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bDepartment of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
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Abstract

An auto-adaptive multicanonical Monte Carlo (MMC) simulation method is suggested and tested on a single-vortex

model of magnetic nanoelement. Simulation process consisting of nonequilibrium and equilibrium stages that circumvents

ergodicity sampling problems which stem from a potential barrier standing between the vortex and counter-vortex states is

proposed. The method is formulated by the means of an effective Hamiltonian with additional term proportional to the

overlap of given configuration and bistable ground-state vortex configuration. The self-organized neural network is used to

construct the synopsis of the vortex reversal process.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Nanostructures; Magnetic vortex; Monte Carlo simulation; Neural-network classifier
1. Introduction

Single vortex magnetic configuration in nanoelements (Fig. 1) is a subject of theoretical [1,2] as well as
experimental [3–7] studies. Elements of sub-100 nm dimensions are usually too small to support well-
developed multi-domain structures, but they are too large for parallel alignment of spins. The magnetic vortex
can be viewed as an intermediate state between the single-domain and multi-domain magnetic configurations.
It exhibits decreased magnetostatic outer flow that can be exploited by designers of high-density information
storage devices.

Every step towards miniaturization at micro-/nanoscales requires careful inclusion of thermal properties.
The Monte Carlo method that has been exploited in bulk systems seems to be suitable also for purposes of
nanoelements. The purpose of the present work is to present reliable simulation method that avoids difficulties
with the quasi-ergodic violation [8]. From our experience, considering adaptivity principle may play a crucial
role in methodology of the energy landscape exploration.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Fig. 1. The vortex ground state of 3D model of the magnetic nanoelement.
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2. Monte Carlo simulation of magnetic nanoelement

The section introduces model of plate-shaped segment consisting of N ¼ 6� 6� 2 cubic lattice sites of
classical effective spin vectors Si, kSik ¼ 1. The magnetic contribution to the energy of element is described by
the Hamiltonian

H ¼ �J
X
hi;ji

Si � Sj þD
XN�N

iak

r2ikSi � Sk � 3ðSi � rikÞðSk � rikÞ

r5ik

� �
� B

XN

i¼1

ðSz
i Þ
2 , (1)

where rik links ith and kth site. The first term proportional to J defines isotropic exchange coupling, where the
summation symbolized by hi; ji is carried out over the nearest-neighbor sites. The second term of H is the
dipolar coupling with summation over the 1

2
NðN � 1Þ spin pairs. In addition, the single-site uniaxial out-plane

(z-axis) anisotropy proportional to parameter B is considered. As it can be demonstrated by simulated
annealing method, for the parametric choice D=J ¼ 3� 10�3, B=J ¼ 0:1 the ground state of element is the
single vortex (see Fig. 1). Due to the center symmetry of element it is two-fold degenerated (bistable) with
clockwise and counter-clockwise vorticity. Despite specific parameters chosen here, our results can be viewed
in the light of scaling arguments [1,9] showing that class of equivalent samples exists that can be simulated
using (relatively small number of) the effective spins.

2.1. The order parameter

An appropriate macroscopic characterization of nanoobjects with nontrivial configurations such as vortex
represents a serious task. Here we suggest parameter which naturally corresponds to the geometry of given
nanoelement. In analogy with ferromagnetic Ising-spin systems, where the order parameter (global
magnetization) is defined as a projection onto two reference attractors (ground states), the vorticity order

parameter of certain configuration C � ½S1;S2; . . . ;SN � is introduced as a projection

vðCÞ ¼
1

N

XN

i¼1

Si � S
R
i (2)

onto one of the two branches of the ground state C�R � ½�S
R
1 ;�S

R
2 ; . . . ;�S

R
N �. These configurations have been in

our case obtained by simulated annealing method. For better readability the C-dependence in vðCÞ is omitted in
below. In analogy to [10] we may now define the probability density function rðvÞ of macroscopic vorticity v

rðvÞ ¼
1

Z

Z
O
dfCgdðv� vðCÞÞe�bH , (3)

where d is Dirac d-function, b is the inverse temperature, Z is the partition function and integration is
performed over the phase space O.

