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Process POVM: A mathematical framework for the description of process tomography

experiments
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In this paper we shall introduce the mathematical framework for the description of measurements
of quantum processes. Using this framework the process estimation problems can be treated in the
similar way as the state estimation problems, only replacing the concept of positive operator valued
measure (POVM) by the concept of process POVM (PPOVM). In particular, we will show that
any measurement of qudit channels can be described by a collection of effects (positive operators)
defined on two-qudit system. However, the effects forming a PPOVM are not normalized in the
usual sense. We will demonstrate the usage of this formalism in discrimination problems by showing
that perfect channel discrimination is equivalent to a specific unambiguous state discrimination.
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Introduction. Born’s trace rule predicting the quantum
probabilities is the central object of quantum physics re-
lating quantum theory with quantum experiments [1, 2].
According to this probability rule any quantum exper-
iment is composed of two parts: preparation and mea-
surement. In quantum theory the preparation part is de-
scribed by the concept of quantum states represented by
density operators ̺, i.e. positive operators (̺ ≥ 0) nor-
malized to unity (Tr̺ = 1). The measurement devices
giving rise to outcomes xj are described by collections
of quantum effects Fj , that is, positive operators smaller
than identity (0 ≤ Fj ≤ I), and summing up to iden-
tity (

∑

j Fj = I). We say that these operators form a

positive operator valued measure (POVM). For a system
prepared in a state ̺ the probability of measuring the
outcome associated with an effect F is defined by Born’s
rule as p(F |̺) = Tr̺F .

Quantum process is an independent part of quantum
experiment that can be placed (in time) between all pos-
sible preparations and measurements. It is described by
a completely positive tracepreserving linear map [3], the
so-called quantum channel. Implementation of specific
quantum processes is one of the main goals of the area of
quantum information processing [4] aiming to run useful
quantum algorithms and simulations on quantum com-
puters.

All the problems (such as state estimation [5, 6, 7],
state discrimination [7, 8, 9], state comparison [10], etc.)
related to the identification of quantum states can be
mathematically formulated in the language of POVMs.
This concept is sufficient for our purposes despites the
precise description of a particular experimental setup is
not specified. The main aim of this paper is to introduce
a resembling mathematical framework for the description
of all possible measurements of quantum channels.

Measurements of channel parameters. Consider an un-
known quantum channel E acting on a d-dimensional
quantum system (qudit). The most general pro-
cess/channel measurement M consists of the following
three steps:

1. Preparation of a (test) state ̺j ∈ S(Hanc ⊗ H) of
Dj×d- dimensional system, thus, initially the test-
ing system is composed of a qudit and an ancillary
system of dimension Dj . The ancillary system can
be of different size for a different test state ̺j .

2. Application of an unknown process E on the qu-
dit and some known channel Tj,anc on the ancillary
quantum system.

3. A measurement Mj (given as a collection of pos-
itive operators, Fjk ≥ 0, summing up to identity
operator,

∑

k Fjk = I for all j) of the output state
̺′j = (Tj,anc ⊗ E)[̺j ] results in an outcome k with
a probability pjk(E) = Tr[Fjk̺

′
j ].

It follows that a general experiment measuring a pro-
cess E is associated with a collection of triples Mjk =
〈̺j , Tj,anc, Fjk〉 occurring with probabilities pjk defined
above. However, a channel Tj,anc can be considered as be-
ing a part of a preparation, or a measurement process, i.e.
the triples 〈̺j , Tj,anc, Fjk〉, 〈Tj,anc ⊗I[̺j ], Ianc, Fjk〉, and
〈̺j , Ianc, T

∗
j,anc ⊗ I[Fjk]〉, (where I is the identity quan-

tum channel, and T ∗
j,anc is defined via the duality relation

Tr{B†Tanc[A]} = Tr{(T ∗
anc[B])†A} holding for all opera-

tors A,B) define the same probabilities pjk(E). Without
the loss of generality we may assume that the ancilla sys-
tem evolves trivially, Tj,anc = Ianc for all j, hence, the
triples can be replaced by couples Mjk = 〈̺j , Fjk〉 occur-
ring with probabilities pjk(E) = Tr{(Ianc ⊗ E)[̺j ]Fjk}.

