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We investigate dynamics of semi-quantal spin systems in which quantum bits are attached to clas-
sically and possibly stochastically moving classical particles. The interaction between the quantum
bits takes place when the respective classical particles get close to each other in space. We find
that with Heisenberg XX couplings quantum homogenization takes place after a time long enough,
regardless of the details of the underlying classical dynamics. This is accompanied by the develop-
ment of a stationary bipartite entanglement. If the information on the details of the motion of a
stochastic classical system is disregarded, the stationary state of the whole quantum subsystem is
found to be a complete mixture in the studied cases, though the transients depend on the properties
of the classical motion.
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I. INTRODUCTION

Quantum mechanics provides the best known descrip-
tion of microscopic physical systems. In most of the
cases, however, the system to be described is a part of
a larger system, its environment, and these interact. As
a result there are correlations, usually both of classical
and quantum nature, developing between them. From
the system’s point of view this results in a modification
of the behavior which usually leads to the loss of the
very quantum mechanical features. This phenomenon is
referred to as a decoherence.

The study of decoherence leads to the understanding of
mesoscopic and macroscopic systems, that is, the emer-
gence of classical behavior. In addition, decoherence con-
stitutes the main obstacle of exploiting the quantum me-
chanical nature of system in applications such as quan-
tum information processing. The mathematical descrip-
tion of decoherence aims at the derivation of the sys-
tem’s dynamics without the detailed description of its
environment. In many of the cases this is done based on
the full description of the system and its environment,
which are realistic physical systems, by applying several
approximations. In quantum optics, for instance, the de-
coherence of a single mode of the electromagnetic field is
described by taking into account the interaction of the
infinite set of other field modes by perturbation theory
and the Born and Markov approximations. The result is
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a Lindblad master equation for the density operator of
the system.

Besides of the study of ”real” physical systems, the in-
troduction of simplified models is of some use. These are
the microscopic models of decoherence. In this case the
aim is to give a detailed understanding of the process of
decoherence via a more detailed description of the system
and the environment, which is feasible either analytically
or numerically. Some of such models address the deco-
herence of a one or a few two-level systems (quantum
bits) in the presence of additional quantum bits, that
is, a spin-bath environment. Besides its simplicity, this
choice is motivated by the relevance in quantum com-
puting and the relation to real-world scenarios such as
two-level atoms or solid-state systems. Such models bear
experimental relevance in some cases and many of them
can be implemented with cold bosons on optical lattices,
as pointed out by Rossini et al. [1] recently.

There are several analytically solvable and physically
realistic models of spin baths, such as e.g. the Tessieri-
Wilkie model [2], in which the role of the interactions
amongst the quantum bits of the environment is appar-
ent. The issue of the interaction between the environ-
ment spins is studied in detail by Dawson et al. [3],
who point out the role of the monogamy of entangle-
ment as described by the Coffman-Kundu-Wootters in-
equalities [4, 5] in the decoherence features. In a very
recent publication Camalet and Chitra [6] have studied
the decoherence of a qubit due to the presence of ran-
dom interactions with a spin bath. They point out the
non-Markovian behavior at low temperatures as well as
the role of the intra-environment interactions. Piñeda
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et al. [7] have studied the decoherence of two non-
interacting qubits in the framework of random matrix
theory in very detail.

An important class of microscopic models is that of
quantum homogenization [8, 9]. An environment con-
sisting of many qubits is considered, each in the same
single-particle state ̺ (Though the global state of the
environment may be a pure one assuming the presence
of initial correlations in the environment.). The system
quantum bit is initially in an arbitrary state σ. The in-
teraction between the quantum bits is defined by a two-
qubit quantum gate, the partial swap gate generated by
a Heisenberg-XXX (that is, the isotropic Heisenberg) in-
teraction. In its simplest formulation quantum homoge-
nization is a collision-type model: the system qubit in-
teracts with the reservoir qubits one-by-one. (Note that
a collision-based model with a qubit as a system and a
classical field as a reservoir was used by Diósi et al. [10]
recently to reveal the relation between thermodynamical
and information theoretic entropy.) The aim of the model
is to demonstrate that in this framework the state of the
system quantum bit and each reservoir quantum bit will
evolve infinitesimally close to each other and also to the
initial state ̺ of the reservoir. This process is rather
similar to the thermalization in classical thermodynam-
ics: the temperature of a small system will become close
to the original temperature of a large environment, while
this latter does not change significantly. For qubits the
single-qubit density operator plays the role of the ”tem-
perature”, and qualitatively the same situation arises.
The evolution of the system qubit is Markovian described
by a discrete semigroup which is a stroboscopic image of
a continuous-time Markovian evolution. It is also shown
that a distributed pairwise entanglement arises in the
system which tends to a stationary value and saturates
the Coffman-Kundu-Wootters inequalities [11]. The pro-
cess is basis independent (or covariant) due to the nature
of the partial swap operation, thus it works for arbitrary
initial system and reservoir states. The partial swap is
the only gate with this property.