2.2. Preliminary qualitative considerations

The analysis of the quasi-static limit of the vortex reversal at finite temperatures is of the fundamental
importance. We ask what intermediate states are met on the transition path from v ’ �1 to v ’ �1 and what
are the properties of such transition. To answer this question the magnetic nanoelement has been repeatedly
cooled down from sufficiently high temperatures. For temperatures bJ41 the annealing has revealed (see
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Fig. 2. The temperature dependence of the probability distribution function rðvÞ normalized to
R 1
�1 rðvÞdv ¼ 1. The saddle between v and

�v is formed below 1=bJ ¼ 1.
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Fig. 2) broken symmetry between positive and negative v. It means that for low temperatures the transitions
between v and �v would be extremely rare. Quantitatively, with the energy of the ground state
Hjv¼�1 ¼ �192:66J, the transition from v ¼ �1 trough the point v ’ 0 needs to overcome the energy barrier
Ebar ¼Hv¼�1 �Hv¼0 ’ 42J. For 1=b ¼ 0:3J the naı̈ve application of Néel Brown formula provides
probability estimate expð�bEbarÞ ’ 1:5� 10�61. The above probability estimation clearly implies that
canonical Monte Carlo (CMC) with Metropolis single-spin moves included has to be inefficient for analysis of
reversal. However, as it is well known, a broad theoretical framework for a more flexible sampling
methodology is provided by general multicanonical Monte Carlo (MMC) [11].

3. Multicanonical sampling

MMC method has been originally suggested in connection with studies of the first order phase transitions
where the jumps between phases are extremely rare. As it was demonstrated in the previous section, the same
happens when considering vortex reversal problem. Although the MMC is quite general, the additional
numerical work is needed to implement certain ingredients that allow sampling without ergodicity breaking.

The essence of MMC is a controlled non-Boltzmann weighing of the states which prefers those with former
low occurrence probabilities. The weights are modified via effective Hamiltonian

~HðCÞ ¼HðCÞ þ ZðvðCÞÞ, (4)

where ZðvðCÞÞ is an a priori unknown weight function. Using Eq. (4), multicanonical probability distribution
function can be expressed as follows:

rMMCðvÞ ¼
Z

ZMMC
e�bZðvÞ rðvÞ, (5)

where ZMMC is multicanonical partition function. The utilization of MMC assembly is motivated by the need
to sample states of different vorticity with nearly uniform distribution. However, any alternative sampling has
to guarantee the uniqueness of averages. The MMC average hQiMMC of a variable Q can be expressed using
CMC average according to hQiCMC ¼ hQe�bHi=he�bHi. When sampling with rMMCðvÞ then

hQi ¼
hQ e�b

~HþbZi

he�b ~HþbZi
¼
hQ ebZiMCC

hebZiMCC

� hQiMMC. (6)
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When no ergodic problems occur for CMC there are no differences in both sampling methodologies. As
Eq. (6) suggests the averages are equal within the statistical margin of error.

3.1. The auto-adaptive approach

In general, the methods of the construction of the weight function Z are of the iterative nature [11]. The same
holds for our approach that closely resembles that of Wang’s and Landau’s [12]. In our case the convergence
to efficient weight function ZðvÞ is achieved with the help of histogram HðvÞ counting the visits of vorticity
intervals. This histogram is updated via rule

H
ðtþ1Þ
j ¼ H

ðtÞ
j ð1þ uðtÞÞ if vðtÞ 2 hvj ; vjþ1Þ, (7)

where vj ¼ ð2j �NW � 2Þ=NW, j ¼ 1; 2; . . . ;NW divides the vorticity space Iv ¼ h�1; 1i into NW sub-intervals.

The sum NðtÞ ¼
PNW

j¼1 H
ðtÞ
j is introduced to normalize the instant H

ðtÞ
j (see Eq. (8)). Quantity uðtÞ ¼ u0 e

�t=t

relaxes exponentially on the time scales of the order of adjustable parameter t with t denoting number of MC

steps. We have recognized numerically that including both factors in H
ðtÞ
j uðtÞ improves the convergence. This

modification is justified by supposition that vorticity regions frequently visited by sampling process are likely

to be frequently visited also in further moves. The preliminary experimentation confirmed that considering uðtÞ

without factor H
ðtÞ
j is not as efficient.

Each evaluation of the weight function is done according to

ZðtÞðvÞ ¼ Z0
H ðtÞðvÞ

NðtÞ
, (8)

where Z0 is the proportionality factor that qualitatively corresponds to the largest energy barrier of the system;
H ðtÞðvÞ is estimated by the linear interpolation between H

ðtÞ
j and H

ðtÞ
jþ1 with index

j �
NWðvþ 1Þ

2
þ 1

� �
int

. (9)

In our implementation we chose Z0 ¼ 500 and u0 ¼ 15. The linear interpolation of ZðtÞðvÞ is needed since our
trials indicate that discretized step-wise ZðvÞ contradicts to the continuity of the spin moves and strongly
affects the transition probabilities.