The following lemma is a version of the so-called Choi-
Jamiolkowski isomorphism [11, 12] relating qudit linear
maps with linear operators on d× d system.

Lemma 1. For arbitrary state of D × d system (̺ ∈
S(HD ⊗ Hd)) there exists a completely positive channel
R̺ : B(Hd) → B(HD) such that

(R̺ ⊗ I)[Ψ+] = ̺ ,

where Ψ+ = |Ψ+〉〈Ψ+| and |Ψ+〉 =
∑d

j=1 |j〉 ⊗ |j〉 is
an unnormalized maximally entangled quantum state on
d× d system.
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Proof. Consider a pure state ̺ = |φ〉〈φ| = Φ of a d×D-

dimensional system and |φ〉 =
∑d

j=1

∑D

α=1 Φαj |α〉 ⊗ |j〉.
Define an operator AΦ : Hd → HD acting as follows

AΦ ⊗ Id|Ψ+〉 = |Φ〉, i.e. Aφ|j〉 =
∑D

α=1 Φαj |α〉. We

can write Φ = (RΦ ⊗ I)[Ψ+] = (AΦ ⊗ Id)Ψ+(A†
Φ ⊗ Id),

where RΦ is a unique linear completely positive map,
because the expression of |Φ〉 in the basis {|α〉 ⊗ |j〉}
is unique. Generalization to an arbitrary mixed state
is straightforward. For ̺ =

∑

j λj |φj〉〈φj | we can de-

fine a map R̺ = RP

j λjΦj
=

∑

j λjRΦj
that maps the

maximally entangled state Ψ+ into ̺ = (R̺ ⊗ I)[Ψ+] =
∑

j λj(RΦj
⊗ I)[Ψ+] =

∑

j λjΦj . Different convex de-
compositions of ̺ into pure states define different Kraus
decompositions of the same completely positive map
R̺, hence, this map is unique. It is straightforward
to see that similar result holds for a general positive
operator F , that is, the transformation RF defined as
RF ⊗ I[Ψ+] = F is completely positive, too.

Using this lemma and the definition of the dual map
R∗
̺ the probability for a couple 〈̺, F 〉 of the test state

̺ and a measurement resulting in an outcome associated
with an effect F can be expressed as follows

p(E) = Tr{(Ianc ⊗ E)[̺]F}

= Tr{(R̺ ⊗ E)[Ψ+]F}

= Tr{(Ianc ⊗ E)[Ψ+](R∗
̺ ⊗ I)[F ]]}

= Tr{(Ianc ⊗ E)[Ψ+]M} .

Based on this calculation we see that an operator M =
(R∗

̺ ⊗ I)[F ] completely describes the considered process
measurement outcome associated with 〈̺, F 〉. Since both
the operations R̺,R

∗
̺ are completely positive, but not

necessarily trace-preserving, it follows that an operator
M = (R∗

̺ ⊗ I)[F ] is positive and M ≤ Id×d, that is, M
is an effect defined on a d × d-dimensional system that
we shall call a process/channel effect. The most general
process/channel measurement is defined as a collection of
process effects Mjk = pj(R

∗
̺j

⊗ I)[Fjk ] associated with

couples 〈pj̺j , Fjk〉 with
∑

k Fjk = ID×d for all j labeling
potentially different test states ̺j chosen with a prior
distribution pj.