The model of quantum homogenization was further
generalized to include pairwise interactions within the
reservoir. Assuming that at any time step a randomly
chosen pair of qubits (system or reservoir) can interact,
one obtains a Markovian evolution of the whole system
again. However due to the intra-environment interac-
tions, the evolution of the single qubits is not Markovian
anymore. It was found that for an actual sequence of
interactions, the state of each qubit will fluctuate around
the one obtained by the collision-based homogenization.
The fluctuations appear to decrease with the growing size
of environment. If one simulates many actual evolutions
and constructs an effective density operator for each time
step, this will show “genuine” homogenization. The same
holds for time-averaged states. The model with a very
small (i.e. two-qubit) reservoir was recently studied by
Benenti and Palma [12] who have found that irreversibil-
ity can emerge even in this case, after time-averaging.

The stochastic homogenization model is a special case
of a more general scenario termed as a semi-quantal spin
gas model. In this case a set of classical particles (e.g.
classical atoms) is considered to move according to a cer-
tain model, e.g. an ideal Boltzmann gas. Each particle
has an internal degree of freedom which is considered to
be quantum mechanical. This can be a half spin or two
possible hyperfine states, termed as a quantum bit in
what follows. The quantum mechanical part of the sys-
tem is thus multipartite, consisting of the quantum bits
attached to the respective classical particles. This essen-
tially models any system in which quantum bits are at-
tached to addressable and distinguishable entities which
are allowed to move in space for some reason. The state of
the quantum system has no effect on the classical motion
whatsoever. On the other hand, if some of the particles
fulfill a certain collision condition, e.g. they collide in the
case of the Boltzmann gas model, a prescribed quantum
gate acts on the respective qubits.

Semi-quantal spin gases were studied by Briegel et
al. [13]. Besides the Boltzmann gas as an underlying
classical model, they have considered a lattice gas with
on-site exclusion, which shows a spatially correlated be-
havior. In this case the particles are located on a discrete
lattice and they can hop to the neighboring empty sites
stochastically. The collision condition is that the two
particles should be at neighboring sites. In Ref. [13] an
Ising coupling is considered between the respective quan-
tum bits. For a particular evolution of the microstate of
the classical system one can calculate the evolution of the
quantum mechanical one, given its initial state. In the
case of the Boltzmann gas, however, only the macrostate
of the classical system is known, while the lattice gas
moves stochastically by nature. Thus given a pure quan-
tum state as initial condition, one obtains a pure state
depending on time which has random parameters. Due
to the advantageous properties of the pairwise Ising cou-
plings (e.g. they commute), for certain initial states it is
possible to calculate the density operator of an arbitrary
subsystem of the rather big quantum mechanical system.
In Ref. [13] the authors study various aspect of the aris-
ing non-Markovian evolution including decoherence and
entanglement behavior.

Motivated by the above summarized results we intend
to consider further microscopic models of decoherence
and address additional issues. In particular we will con-
sider the following classical models:

• completely random pairwise interactions,

• classical particles moving in a three-dimensional
box, colliding elastically with each other and the
wall (the “billiard ball” model), the qubits interact
if the respective particles collide,

• discrete sites along a line, on which particles
can hop to the neighboring empty sites (one-
dimensional lattice gas), the qubits interact if the
respective particles are next to each other.
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Our one-dimensional lattice gas can be imagined as a
spin chain with vacancies where the classical particles
carrying the spins can jump to a vacancy. Since a similar
dynamics is present in any solid for thermodynamical
stability reasons, we believe that this model might bear
some experimental relevance. From the point of view
of decoherence models, we are able to describe a very
strongly self-interacting reservoir. We will consider the
Heisenberg-XX and the Ising Hamiltonians as well. We
perform computer simulations of the system to deduce
our results.

