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APPROXIMATE JOINT MEASURABILITY OF SPIN

ALONG TWO DIRECTIONS

TEIKO HEINOSAARI, PETER STANO, AND DANIEL REITZNER

Abstract. We study the existence of jointly measurable POVM approx-
imations to two non-commuting sharp spin observables. We compare two
different ways to specify optimal approximations.

1. Introduction

Joint measurability for sharp observables is equivalent to the commutativ-
ity of the corresponding selfadjoint operators. The question that we study
here is the following: having two non-commuting sharp spin observables
(which are thus not jointly measurable), what is the closest approximation,
in the form of two positive operator valued measures (POVMs), such that
these two POVMs are jointly measurable. We show when such approxima-
tions exist as regions of allowed points in a suitably chosen space of param-
eters. This approach allows us, for example, to quantify how far we have to
go from the original sharp observables to get jointly measurable approxima-
tions. Futhermore, optimal approximations can be identified as those laying
on the boundary of such regions.

2. Statement of the problem

Let P and Q be two observables corresponding to sharp measurements
of spin in the directions p and q, respectively. They are described by self-
adjoint operators σp ≡ p · σ and σq ≡ q · σ, with ‖p‖ = ‖q‖ = 1. Alter-
natively, and for our purposes more conveniently, these observables can be
described by two outcome PVMs (projection valued measures). Then P is
described by a mapping 1 7→ P , −1 7→ I − P with P being the projection
P = 1

2
(I + p · σ), and Q is similarly described by a PVM corresponding to

projections Q = 1

2
(I + q · σ) and I −Q. We denote by θ the angle between

p and q and we assume that 0 < θ ≤ 90◦.
A joint measurement for P and Q is defined as a measurement with

four outcomes corresponding to four possible pairs of P and Q outcomes,
(±1,±1). In addition, it is required that the measurement outcome statistics
for P (Q) measured alone can be obtained from the joint measurement by dis-
regarding (summing through all possible) outcomes for Q (P). Thus, P and
Q are jointly measurable if there exist four operators G++, G+−, G−+, G−−
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Figure 1. The observables P and Q are parametrized by unit vectors p

and q making an angle θ. Two jointly measurable POVM approximations
A and B are parametrized by vectors a and b. The smaller is the distance
d(P ,A), the better A approximates P .

such that

(1) P = G++ +G+− , Q = G++ +G−+ .

These operators must form a POVM, hence they are positive and satisfy
∑

ij Gij = I. It is well known that P and Q are jointly measurable if and
only if P and Q commute, which is the case when p = ±q. Thus, if p 6= ±q,
a joint measurement can only approximate P and Q.

We are looking for observables A and B such that they are jointly mea-
surable and can be taken as approximations to P and Q. An observable A
with two outcomes ±1 is described by a POVM 1 7→ A, −1 7→ I −A, where
A is an operator on C2 satisfying O ≤ A ≤ I. It can be parametrized by
four real parameters,

(2) A =
1

2
(αI + a · σ), ‖a‖ ≤ α ≤ 2 − ‖a‖ .

If α = 1, then the condition in (2) reduces to ‖a‖ ≤ 1. In a similar way, B
is described by a POVM corresponding to operator B = 1

2
(βI + b · σ) with

‖b‖ ≤ β ≤ 2 − ‖b‖.
For sharp observables joint measurability is equivalent to commutativity.

The decision whether two observables are jointly measurable is, however,
more involved for observables in general. A general characterization of joint
measurability of A and B is, up to authors knowledge, an open problem.
However, for the task under consideration the following result [1] of Busch
will be enough: if α = β = 1, then the necessary and sufficient condition for
A and B to be jointly measurable is

(3) ‖a− b‖ + ‖a + b‖ ≤ 2 .

If α and β are not equal to 1, this condition is still necessary for joint mea-
surability [2].

We will quantify how well A approximates P using two different distances
d(P,A) in the next sections. We then solve the following problem: for a
fixed distance1 d(P,A), find the smallest possible distance d(Q,B) such that
A and B are jointly measurable. The task is summarized in Fig. 1.

1Observable A is not fixed - we allow all A which have the fixed distance from P .
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3. Statistical distance

One possible way to quantify the distance between A and P is to compare
the probabilities that these observables give for states. There are at least
two reasonable choices: we can calculate the worst possible deviation or the
average deviation between the probability distributions on the outcomes. For
the worst possible deviation we get

(4) supρ | tr [ρP ] − tr [ρA] |= 1

2
‖p− a‖ + 1

2
|1 − α| .

On the other hand, the average deviation can be calculated using pure states
ψr parametrized by the points r in the unit sphere in R3, and we get2

(5)
1

4π

∫

r∈S2

| 〈ψr |Pψr 〉 − 〈ψr |Aψr 〉 | dr =
1

4
‖p− a‖ +

(1 − α)2

4 ‖p − a‖
.

Clearly, in both cases the choice α = 1 makes the distance smallest in-
dependently on a. Moreover, as shown in Ref. [2] the joint measurability
condition for A and B is the least restrictive when α = β = 1. Therefore, we
can restrict ourselves to this case in the search for optimal approximations
and in the rest of this section we set α = β = 1 .

With α = 1 the two different ways (4) and (5) to compare A to P give the
same value, up to a factor 1

2
. As the scale of the distance is not important

for our purposes, we define

(6) ds(P,A) :=
1

2
‖p− a‖ .