Let us assume that the process is probed only by a
single test state ̺, i.e. Mk ↔ 〈̺, Fk〉. In such case
∑

kMk = (R∗
̺ ⊗ I)[

∑

k Fk] = (R∗
̺ ⊗ I)[ID×d]. Since

R̺[X ] =
∑

j λjAΦj
XA†

Φj
the action of the dual map

can be expressed as R∗
̺[X ] =

∑

j λjA
†
Φj
XAΦj

. Conse-

quently, we get that the following normalization condi-
tion holds

∑

k

Mk =
∑

j

λjA
†
Φj
AΦj

⊗ Id = (Tranc̺)
T ⊗ Id .

Thus, the process effects Mk form a positive operator
valued measure not necessarily normalized in the usual
sense, because

∑

kMk ≤ Id×d.
For a general process measurement (described by pro-

cess effects Mjk = pj(R
∗
̺j

⊗ I)[Fjk ]) it follows that

∑

jkMjk =
∑

j(pjTranc̺j)
T ⊗ Id = (Tranc̺)

T ⊗ Id,

where the operator ̺ =
∑

j pj̺j is the average test state.
Even if the test states are using different ancillas, it is
always possible to consider them as joint states of the
qudit and the largest of the ancilla systems. It follows
that the process measurement consisting of process ef-
fects Mjk ↔ 〈pj̺j , Fjk〉 can be understood as a process
measurement composed of Mjk ↔ 〈Ξ, |j〉〈j| ⊗ Fjk〉 with
a single test state Ξ =

∑

j pj |j〉〈j| ⊗ ̺j .
We have shown that each qudit channel measurement

can be associated with a process positive operator valued
measure (PPOVM), i.e. by a collection of effects Mα of
d× d-dimensional system summing up to ̺T ⊗ Id, where
̺ is a qudit quantum state. In the following we will prove
that the converse of this statement also holds.

Theorem 1. Each PPOVM can be implemented as a
process measurement.

Proof. Consider a PPOVM {Mα} with
∑

αMα = ̺T ⊗
Id. Our aim is to show that this PPOVM really corre-
sponds to a process measurement. As it was argued be-
fore we can restrict ourselves to a process measurement
using only a single test state Ξ such that TrancΞ = ̺.
Moreover, assuming that the test state is a pure state,

the question is whether Mα = (A†
Ξ ⊗ Id)Fα(AΞ ⊗ Id)

implies that

Fα = ([A†
Ξ]−1 ⊗ Id)Mα(A−1

Ξ ⊗ Id) ,

hence, whether the operators AΞ, A
†
Ξ are invertible. Let

r = rank̺ ≤ d and assume that Ξ is a pure state of a
qudit and an ancilla of the dimension r, hence, R∗

Ξ[X ] =

A†
ΞXAΞ and A†

ΞAΞ = (TrancΞ)T = ̺T . The support of
each operator Mα is a subset of the support of ̺T ⊗
I, i.e. both are defined on (r × d)-dimensional system.

Since rank(A†
ΞAΞ) = rank(AΞA

†
Ξ) = rankAΞ = rankA†

Ξ

it follows that operatorsAΞ, A
†
Ξ, ̺

T , ̺ have the same rank

(equal to r). Because the operators AΞ, A
†
Ξ act on r-

dimensional ancilla system (they have full rank) it follows
they are invertible. Consequently, the above equation
defines positive operators Fα forming a POVM, because
∑

α Fα = ([A†
Ξ]−1̺TA−1

Ξ ) ⊗ Id = Ir ⊗ Id.

To summarize, we have shown that arbitrary collec-
tion of process effects Mα forming PPOVM can be im-
plemented by using a pure state |Ξ〉 ∈ Hr ⊗ Hd such
that TrancΞ = ̺ and performing a POVM given by pos-

itive operators Fα = ([A†
Ξ]−1 ⊗ Id)Mα(A−1

Ξ ⊗ Id) with

AΞ =
√

̺T . This result allows us to abstract partic-
ular experimental realizations of process measurements
and employ the framework of PPOVM directly. In this
framework the qudit quantum channels are represented
by positive two-qudit operators ωE = I ⊗ E [Ψ+] satis-
fying TrωE = d and Tr2ωE = I. Let us denote the set
of all processes (process state space) by Sproc = {ω ∈
B+(H ⊗ H),Tr2ω = I,Trω = d}. This set is convex
and compact subset of the set of positive operators of
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trace d denoted as B+d(H ⊗H), which is isomorphic to
B+1(H⊗H) = S(H⊗H) (set of density matrices).