First we will consider a given particular evolution of
the classical system and Heisenberg-XX type couplings.
This choice of the Hamiltonian is motivated by the pre-
vious studies of quantum homogenization. In the case of
the billiard ball model the classical trajectory is uniquely
determined by the initial conditions for the classical sys-
tem while for stochastic dynamics it is generated by ran-
dom deviates. We seek for quantum homogenization and
find that it indeed appears for all the classical dynam-
ics after a time long enough. The main conclusion will
be that the characteristics of the classical evolution do
not play a relevant role in the homogenization, that is,
in the state of a single-qubit subsystem. We also show
that there is a distributed bipartite entanglement in the
system.

Another possible attitude in the case of the stochas-
tic evolutions is that one ignores the information on the
actual classical motion. This loss of information results
in the increasing entropy of the state of the quantum
mechanical subsystem. We will study the so-arising de-
coherence in detail, both for Ising and Heisenberg-XX
couplings. We show that it leads to a completely mixed
state in the accessible part of the Hilbert space rather
quickly, for all the considered models.

This paper is organized as follows: in Section II we
consider individual evolutions and study the behavior
of quantum homogenization. In Section III we consider
the dynamics of the effective density matrix of the whole
quantum subsystem, built up as the convex combination
of the system’s state in case of different particular evolu-
tions. In Section IV the results are summarized and the
conclusions are drawn.

II. INDIVIDUAL TRAJECTORIES: FROM

SPIN-CHAINS TO HOMOGENIZATION MODELS

In this Section we seek for generalizations of the quan-
tum homogenization models. In the already studied ver-
sions of these, a set of qubits is considered, one of which
plays the role of the system while the others play the
role of the environment. The environment qubits are ini-
tially in a state ̺, while the system qubit is in another
arbitrary state σ. The interactions are assumed to be bi-
partite: in each time step a chosen pair of two quantum
bits interacts via a partial swap quantum gate which can
be written, up to an irrelevant phase factor, as

Upswap(η) = exp
(

−iηĤ(XXX)
)

, (1)

where

H(XXX) = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz (2)

is the Heisenberg XXX interaction. Depending on the
model the reservoir qubit interacts with the reservoir par-
ticles one-by-one once, or randomly chosen pairs will in-
teract. Finally, all the single-qubit density operators, de-
scribing either the state of the system qubit or any of the
reservoir qubits will be approximately equal: the state of
the system qubit will be “diluted” in its environment.

Instead of H(XXX) let us consider a pairwise interaction
described by the Heisenberg XX Hamiltonian

H(XX) = σx ⊗ σx + σy ⊗ σy. (3)

The motivation for this choice is twofold. First, these
kind of couplings play an important role in quantum state
transfer in spin systems [14]. Secondly, the evolution gen-
erated by this pairwise Hamiltonian between any config-
uration of pairs has an invariant subspace spanned by the
vectors

|k〉 = |0102 . . . 0k−11k0k+1 . . . 0N〉, (4)

thus with the initial state in Eq. (6), that is, |1〉, the state
of the system at time t will be a superposition of the vec-
tors in Eq. (4) with different values of k. (Throughout
this paper we will denote the elements of the computa-
tional basis on the Hilbert-space of a qubit by |0〉 and |1〉,
with the convention σz = |0〉〈0|−|1〉〈1〉.) In this basis the
Hamiltonian in Eq. (3) has a rather intuitive form. If the
k-th and l-th qubit is coupled, the only nonzero matrix
elements are 〈k|H(XX)|l〉 = 〈l|H(XX)|k〉 = 2. We assume
for the moment that in each time step a randomly chosen
pair of quantum bits interact via this coupling, thus we
apply the gate

UXX(η) = exp
(

−iηĤ(XX)
)

. (5)

As an initial state let us consider

|Ψ(t = 0)〉 = |1〉. (6)

where the first qubit is considered to model the system,
while the others constitute the reservoir.