The auto-adaptivity utilizes the interplay ofH and ZðvÞ terms in ~H, where weight function ZðvÞ is optimized
to sample Iv efficiently. Since this requirement cannot be satisfied straightforwardly without numerical details
that reflect the influence of original physical Hamiltonian H, the rule Eq. (7) have to be applied. At the
beginning of adaption, we choose H

ðt¼0Þ
j ¼ 1 for each j and Nðt¼0Þ ¼ NW. For the transient regime the

sampling is nonuniform with the preferred regions v	� 1. As the number of adaptive iterations increases
(with Z0 properly chosen) the situation slowly alters because of the biased variations in ZðvÞ when the
probability of jumps between vorticities of the opposite sign (see Fig. 3) rises. Finally, the exponential decrease
of uðtÞ yields vanishing adaptive moves and thus fixation of ZðvÞ.

3.1.1. Algorithm

Here we present some details of single-spin-flip MMC algorithm supplemented by the auto-adaptive process.
The flowchart of the algorithm is specified as follows
I
 Initialization. Reset variables (simulation time t ¼ 0), set NW ¼ 100, H
ðt¼0Þ
j ¼ 1 and Nðt¼0Þ ¼ NW.
II
 Auto-adaptive nonequilibrium phase. Repeat the following (in our case 100 mil. MC steps):
(1) Pick random site i. The single spin S0

ðtÞ
i of trial C0

ðtÞ
is treated according to:


 with probability 0:9 realize trial move S0
ðtÞ
i ¼ S

ðtÞ
i þ DSðtÞ, where each component of the shift DSðtÞ ¼

ðDSx;DSy;DSzÞ is chosen uniformly from h�0:3; 0:3i; S0ðtÞi is normalized to unity,

 with probability 0:1 the spin is reversed ðS0

ðtÞ
i ¼ �S

ðtÞ
i Þ,

(2) Compute D ~H
ðtÞ
¼ ~HðC0ðtÞÞ � ~HðCðtÞÞ via Eq. (8).
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Fig. 3. The beginning of the auto-adaptive process of the weight function ZðvÞ. The vicinity of v ’ 1 is preferred until the weight function

ZðvÞ is large enough for system to avoid this vorticity. The process, where the seemingly stabilized vorticity is eventually swapped by

increasing weight function ZðvÞ, is repeated several times until ZðvÞ is adapted. In further these data were plotted in the form of Fig. 5. We

see that for high jvj the magnetization is low. On the other hand any decrease of jvj is coupled to the kmk increase. The coupling can be

interpolated by Eq. (12).
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(3) Accept the alternatives from (1) with probability min 1; e�bD
~H
ðtÞ

n o
:

(a) Update S
ðtÞ
i by auxiliary S

ðtþ1Þ
i ¼ S0

ðtÞ
i .

(b) Compute v for C0
ðtÞ

using Eq. (2).
(4) Determine j corresponding to v using Eq. (9), update H

ðtÞ
j and NðtÞ according to Eq. (7).
et u
s not
III
 Equilibrium data accumulation.

(1) Record data for repeated steps (1)–(3) from phase II for Zðvðtþ1ÞÞ fixed by step II (4).
(2) Calculate averages of interest using Eq. (6).
4. Results

Here we mention several results interesting from both physical and also computational point of view.
Firstly, in Fig. 3 we checked that the algorithm significantly improves ergodicity of sampling within the
vorticity space. It shows that no vorticity region has been ignored. Due to the stochastic nature of process the
form of the weight function ZðvÞ is not strictly symmetric. However, from the theory we know that the
symmetry ofH with respect to Si !�Si implies the symmetry ZðvÞ ¼ Zð�vÞ.1 Since the numerical output does
not strictly provide even ZðvÞ, further simulations can be accelerated by using interpolation that utilizes even
Chebyshev polynomials (see Fig. 4).

ZðvÞ ’
X13
k¼0

a2kF2kðvÞ, (10)

where F2kðvÞ ¼ cosð2k accros vÞ. The coefficients a2k, k ¼ 0; 1; . . . ; 13 are obtained by fitting. Due to the limited
space, only two of them a0 ¼ ð1:05� 0:01Þ � 10�2, a2 ¼ ð2:95� 0:22Þ � 10�3 are listed here.
e that nonsymmetric modes induced by the spin single-site defects were also investigated and tested with success.
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Fig. 4. The nonsymmetric weight function ZðvÞ obtained from simulation (dashed line) compared with its symmetric approximation by the

series of even Chebyshev polynomials (full line).