Maximally entangled probe. Consider that an unknown
qudit channel is probed by a (normalized) maximally en-
tangled state |ψ+〉 = 1√

d

∑

j |j〉 ⊗ |j〉. In this case the

mapping Rψ+
= 1

d
I, i.e. |ψ+〉〈ψ+| = 1

d
Ψ+. That is,

M = (R∗
ψ+

⊗I)[F ] = 1
d
F , where F is a two-qudit effect.

Considering a POVM consisting of effects F1, . . . , Fn the
corresponding PPOVM is composed of positive operators
Mj = 1

d
Fj .

Ancilla-free test states. In this case the qudit test state
̺ can be understood as being a factorized state of an an-
cilla and a qudit, i.e. Ω = ξ ⊗ ̺. The POVM effects
have the form Ianc ⊗ Fj and the corresponding process
effects are Mj = (R∗

Ω ⊗ I)[Ianc ⊗ Fj ] = ̺T ⊗ Fj . It
follows that if we want to perform an equivalent (defin-
ing the same PPOVM) process measurement with the
maximally entangled probe, the POVM consists of ef-
fects Xj = d̺T ⊗ Fj .

Informationally complete process tomography. A pro-
cess measurement {Mα} is called informationally com-
plete if for each quantum process E the probability distri-
bution pα(E) = Tr[ωEMα] is different. Thus the process
can be uniquely identified from the observed probability
distribution. This happens if and only if a linear span
of operators Mα contains the whole set of process states
Sproc.

Consider a qubit channel probed by a maximally en-
tangled state |ψ+〉 = 1√

2
(|00〉 + |11〉). Performing the

measurements of sharp observables σµ ⊗ σν (each with
the probability 1/9), where µ, ν = x, y, z. That is,
the POVM is composed of effects Fa,b = 1

9 |a〉〈a| ⊗
|b〉〈b| = 2Ma,b, where a, b = ±x,±y,±z. The states
| ± x〉, | ± y〉, | ± z〉 are the eigenvectors of σx, σy, σz as-
sociated with eigenvalues ±1, respectively. The set of
operators Ma,b is overcomplete and its span contains
the whole set of process states, i.e. it is an informa-
tionally complete PPOVM. Calculating the sum we find
that

∑

a,bMa,b = 1
2I2 ⊗ I2.

Alternatively, one of the simplest experimental imple-
mentations of an informationally complete process mea-
surement consists of the preparation of six test states
| ± x〉, | ± y〉, | ± z〉 distributed with the same probabil-
ity 1/6. The measurement of the output states is the
complete qubit state tomography measuring all three
Pauli operators σx, σy, σz , hence, it consists of effects
F±a = 1

3 |±a〉〈±a| (µ = x, y, z). Consequently, the whole
setup is described by PPOVM composed of operators
Mν,µ = 1

18 |ν〉〈ν|
T ⊗ |µ〉〈µ| with

∑

ν,µMν,µ = 1
2I2 ⊗ I2,

where ν, µ = ±x,±y,±z. Let us note that PPOVMs
{Mµ,ν} and {Ma,b} (described in the previous para-
graph) coincide, because (| ± x〉〈±x|)T = | ± x〉〈±x|,
(| ± y〉〈±y|)T = | ∓ y〉〈∓y|, (| ± z〉〈±z|)T = | ± z〉〈±z|,
where the transposition is performed with respect to ba-
sis | ± z〉.