If the state of the system is within the subspace in ar-
gument, described by the density matrix ̺k,k′ expressed
in the basis in Eq. (4), the density operator of the k-
th particle is diagonal in the computational basis and it
reads

̺(k) = diag(1 − pk, pk), where pk = ̺k,k. (7)

Here pk is the probability of finding the k-th qubit in
the state |1〉 in a projective measurement in the com-
putational basis. Another quantity to consider is the
concurrence, which is used prevalently to quantify the
entanglement of two quantum bits:



4

Ck,k′ = min(0, λ1 − λ2 − λ3 − λ3), λi = eig(

√

√

̺(k,k′) ˜̺(k,k′)
√

̺(k,k′)), (8)

where ˜̺(k,k′) = σy ⊗ σy̺(k,k′)∗σy ⊗ σy is the Wootters-

tilde and ̺(k,k′)∗ is the transpose of ̺(k,k′), the density
matrix of qubits k and k′, in the computational basis.
In the subspace spanned by the vectors in Eq. (4) this is
simply twice the modulus of the coherences (off-diagonal
matrix elements) of the system’s density matrix,

Ck,k′ = 2|̺k,k′ |, (9)

as it can be verified by calculating the bipartite density
matrix and substituting it to Eq. (8).

Let us return to the evolution |Ψ(t)〉 with the initial
condition |Ψ(t = 0)〉 = |1〉, under the application of the
quantum gate in Eq. (5) on a randomly chosen pair of
qubits in each step. As a degree of inhomogeneity of the
system we consider the square of the standard deviation
of the pk-s in Eq. (7),

σ2(t) = 〈p2
k〉k − 〈pk〉

2
k, (10)

where 〈. . .〉k stands for averaging over the particles. The
smaller it is, the more homogeneous the system will be-
come from the point of view of single particles. This is
plotted in Fig. 1 (Upper figure, curve A). Though the
evolution shows some stochastic features due to the na-
ture of the interaction sequence, after a time long enough
the system becomes homogeneous. The mechanism of the
homogenization is similar to the already studied models
of stochastic homogenization.

It is also interesting to consider the quantum corre-
lations generated during the evolution. In Refs. [4, 15]
it was shown that the states which the initial state |1〉
evolve into during the dynamics generated by Heisenberg
XX couplings have bipartite entanglement only. Let us
quantify this in terms of the sum of the concurrences

Ctot(t) =
∑

k<k′

Ck,k′(t), (11)

which therefore provides full information on the net
amount of quantum correlations. As it can be seen in
Fig. 1 (Lower figure, curve A), this grows and then fluc-
tuates around a stationary value. This is how the deco-
herence of single qubits arises in this system.

Spin chains with vacancies

Let us consider spins aligned along a chain with peri-
odic boundary conditions. Let the interaction be defined
at the Hamiltonian level as the sum of nearest-neighbor
XX interactions, with periodic boundary conditions as
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FIG. 1: (color online) Evolution of the degree of inhomogene-
ity in Eq. (10) (upper figure) and the sum of the pairwise
concurrences in Eq. (11) (lower figure) for different scenarios.
A: random pairwise interactions, B: one-dimensional diffusive
gas with 150 sites, C: one-dimensional diffusive gas with 200
sites. Only the values at every 100th time step are plotted,
and the data are connected with lines to guide the eye. There
are N = 100 particles considered, the interaction strength
parameter in Eq. (5) and Eq. (13) is η = 0.1. Repeated cal-
culations of the stochastic models give figures with different
details but of the same character.

usual in statistical physics:

H(chain) =
∑

k

H
(XX)
k,k+1. (12)

Consider the dynamics generated by this Hamiltonian.
To be comparable with the discrete-time models, we con-
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FIG. 2: (color online) “Propagation of the disturbance” in a
usual Heisenberg XX chain of 100 quantum bits, with peri-
odic boundary conditions. Initially the qubit in the middle is
in the state |1〉 while all the others are in the state |0〉 (that is,
initial state is |50〉). The probability pk(t) in Eq. (7) of find-
ing the k-th particle in the state |1〉 is plotted. The values
are truncated at pk(t) = 0.2 to make the detailed structure
more visible. The interaction strength in Eq. (13) is η = 0.1.
Notice the appearance of edge effects around the 100-th time
step.

sider the repeated application of

U(η) = exp
(

−iηH(chain)
)

(13)

to the initial state which is again considered to be |1〉.
This results in a kind of “propagation of the distur-
bance”, as it can be seen in Fig. 2, where the pk(t)-s
of Eq. (7) are plotted against k and t. As the qubits are
aligned to a chain in this case, the value of k describes
a kind of spatial position of the qubit in the chain. The
propagation is a kind of broadening, but it shows inter-
ference stripes reflecting the quantum mechanical nature
of the system.

