 2. It can happen that γM > β (circle 4 is not defined for γ > β)
or γM > α, when circle 2 is not defined, but this simply means that the
intersection of circles 1 and 4 is inside the circle 2 for all admissible γ.

Similarly, one finds that the intersection of circles 1 and 4 is inside
circle 3 for γ > max(γm, 0), where

γm :=
β

2

(2 − α− β)2 − ‖a + b‖2

αβ − a · b − 2β
. (18)
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Again, the denominator in Eq. (18) is zero only in if vectors a, and b

are collinear and equal to α, and β, respectively, and α = 1.
Finally, the vectors b = β are on the boundary of the allowed region

if the interval (γm, γM) is non-empty. Solving equations b = β and
γm = γM we obtain the limit cases

b±‖ ≡ b0 ± l :=
1

a

(
(1 − α)(1 − β) ±

√
D

)
, (19)

where

D := (1 − α)2 − β[(1 − α)2 + 1 − a2] + β2. (20)

From Eq. (19) we may conclude that b±‖ is not always meaningful with

respect to our needs. First of all, it is clear that if D is negative,
the solutions b±‖ are not real numbers. But even if D is positive, the

solutions b±‖ may not lay inside the relevant interval [−β, β].

For b = (±β, 0) we have γm = 1

2
[α ± a − 2(1 − β)], γM = 1

2
(α ± a),

and therefore these two vectors are always on the boundary. By solving
equation D = 0 for variable β, we obtain two real solutions β1 and β2

telling us when for D = 0 the effects A and B are coexistent for all
the vectors b, b ≤ β. However only the larger solution β2 is important
for us, since due to scaling property from Cor. 1, all effects B′ having
β ′ ≤ β will be coexistent with A as well. Together with the knowledge,
that for β2 Eq. (19) gives b+‖ = b−‖ ∈ [−β, β], we may conclude, that for

β1 < β2, the solutions b±‖ must lie outside of the interval [−β, β],3 thus

giving us the boundary β = b for all b.

3It can be seen as follows: take the expression ab−‖ . It is a continuous real

function of α, a, β, defined in two simply connected regions: [0, 1] × [0, α] × [0, β1]
and [0, 1]×[0, α]×[β2, 1], for the three variables, respectively. That these regions are
simply connected follows from inequality 0 ≤ β1 ≤ β2 ≤ 1: First, since S ∈ [0, 1],
it follows that β2 ≤ 1. Second, we have chosen β2 to be the larger from the
two solution, therefore β2 ≥ β1. And the last part follows from identity β1β2 =
(1−α)2 ≥ 0. Putting ab−‖ equal to βa we find that a necessary condition for this is

0 = β(1 − β)(α − a)(2 − α + a). (21)

In another words, ab−‖ is equal to βa only on the boundary of the definition region.

It then follows, that if for one point inside the region it holds ab−‖ < βa, then it

holds ab−‖ ≤ βa for the whole region. Analogous equation to Eq. (21) allows similar

reasoning for the lower interval limit, −βa and also for the second expression, ab+

‖ .

From an example for the first part of the region, α = 1/4, a = 1/8, β = 1/4 one
finds that here both ab±‖ are outside [−βa, βa] (both are larger or equal). On the

other hand, putting α = 3/4, a = 1/2, β = 3/4 shows that in this part of the region
(that is for β > β2), the expressions ab±‖ are both inside the interval [−βa, βa].



COEXISTENCE OF QUBIT EFFECTS 15

In fact, this property leads us to the definition of sharpness for effects
in Eq. (4) – we define the sharpness as S(A) = 1 − β2. Moreover we
may notice that as a function of a, S(α, a) increases if a increases. On
the other hand, S(α, α) = α. Therefore S(α, a) ≤ α, if a ≤ α. This
means that β2 ≥ 1 − α. The necessary condition for b±‖ to be real and

inside the interval [−β, β] is then α + β ≥ 1.
We then conclude that

• if β > 1 − S(A), the boundary is given by vectors b such that
b = β, if b‖ /∈ (b−‖ , b

+

‖ ), given by Eq. (19)

• if β ≤ 1 − S(A), the whole boundary is formed by vectors for
which b = β – in another words, in this case the allowed region
is a circle with the diameter β and center at 0

3.3.2. Boundary of the allowed region in the 3CI case. The conclusion
of this paragraph is that the 3CI do not make the boundary - the
necessary condition for a 3CI implies that one of these circles contains
another one and therefore can be disregarded, forcing the case to be a
2CI case.

Let us assume that a 3CI case defining a boundary is formed by the
intersection of circles 1, 2, and 4, first – this means 1, 2 and 4 intersect
in a single point which is inside circle 3. Looking at Fig. 2, points
common to circles 1 and 2 are p1 and p2. The first is farther away
from circle 4 than the second (since we have restricted to b⊥ ≥ 0).
Therefore, if circles 1, 2, and 4 have a single common point, it must
be p2 (for the case b⊥ = 0, p1 and p2 are in the same distance from
circle 4, but in this case the boundary is b = β – we know this from
the previous and can disregard case b⊥ = 0 here).