Perfect discrimination. Two processes E1, E2 are per-
fectly distinguishable if there exists an experimental

setup such that in its single run the outcomes uniquely
identify the process. It corresponds to an existence of a
two-outcome PPOVM, M1 + M2 = ̺T ⊗ I, such that
p1(E1)p1(E2) = p2(E1)p2(E2) = 0. That is, the process
effect M1 is associated with the conclusion that the pro-
cess is E1, and the process effect M2 corresponds to
the conclusion E2. The conditions TrM1ωE2

= 0 and
TrM2ωE1

= 0 imply that supp[M1] ⊥ supp[ωE2
] and

supp[M2] ⊥ supp[ωE1
], where ωE1

and ωE2
are the corre-

sponding process states. Without any doubts the process
and state discrimination tasks are closely related and it
seems they are almost the same in the sense that process
discrimination problems are reducible to state discrimi-
nation problems. It is so indeed, but there is still one
important difference: PPOVMs are not normalized to
identity. As the consequence of this fact we cannot make
a conclusion that orthogonality of supports of ωE1

and
ωE2

is the necessary condition for perfect discrimination
of processes E1 and E2. In fact, there are process states
with non-orthogonal supports that can be perfectly dis-
criminated by means of PPOVM.

In particular, consider one of the channels being the
identity map (E1 = I) and second one transforming the
whole state space into a fixed pure state |0〉 (E2 = A0).
The corresponding operators ωI = Ψ+, ω0 = I ⊗ |0〉〈0|,
have non-orthogonal supports, i.e. if considered as states
they are not perfectly distinguishable. However, there
exists a very simple experimental procedure of channel
discrimination using the test state |1〉. Probing the iden-
tity the output state is |1〉, whereas probing the contrac-
tion A0 the output state is |0〉, i.e. which is orthogonal
to |1〉. A simple measurement (described by POVM ele-
ments |0〉〈0|, I − |0〉〈0|) tells us whether the channel was
I, or A0. The corresponding PPOVM consists of process
effects MI = |1〉〈1|⊗(I−|0〉〈0|) and M0 = |1〉〈1|⊗|0〉〈0|,
MI + M0 = |1〉〈1| ⊗ I. It is straightforward to verify
that TrMIωI = TrM0ω0 = 1.

The characterization of all channels that can be per-
fectly discriminated is beyond the scope of this Letter.
Instead we will provide qualitative arguments why the
orthogonality of supports is only sufficient, but not nec-
essary for perfect distinguishability of processes. In a
sense any PPOVM can be understood as a normalized
POVM (of two qudits states of trace d) if an effect
Mextra = Id ⊗ Id −

∑

αMα = (Id − ̺T ) ⊗ Id is added.
Because of the different normalization of states the prob-
abilities given by the trace relation are normalized to d
and we will use the term “rate” instead of “probability”.
In particular, the rate to get the extra outcome equals
TrωMextra = d− 1 for all process states ω. This “extra”
outcome is a fake outcome that is not really measured in
the process measurement, but formally it describes the
outcome of a process state measurement for which no
conclusion is made. That is, the perfect discrimination
of processes by means of PPOVM can be understood as
the special case of unambiguous discrimination of states
via POVM. The inconclusive result is associated with the
”extra” outcome added to PPOVM. And in such case the
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orthogonality of supports is not required. In particular,
the process states ω0, ωI (defined above) can be unam-
biguously discriminated.