The question arises if a kind of homogenization effect
appears even in this very coherent scenario. Therefore
we consider again the time evolution of the degree of in-
homogeneity in Eq. (10), which is plotted in Fig 3. It
appears that the system becomes homogeneous in a very
short time from the point of view of the single-particle
density operators. Though the monotonicity of the curve
is slightly disturbed by the edge effects due to the finite
size of the system (compare Figs. 2 and 3), even these
do not significantly alter the behavior. This kind of co-
herent homogenization has a rather clear interpretation:
since the initial “disturbance” causes a broadening and
the state has to remain normalized, the disturbance is
diluted along the chain like water waves generated by a
single drop. Note that since there are many particles
taking part in the process, the homogenization is much
faster than in the case when it is due to pairwise inter-
actions. In Fig 3 we have also plotted the time evolution
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FIG. 3: (color online) Evolution of the degree of inhomogene-
ity in Eq. (10) and the sum of the pairwise concurrences in
Eq. (11) for the same situation as in Fig. 2, for a Heisenberg-
XX chain.

of the net concurrence defined in Eq. (11). Note that it
grows monotonously till the edge effects appear.

In order to interpolate between the stochastic homog-
enization and the coherent one, we consider now a one-
dimensional semi-quantal spin gas model with random
classical dynamics. Let us consider N classical particles
arranged on a chain of length L with periodic bound-
ary conditions. A configuration of the particles is given
by specifying their position. The sites are labeled by
l = 1 . . . L. Thus the specification of a position l(k) for
each particle k = 1 . . .N defines a configuration of the
classical part of the system. Initially the system is de-
scribed by a fixed configuration (l(k))(0). The evolution
of the system is stochastic and we consider discrete time
steps t = 0, 1, 2, . . .. The evolution is defined in terms of
a probability transition matrix P(l(k))(t)|(l′(k))(t+1) which
gives the probability that a configuration l(k) at time t

evolves into l′(k) at time t + 1. We will consider Markov
chains only, thus the matrix P will be independent of
time and the previous states of the system,

P(l(k))(t)|(l′(k))(t+1) = P(l(k))|(l′(k)) (14)

for all t. Actually we will consider the following evolu-
tion: at each time step a random particle and a random
direction is chosen. If the target site is empty, the par-
ticle moves there. In this case the probability transition
matrix in Eq. (14) is symmetric, thus it describes a dou-
bly stochastic Markov chain. These are known to have
a single stationary probability distribution which is uni-
form. Starting the system in an arbitrary configuration,
after a time long enough all the configurations can be
found with equal probability. Let us remark that though
the evolution of the system is Markovian, any of its sub-
systems evolve in a non-Markovian way as the rest of the
system acts as a memory.

The quantum mechanical part of the system is consid-
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ered to be in a pure state |Ψ0〉 at t = 0. In each (discrete)
time step there is an interaction Hamiltonian which de-
pends on the classical configuration. In the case of the
discrete classical model we have

H(t) =
∑

<k,k′>t

H(k,k′) , (15)

where < k, k′ >t means that the particles k and k′ are
neighbors at time t, while H(k,k′) is a chosen bipar-
tite qubit interaction, in particular the Heisenberg-XX
Hamiltonian in Eq (3) in this Section. Note that in this
case the Hamiltonian in Eq. (15) is simply twice the adja-
cency matrix of the actual configuration of the particles.
The evolution is given by

|Ψ(t + 1)〉 = exp(−iηH(t))|Ψ(t)〉, (16)

where η is the parameter describing the coupling
strength. Though the particular value of η affects the
fluctuations of the studied quantities as well as the speed
of the transients, it did not affect the main features of
the behaviour in our simulations. Therefore we present
results where η has a fixed arbitrary value. However, spe-
cial values of η for certain Hamiltonians might cause spe-
cial behaviour, which would be a possible topic of further
studies. The so defined evolution, which is the subject
of the present study, is a sequence of unitary evolution
steps where the actual unitary step is determined by the
state of the underlying classical Markov chain.

Looking at the evolution of pk(t) in Eq. (7) which is
plotted in Fig. 4 we find that there is again a propaga-
tion kind of phenomenon, but it reflects the randomness
of the classical motion. The disturbance may propagate
in the cluster but it is reflected by the vacancies. These
reflections slow down the propagation and make it rather
noisy. If we consider the evolution of Eq. (10), which is
plotted in Fig. 1 (Upper figure, curves B and C with
different particle densities), we find that even though it
shows significant random oscillations, it has a clear ten-
dency of homogenization. Also, the behavior of the net
concurrence shows a growing tendency, see Fig. 1 (Lower
figure, curves B and C), though it is rather oscillatory
and the growth depends highly on the details of the clas-
sical evolution.