Table 1

The comparison of averages corresponding to CMC and MMC sampling schemes obtained by simulations at temperature bJ ¼ 1=0:3

Sampling hkm1k
2i hkm2k

2i hHi hkmk2i

MMC 0:368 0:365 �170:08 0:0108
CMC 0:369 0:369 �170:09 0:0105
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To demonstrate the justness of the proposed algorithm we have checked that averages invariant to v!�v

exhibit equivalence between MMC and CMC (see Table 1). Namely, these averages are not affected by quasi-
ergodic violation. The examples are internal energy hHi and magnetization

m ¼
1

N

XN

i¼1

Si (11)

which, when confronted (see Table 1), do not expose relevant differences. More detailed test is provided by
averages of the magnetic moments m1 and m2 of the nanoelement halves. Also in this case the tests support
validity of our MMC implementation.

4.1. The vorticity reversal

The exceptionalities of stochastic reversal are plotted in Fig. 3, where the time dependencies of
magnetization amplitude and vorticity are plotted. We see that absolute vorticity jvj is statistically coupled
with the kmk. These correlations can be interpolated quantitatively by the quadratic ‘‘equation of state’’

hkmki ’ b0v
2 þ b1 (12)

with coefficients b0 ¼ �0:954 and b1 ¼ 0:873 obtained by fitting (Fig. 5).
The visual inspection of the vorticity reversal as well as previous results (see Eq. (12)) reveal that the

configurations are ordered and queued in a non-random fashion. We can suppose that these ordered
configurations composing vorticity reversal paths are attractors on the energy landscape. This view hints on
the use of adaptive classifying systems. Particular solution of such data processing problem that we exploited
is offered by the concept of artificial neural networks—adaptive resonance theory (ART) [13]. This concept is
suitable for our purposes since in Ref. [14] it was demonstrated that the unsupervised ART classifier applied to
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Fig. 5. The dependence of the mean amplitude of magnetization hkmki on the vorticity (dashed line) compared to its quadratic fit (full line)

Eq. (12). The additional information about the local validity of quadratic interpolation and the mean amplitude of magnetization is

provided by the bottom figure showing the v-dependence of dispersion sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h kmk � hkmkið Þ
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Fig. 6. Most probable paths of the vortex reversal obtained by MMC sampling with outputs reduced by the ART network. The reversal

nucleates by developing a deviation of the vortex core. The proceeding states are: U! S! U (axially symmetric)! counter-vortex. The

S states belong to v ’ 0.
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magnetic system is capable of selecting representative configurations (RCs) of a given nanoelement. In this
context it should be mentioned that a similar approach [15] has been used to magnetic force microscopy
images of thin film media.

In the present approach the ART network had been trained and stabilized at 47 neurons (each neuron
encodes one RC). Since the adaptation acts in a probabilistic manner, the stored RCs had to be post processed
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D. Reitzner, D. Horváth / Physica A 379 (2007) 587–594594
to suppress the noise level. This was achieved by a simulated annealing process starting at low temperatures.
Resulting meta-stable RCs were supplemented by their corresponding symmetric counterparts (see Fig. 6).

RCs generated in such way have been used in classification of the states generated by the MMC simulation.
The output of this detailed Markovian chain of spin configurations has been coarse-grained using the
mapping: C to RCs. For given C the mapping consists of selecting an exceptional RC that yields the maximum
mutual overlap. The reduced path consisting of RCs has been analyzed and the transition probabilities
between the connected pairs of RCs have been evaluated. The synopsis of the most probable path is depicted
in Fig. 6. It shows that v!�v process nucleates via the disturbance of the position of the vortex core.
Subsequently, the transition (U state)! (S state)! (U axially symmetric to the proceeding one) follows. The
final stage is the counter-vortex. Its core is formed at the corners of the nanoelement.

5. Conclusion

The simulations of square magnetic nanoelement state have been carried out via the MMC method. The
scalar parameter characterizing the vortex state has been constructed via numerical optimization. The same
characteristics have been used to perform the auto-adaptive construction of the effective Hamiltonian that
admits more efficient sampling. It was demonstrated that the method enhances the frequency of transitions
between opposite vorticities. Finally, the coarse-grained paths of vorticity reversal have been constructed by
the methodology of ART networks.
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