Perfect discrimination of unitary channels. The dis-
crimination of unitary processes was already investigated
in several papers [13, 14, 15] and the solution is, in prin-
ciple, known. In the framework of PPOVMs the uni-
taries are associated with maximally entangled process
states |ωU 〉 = U ⊗ I|Ψ+〉. A pair of unitary channels
can be discriminated only if there exists an unambigu-
ous state discriminator of unnormalized maximally en-
tangled states ωU = |ωU 〉〈ωU | and ωV = |ωV 〉〈ωV |. Since
Mextra = (Id − ̺T ) ⊗ Id it is guaranteed that for incon-
clusive outcomes 〈ωU |Mextra|ωU 〉 = 〈ωV |Mextra|ωV 〉 =
d − 1, hence, the total failure rate reads Pfailure =
Tr[Mextra(pUωU + pV ωV )] = (d − 1). If the optimal
success rate of unambiguous state discrimination of two
maximally entangled states is strictly less than 1 the
corresponding unitary channels cannot be perfectly dis-
criminated, because Pfailure > d − 1 for all unambigu-
ous discriminators. For pure states the optimal failure
rate is given by the absolute value of the scalar product
[9], i.e. Pfailure = |〈ωU |ωV 〉|. It follows that whenever
TrU †V > d − 1 the pair of unitaries cannot be perfectly
discriminated.

The problem of perfect discrimination of two unitaries
is equivalent to the discrimination of a single unitary
channel and the identity channel, U, I. Process effects
MU ,MI are related to POVM consisting of two projec-
tors EI , EU via the relation M = (R∗

Ω⊗I)[E], where the
test state Ω can be chosen to be pure. Identity does not
affect this state and therefore EI = |Ω〉〈Ω| = Ω is the
effect identifying the identity operator. Consequently,
EU = I − Ω is associated with the unitary channel U .
The no-error condition 〈ωU |MI |ωU 〉 = 0 and the defini-

tion of MI = (A†
Ω ⊗ I)EI(AΩ ⊗ I) result in identity

0 = |〈Ψ+|A
†
ΩAΩ ⊗ U |Ψ+〉|

2 = |〈Ω|I ⊗ U |Ω〉|2 ,

hence, the existence of perfect discrimination is guaran-
teed if and only if there exists a pure state Ω such that
〈Ω|I ⊗ U |Ω〉 vanishes. As it was argued in [13, 14, 15]
this is possible if and only if zero belongs to a convex

hull of eigenvalues of U distributed on a unit circle in the
complex plane. For a general pair of unitaries U, V the
problem is reduced to the analysis of eigenvalues of UV †.

In the qubit case each unitary has two eigenvalues,
thus the perfect discrimination of a pair I, U requires
that U = eiη|ϕ〉〈ϕ| + ei(η+π)|ϕ⊥〉〈ϕ⊥|, i.e. TrU = 0.
Consequently, qubit unitary channels U, V can be per-
fectly discriminated if and only if they are orthogonal.
However, such statement no longer holds for qudits and
as it was shown in [13] for an arbitrary pair of (qudit)
unitary processes U, V there exists a finite n such that
U⊗n and V ⊗n can be perfectly discriminated, i.e. the
distinguishability is not equivalent to the orthogonality.

Conclusions. The goal of this paper has been to
introduce a mathematical framework for the descrip-
tion of measurements on quantum processes. This idea
led us to the definition of the so-called process POVM
(PPOVM) defined as a collection of effects M1, . . . ,Mn

(0 ≤ Mj ≤ Id⊗Id), such that
∑

j Mj = ̺T⊗Id, where ̺

is an arbitrary single qudit state and T denotes its trans-
position. In this framework the channels are associated
with positive operators of d× d system with trace equal
to d. An arbitrary process measurement can be described
by PPOVMs and we have shown that also each PPOVM
can be implemented experimentally although the exper-
imental realization is not unique. This ambiguity is one
of important open problems left for further investigation.

The framework of PPOVMs provides us with a pow-
erful tool for different process estimation problems [13,
14, 15, 16, 17, 18], mostly in answering the optimality
questions. Moreover, the concepts originally developed
for POVMs can be directly translated and applied for
PPOVMs as it was demonstrated in the case of infor-
mational completeness of PPOVMs. Using the PPOVM
framework we have argued that perfect discrimination
problems for quantum channels are equivalent to very
specific unambiguous discrimination problems of quan-
tum states.
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