The billiard-ball model

Next we turn our attention to another similar model.
Assume that each of the quantum bits is assigned to a
(ball-shaped) particle of a finite diameter and mass mov-
ing classically in three dimensions. For each evolution,
a classical initial condition for the positions rk and mo-
menta pk is generated, and the classical dynamics of the
system is solved. The initial positions are drawn from
a uniform (within the three-dimensional region given by
the containing box dimensions reduced by the perimeter
of the balls on each end of the three coordinate inter-
vals) distribution for the ball origins in three dimensions.
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FIG. 4: (color online) “Propagation of the disturbance” in the
one-dimensional lattice gas model with 100 particles at 150
sites, η = 0.1. The initial state is |50〉, that is, all the qubits
are in the state |0〉 except for the middle one, which is in
the state |1〉. Note that the probability is plotted against the
particle’s index k. Since the classical evolution preserves the
order of the particles, this reflects spatial order of the spins
even though their actual position changes.

Should the generated position of a particle be such that
the ball representing the particle overlaps with any of
previously generated ones, the position is discarded and
a new one is generated. The distribution of momenta is
Boltzmann with zero mean and a fixed standard devia-
tion. Two particles (or a particle and the containing box)
collide elastically whenever a contact of their boundaries
takes place. The collisions (i.e. the appropriate changes
of the colliding particles’ velocities) are instantaneous.
The mass of the containing box is infinite, i.e. its posi-
tion does not vary upon particle-box collisions.

The quantum system is initially in the state in Eq. (6)
again. During the evolution a pair of qubits interacts via
the gate in Eq. (5) iff the two respective billiard balls
collide. This is a kind of semi-quantal spin gas model.

We again look at whether homogenization features are
present in this model and find qualitatively the same be-
havior as in the case of the spin chain with vacancies
model. Sequences generated by gas dynamics and ran-
dom ones yield very similar results (see Fig. 5).

We can conclude that quantum homogenization at a
single particle level appears in a variety of models based
on the same bipartite interaction, albeit with very differ-
ent underlying classical dynamics. These models range
from the random bipartite interactions where each parti-
cle can interact directly to one-dimensional diffusive lat-
tice gases or regular spin chain where there is no direct
interaction of the particles.
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FIG. 5: (color online) Evolution of the degree of inhomo-
geneity in Eq. (10) (upper figure) and the sum of the pairwise
concurrences in Eq. (11) (lower figure) for two billiard-ball col-
lision sequences (A, B) and for two random collision sequences
(C, D). N = 100 ball-shaped particles of diameter one (arbi-
trary units) in a cube box with dimensions 150 × 150 × 150
(arbitrary units). The mass of the particles is one (arbitrary
units). The initial velocities (and hence also the velocities
at later times) are normally distributed with zero mean and
standard deviation σ = 0.32 (arbitrary units). The interac-
tion strength parameter in Eq. (5) and Eq. (13) is η = 0.1.

III. STATE RANDOMIZATION DUE TO

STOCHASTIC CLASSICAL DYNAMICS

In this Section we consider the diffusive lattice gas
model already described, and investigate the effect of the
loss of information on the stochastic evolution of the clas-
sical system.

We simulate the evolution of the system on a computer
with a fixed classical and quantum initial condition. Un-
like in the previous Section, we run the simulation now
s times independently, which yields different |Ψs(t)〉 evo-
lutions, depending on the details of the evolution on the
classical subsystem. We will refer to this as the s-th tra-
jectory. Simulating Ntraj trajectories we construct the

density operator

̺(t) =
1

Ntraj

Ntraj
∑

s=1

|Ψs(t)〉〈Ψs(t)|. (17)

Its interpretation is as follows: if we disregard all the in-
formation we have on the classical evolution of the system
we can describe its state by a density operator

˜̺(t) =
∑

s′

ps′(t)|Ψs′(t)〉〈Ψs′(t)|, (18)

where |Ψs′(t)〉-s are all the possible evolutions of the sys-
tem and ps′(t) is the probability of obtaining the given
evolution. We expect that for Ntraj → ∞, ̺(t) will con-
verge to the exact ˜̺(t) stochastically. In practice we de-
termine the required number of simulations Ntraj empir-
ically by increasing it till the further increase does not
decrease the variance of the density operator elements.
The evaluation of (17) is obviously suitable for parallel
computing. Thus we have carried out our simulations
on a parallel computer using GNU Octave and its MPI
toolbox [16].