With the definition of distance in Eq. (6), the possible jointly measurable
approximations to sharp observables P, Q are shown in Fig. 2. Taking the
case of θ = 90◦ first, the shaded area represents points where jointly measur-
able approximations A and B exist, with the distance from P and Q given on
the x and y axis, respectively. The non-shaded area in the left down corner
represents points where the requirement on the approximation is too high
such that no jointly measurable approximations A and B exist. Moving from
the left down corner to the right we relax our requirements on how closely
A approximates P until finaly we reach the boundary of the shaded region
where some jointly measurable approximations exist. Similarly, moving up
in the figure, we allow less strict approximation for Q. The boundary of the
shaded area thus represents the optimal choice of jointly measurable approx-
imations. Moving along the boundary curve one sees an expected trade off –
if we require A to better approximate P, we have to loosen our requirements
on B to preserve joint measurability. We also give boundary curves for the
cases θ = 60◦ and 30◦. All these curves have been calculated numerically.
Again, the region up right from these boundaries is the area where jointly
measurable approximations exist. With decreasing θ, the boundary moves
towards the left down corner, which we could interpret as the two sharp

2For p = a the right hand side of (5) is 1

2
|1 − α| and the following analysis still holds.
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Figure 2. Curves represent boundaries for jointly measurable approxi-
mations A and B of P and Q for different choices of angle θ between the
vectors p and q. The gray-shaded region represents the area where there
exist jointly measurable pairs A and B for θ = 90◦.

observables P and Q becoming more easily jointly measurable. In the limit
case θ = 0◦, the whole area would be shaded – we can find jointly measurable
approximations with any desirable accuracy since the two sharp observables
P and Q are then the same.

The same problem has been studied analytically in Ref. [2] where the op-
timal solution was found in the case ds(P,A) = ds(Q,B); the corresponding
points in Fig. 2 are denoted by black dots. It was proved that the optimal
A and B are then given by

(7) a = λ
p + q

‖p + q‖
+ (1 − λ)

p− q

‖p− q‖
, b = λ

p + q

‖p + q‖
− (1 − λ)

p − q

‖p − q‖
,

where λ = 1

2
(1 + cos θ

2
− sin θ

2
). If θ = 90◦, then a = 1√

2
p and b = 1√

2
q.

Otherwise a and b are not parallel to p and q but they are somewhere
between them as sketched in Fig.1.

4. Root-mean-square noise

In a series of recent articles [3, 4, 5] Ozawa has investigated noise and
disturbance in quantum measurements. Assume that we try to measure an
observable P (described by a selfadjoint operator σp) but we actually perform
a measurement of A. A precise measurement of P would mean that A = P.
Otherwise it is thought that we have a measurement of P with some noise.
Ozawa defines the so-called root-mean-square noise ǫrms by the following
formula [3]:

(8) ǫrms(P,A; ρ) := tr
[(

A[2] −A[1]2 + (σp −A[1])2
)

ρ
]

1

2 .
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Figure 3. For a fixed distance drms(P ,A), the smallest distance
drms(Q,B) is obtained when a = b is the unit vector shown in the picture.

Here ρ is an input state and A[1] and A[2] are the first and the second
moment operators of A, respectively.

Let now A be a two outcome observable with outcomes ±1 and A as in
(2). A short calculation shows that if α = 1 then ǫrms(P,A; ρ) is a state
independent number and we can define

(9) drms(P,A) := ǫrms(P,A; ρ) =
√

2(1 − a · p) .

Generally (i.e. α 6= 1) we define drms to be the worst deviation over all input
states. However, it can be shown that the optimal solutions are to be found
among the operators having α = 1, so we again restrict our study to this
case.

Assume that drms(P,A) is fixed and we are looking for the smallest possible
number drms(Q,B) such that A and B are jointly measurable. According to
Eq. (9), vectors a (b) ending on the line perpendicular to p (q) have the
same distance drms(P,A) (drms(Q,B)). Going through all the possible pairs
a and b satisfying the joint measurability condition (3), it can be shown that
the optimal situation corresponds to the choice a = b, where a is a unit
vector and the angle ω between a and p is ω = arccos(1 − 1

2
drms(P,A)2);

see Fig. 3. This solution means that in order to perform an optimal joint
measurement, we measure spin in the direction a = b. This is then regarded
as an approximate version of both σp and σq. Combinations of drms(P,A)
and drms(Q,B), for which jointly measurable approximations A and B exist,
are shown in Fig. 4.

The difference between the conclusions obtained here and in Section 3
can be explained by observing that while ds quantifies the accuracy of how
A approximates P, drms contains also a term which depends only on A.
Indeed,

(10) drms(P,A)2 = ‖p− a‖2 + 1 − ‖a‖2
.

The first part ‖p− a‖2 is related to the statistical distance ds while the
second part 1 − ‖a‖2 can be interpreted as a quantification of the intrinsic
unsharpness of A.



APPROXIMATE JOINT MEASURABILITY OF SPIN ALONG TWO DIRECTIONS 6

Figure 4. Curves represent boundaries for jointly measurable approxi-
mations A and B of P and Q for different choices of angle θ between the
vectors p and q. The gray-shaded region represents the area where there
exist jointly measurable pairs A and B for θ = 90◦.
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