Take the following quantity comparing the distance of p2 from the
center of circle 4 and its radius,

d(γ) = ‖b − p2(γ)‖2 − (β − γ)2, (22)

which is a function of γ. If the point p2 lies on circle 4 for some γ0,
then4 d(γ0) = 0. If ∂γd(γ)|γ0

< 0, then there exists an interval (γ0,γ1)
where d(γ) < 0. Since we have assumed that the common point of circle
1, 2 and 4 is inside (that is a positive distance from the boundary of)
circle 3, there exist γ ∈ (γ0, γ1) such that the four circles intersect in
a nonzero area. This is in contradiction with the fact that b is on the
boundary. Therefore a necessary condition for a 3CI case are equations
d(γ0) = 0 and ∂γd(γ0) = 0.

4Moreover, if the point p2 lies inside [outside] the circle 4 for some γ0, then
d(γ0) < 0 [d(γ0) > 0].
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Table 1. Necessary conditions for all four possible three
circle intersections. The three circles intersecting in a
single point are given in the first column. The necessary
condition and its geometrical meaning for a 3CI definng
the boundary is in the second column.

3CI necessary condition
and its geometrical meaning

1, 2, and 3 0 = [b2 − (2 − β)2][||a + b||2 − (2 − α− β)2]
never, or 1 and 3 are one inside other

1, 2, and 4 0 = [b2 − β2][||a− b||2 − (α− β)2]
1 and 4 are touching, or 2 and 4 are one inside other

1, 3, and 4 0 = [b2 − β2][||a + b||2 − (2 − α− β)2]
1 and 4 are touching, or 1 and 3 are one inside other

2, 3, and 4 0 = [b2 − (2 − β)2][||a− b||2 − (α− β)2]
never, or 2 and 4 are one inside other

Inserting the appropriate expression for p2 and making substitution
γ → (α− ag)/2, one can express d(γ) in the following form

d = c1(c2 −
√

1 − g2 + c3g), (23)

where c1 = b⊥
√
α2 − a2, c2c1 = b2 − a.b + αβ − β2, c3c1 = b‖α − aβ

do not depend on γ. Equation ∂γd(γ) = 0 leads to a single solution

g = −c3/
√

1 + c23. Putting this into equation d(g) = 0 we get equation
c22 − c23 − 1 = 0. Substituting back the definitions for c1, c2 and c3 we
finally obtain that a necessary condition for this particular 3CI is

(b2 − β2)[‖a− b‖2 − (α− β)2] = 0. (24)

If the expression in the first bracket is zero, we obtain the condition
for 2CI of circles 1 and 4. If the second bracket is zero, the circles 2
and 4 are one inside the other (if α ≥ β, then circle 4 is inside the
circle 2, and it is the opposite if α ≤ β). Their intersection is then the
whole smaller circle and it is important, that this fact is independent
of γ. We can then disregard the larger circle completely, because the
intersection does not depend on it in any respect. The 3CI is thus
reduced to 2CI and can not therefore define boundary different from
those found in the previous section dealing with 2CI. In the same way
it can be found that the three other possible 3CI are similar and always
lead to boundary defined by a 2CI intersection. The quantity d(γ) from
Eq. (22) and the resulting condition from Eq. (24) for all four possible
3CI are summarized in Tab. 1
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3.3.3. Boundary of the allowed region in the 4CI case. Four point in-
tersection can occur if one of the points p1 and p2 coincides with one
of the points p3 and p4. Since point p2 is always (we have restricted
to b⊥ > 0) closer to circle 3 than point p1, and point p3 is closer to
circle 1 than p4, if the four circles have a single point intersection it
must be case that for some γ the points p2 and p3 coincide. Putting
the x coordinates to be equal we obtain the solution for γ,

γ =
1

2
[αβ + a · b− 2(1 − α)(1 − β)] . (25)

Parameter γ given in the previous equation represents the four cir-
cle intersection if p2 and p3 are well defined. Point p2 exists if γ ∈
[α−a

2
, α+a

2
], while point p3 exists if γ ∈ [α−a

2
− (1 − β), α+a

2
− (1 − β)].

Using these conditions and the solution from Eq. (25) we conclude that
Eq. (25) represents a case p2=p3 if the following condition is fulfilled,

(1−β)(1−α)− (β−1+a) ≤ a ·b ≤ (1−β)(1−α)+(β−1+a). (26)

If the limit expressions from Eq. (19) fulfill the above inequality, then
all relevant vectors b do.5 Putting equal the y coordinates for the
points p2 and p3 we finally obtain the equation of the coordinate b⊥
as a function of b‖

b⊥ =
1

2a

√
(α2 − a2){a2 − [(2 − α)(1 − β) + ab‖]2}

+
1

2a

√
(2 − α)2 − a2){a2 − [α(1 − β) + ab‖]2},

(27)

which can be rewritten into the form of Eq. (5)

Note added

A paper with identical title is being published on the arXiv simul-
taneously by Paul Busch and Heinz-Jürgen Schmidt. These authors
solve the same problem independently with a different method. The
final results have yet to be compared.

5That the limits fullfill the inequality can be proved analogously to the proof
of Eq. (19) to be inside(outside) the allowed interval. First, the implication β >
1 − S(A) → β + a − 1 > 0 holds, by which the interval in (26) is nonempty. The
implication follows from inequality S(α, a) ≥ a, which follows from the fact that
S(α, a) = a implies a = 0 or a = α, and therefore can be valid only on the boundary
of the definition region. By taking an explicit example from inside the region, the
inequality S(α, a) ≥ a is proved. Similarly, the equality in (26) for the limits ab±‖
implies α = a or β = 1, again the boundary of the definition region of a.b.
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