We consider the evolution of the von Neumann entropy
of the whole system,

S(t) = −Tr ̺(t) log2 ̺(t) (19)

which describes its mixedness. In addition, we will con-
sider bipartite entanglement as measured by concurrence
in Eq. (8)

First we consider the XX Hamiltonian in Eq. (3) as the
bipartite interaction. As all the Hamiltonians in Eq. (15)
commute with the total z component of the spin, the sub-
space spanned by the vectors in Eq. (4) will be invariant
in this case too. Consider the state |1〉 as an initial state.
In Fig. 6 we plot the time evolution of the von Neumann
entropy of the state of the whole system as defined in
Eq. (17), i.e. the density operator in the absence of in-
formation on the collision history. It appears that after
some transient which depends on the features of the un-
derlying dynamics (e.g. its entropy rate), the system will
be in the complete mixture of the given subspace,

̺mix =
1

N

N
∑

k=1

|k〉〈k|, (20)

which is reflected in the maximum value of von Neumann
entropy, i.e. log2 N . Note that this already appears if
there is a single unoccupied site in the system, thus the
effect of the classical noise is rather remarkable. Thus
the situation of the microcanonical ensemble is arising in
this model: the state of the system is an equal-weight
mixture of all of its possible states. This implies that
there is a vanishing stationary entanglement, of course.
If, however, we calculate the average net concurrence for
each trajectory and calculate the average afterwards,

C(t) =
1

Ntraj

Ntraj
∑

s=1

Ctot(|Ψs(t)〉), (21)
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FIG. 6: (color online) Time evolution of the von Neumann
entropy of the density operator in a Heisenberg-XX spin gas
with various parameters. The interaction strength is η = 1.0
for all the curves, 3000 trajectories were simulated in each
case. P1: 8 particles, 16 sites; P2: 16 particles, 20 sites; P3:
32 particles, 33 sites; P4: 32 particles, 40 sites.
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FIG. 7: (color online) The average concurrence in Eq. (21) in a
one-dimensional lattice gas with Heisenberg XX interactions.
The interaction strength is η = 1.0 for all the curves, 3000
trajectories were simulated in each case. P1: 8 particles, 16
sites; P2: 16 particles, 20 sites; P3: 32 particles, 33 sites; P4:
32 particles, 40 sites.

(C.f. Eq. (11)), we find that there is a nonvanishing con-
currence, see Fig. 7. This is in accordance with our ex-
pectations: as we have found in the previous Section,
homogenization takes place in each individual trajectory
which leads to a nonvanishing concurrence. If, however,
we drop the information on the classical evolution, this
resource will not be accessible. Finally, it is also interest-
ing to plot the degree of inhomogeneity in Eq. (10) of the
density operator of the system calculated according to
Eq. (17). This is done in Fig. 8. It appears that the ho-
mogenization becomes smooth due to the averaging over

 0
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FIG. 8: (color online) The inhomogeneity in Eq. (10) of
the density operator of the system calculated according to
Eq. (17), in a one-dimensional lattice gas with Heisenberg-
XX interactions. There were 3000 trajectories simulated to
obtain the density operator. The coupling strength was η = 1.
Parameters of the curves: L1: 8 particles, L2=16 particles,
40 sites in both cases.

several trajectories. It is interesting to point out here
that if we consider an initial state which is a superposi-
tion of two states from different invariant subspaces, the
stationary entropy will be initial state dependent. As we
have verified via simulations as well, if one considers an
initial state

|Ψ(t = 0)〉 = C0|0〉 + C1|1〉, (22)

where |0〉 = |0〉⊗N , the stationary entropy will be

Sstationary = H

(

|C0|
2,

|C1|
2

N
,
|C1|

2

N
, . . .

|C1|
2

N

)

, (23)

where H() is the Shannon entropy function, and the ar-

gument |C1|
2

N
appears N times. This rather expectable

effect is very quantum mechanical: the conservation laws
produce invariant subspaces and the stationary entropy
of the microcanonical distribution depends on the rela-
tion of a given initial state to this subspace structure.
The situation is conceptionally similar to the phase-like
transitions in the Dicke model [17].

Finally, let us first consider the Ising interaction

HIsing = σx ⊗ σx, (24)

as the bipartite interaction for Eqs. (15) and (16). It
would dynamically generate cluster states from the prod-
ucts of the eigenstates of the σz operators in a usual spin
chain (i.e., with no empty sites or classical motion). The
quantum system is the product state |100 . . . 0〉 initially,
which would evolve into a cluster state if the lattice was
saturated. In this case the possibility of numerical simu-
lation is limited by the exponentially growing size of the
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FIG. 9: (color online) Evolution of the entropy of the state
of an Ising spin gas for the quantum initial state |100 . . . 0〉,
with a fixed random uniform classical initial condition. The
interaction strength η is set to 1. The parameter of the curves
is N , the number of particles, the length of the chain is cho-
sen to be L = 3N with periodic boundary conditions. 3000
trajectories were simulated to obtain the figure.

Hilbert space. However, it appears according to the sim-
ulations that the entropy tends to converge to N − 1 in
each case. Looking at the density matrix in the computa-
tional basis it will be diagonal and it describes a complete
mixture in a subspace spanned by the vectors of the com-
putational basis with odd Hamming weights, which has
a dimensionality half of the whole Hilbert space. It is
easy to see that the subspaces spanned by the computa-
tional basis vectors with even or odd Hamming weights
are invariant subspaces of the pairwise Ising interactions.

It is also interesting to compare the (classical Shannon)
entropy of the probability distribution in the diagonal of
the density matrix in the computational basis with the
von Neumann entropy of the density operator. Since this
latter is the infimum of the entropies of the diagonal of
the density matrices taken over all the possible bases, if
these two are close to each other the density matrix is al-
most diagonal. The evolution of these entropies is plotted
in Fig. 10. Obviously since the density operator tends to
a complete mixture in a subspace, the stationary values
will be the same. If there are just a few vacancies in the
system, the two entropies differ. If, however, there is a
relevant number of unoccupied sites in the system, one
finds that the density operator during the whole evolu-
tion will be “almost diagonal” in the computational basis
in the sense that the entropy of the diagonal of the den-
sity matrix will be almost the same as the von Neumann
entropy of the density operator. Let us remark that the
same can be observed for the Heisenberg-XX interaction
in the basis in Eq. (4). Since these bases are built up
entirely from product states, one can conclude that the
evolution for a large number of empty sites is very similar
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FIG. 10: (color online) Evolution of the von Neumann entropy
of the state (S) and the Shannon-entropy of the diagonal of
the density operator (Sd) in the computational basis of an
Ising spin gas for the quantum initial state |100 . . . 0〉, with a
fixed random uniform classical initial condition. In the upper
figure there are 5 particles on 6 sites considered, while in the
lower figure the 5 particles are located at a chain of 10 sites.
The interaction strength η is set to 1. 3000 trajectories were
simulated to obtain the figure.

to a classical stochastic process: the arising decoherence
is very fast.

All together we find that in spin gas models with ran-
dom classical dynamics the details of the classical motion
are required to access quantum features of the system.
In the absence of these the system will attain a highly
mixed stationary state, which is essentially independent
of the classical motion. The transients, however, depend
on these details, such as the entropy rate of the classical
Markov process, rules governing the interaction, etc.

IV. SUMMARY AND CONCLUSIONS

We have investigated various semi-quantal spin sys-
tems as microscopic models of decoherence. One of the
aspects was to study the presence of quantum homog-
enization at the single particle level, purely due to the
interaction between the qubits in argument. We have
found that with Heisenberg-XX couplings homogeniza-
tion always appears, accompanied by a stationary net
entanglement, regardless of the details of the evolution
of the classical part of the system.

We have also studied the mixedness of the whole sys-
tem in the absence of any information on the partic-
ular classical evolution. We have found that at least
in the studied cases the system will reach a stationary
state which is a microcanonical ensemble in the quan-
tum mechanical part. This in turn implies that the sys-
tem qubit will finally decohere, too. Similarly to clas-
sical non-periodic Markov chains the transients leading
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to this stationary state depend on the details of the un-
derlying quantum dynamics, while the stationary state is
the same. This is true even for classical processes with a
small entropy rate.

Acknowledgments

M. K. acknowledges the support of the Hungarian Sci-
entific Research Fund (OTKA) under the contract No.

T049234. This work was supported in part by the Euro-
pean Union projects CONQUEST and QAP, by the Slo-
vak Academy of Sciences via the project CE-PI/2/2005,
by the project APVT-99-012304. The numerical compu-
tations were carried out on the HPC facility of Faculty
of Science, University of Pécs.
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