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Abstract
We addressed the question of optimality of private quantum channels. We
have shown that the Shannon entropy of the classical key necessary to securely
transfer the quantum information is lower bounded by the entropy exchange of
the private quantum channel E and the von Neumann entropy of the ciphertext
state �(0). Based on these bounds we have shown that decomposition of private
quantum channels into orthogonal unitaries (if they exist) optimizes the entropy.
For non-ancillary single-qubit PQC we have derived the optimal entropy for
the arbitrary set of plaintexts. In particular, we have shown that except when
the (closure of the) set of plaintexts contains all states, one bit key is sufficient.
We characterized and analysed all the possible single-qubit private quantum
channels for an arbitrary set of plaintexts. For the set of plaintexts consisting of
all qubit states we have characterized all possible approximate private quantum
channels and we have derived the relation between the security parameter and
the corresponding minimal entropy.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.67.−a

1. Introduction

Quantum cryptography [1, 2] (for a popular review see [3]) is a rapidly developing branch
of quantum information processing. The results of quantum cryptography include quantum
key distribution [4, 5], quantum secret sharing [6, 7], quantum oblivious transfer [8, 9] and
other cryptographic protocols [10]. Quantum cryptography has two main goals: solutions to
classical cryptographic primitives and quantum cryptographic primitives.

The first goal is to design solutions of cryptographic primitives, which achieve a higher
(provable) degree of security than their classical counterparts. The degree of security should
be better than the security of any known classical solution, or it should be of the degree
that is even not achievable by using classical information theory at all. Another alternative
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is to design a solution which is more efficient (according to time, space or communication
complexity) than any classical solution of comparable security.

The second class of cryptosystems is motivated by the evolution of applications of quantum
information processing, regardless whether their purpose is cryptographic, communication
complexity based or algorithmic. These cryptosystems are designed to manipulate quantum
information. As applications of quantum information processing start to challenge a number
of their classical counterparts, the need to secure quantum communications in general is
getting more urgent. Therefore, there is a large class of quantum primitives which should
secure quantum communication in the same way as classical communication is secured.
These primitives include encryption of quantum information using both classical [11–13] and
quantum key [14], authentication of quantum information [15], secret sharing of quantum
information [7, 16], quantum data hiding [17] and even commitment to a quantum bit [2],
oblivious transfer of quantum information [2] and others.

In this paper we concentrate on private quantum channels (PQC), i.e. on schemes for
perfect encryption of quantum information using a pre-distributed classical key, originally
introduced in [11]. Our aim is to analyse the optimal encryption of an arbitrary set of quantum
states. In section 2 we define the problem in general settings and investigate the elementary
properties of private quantum channels including their optimality. Further, in section 3 we
focus on PQC for an arbitrary set of qubit states. We will restrict ourselves to encryption
schemes without ancillas. The approximate private quantum channels (APQC) for a single
qubit are investigated in section 4.

2. Private quantum channels and optimality

Consider a subset P ⊂ S(H) of quantum states. Its encryption is expressed by a completely
positive trace-preserving linear map E : B(H) → B(H ⊗ Hanc), where Hanc describes some
ancillary system and B(H) stands for the set of bounded linear operators. The encryption
consists of two steps: (i) addition of an ancilla in the state ξ

(j)
anc and (ii) subsequent application

of the unitary transformation Uj with the probability pj satisfying the following identity

E[�] =
∑

j

pjUj

(
� ⊗ ξ (j)

anc

)
U

†
j = �(0) (1)

for all states � ∈ P . The triple [P, E, �(0)] satisfying equation (1) defines a private
quantum channel (PQC). This definition establishes a communication quantum channel for
which an eavesdropper gains no information by intercepting the transmitted messages. The
indistinguishability of different convex decomposition of the same state (�(0)) guarantees the
security of PQC.

The secure communication via PQC is successful only if the sender and the receiver
share the same classical key (j1, . . . , jn) corresponding to the sequence of unitary operations
(Uj1 , . . . , Ujn

). The encryption as defined in equation (1) can be viewed as a noisy operation
E caused by the environment interacting with the system and ancilla. Consequently,
the decryption depends on our ability to inverse such noise. Therefore, only unitary
decompositions of PQC channels are of interest [18, 19]. The decryption itself is similarly
like encryption composed of two steps: (i) an application of a unitary operation according to a
shared classical key and (ii) discarding of the ancilla. The size of the classical key is quantified
by its Shannon entropy (H = −∑

j pj log2 pj ) and our aim is to address the question of the
optimal encryption scheme that enables us to securely communicate an arbitrary set of qubit
plaintexts P . The PQC with the smaller entropy is better, because less amount of classical
information must be distributed prior to secure transmission of quantum states. The authors
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in [11] analysed two cases: (i) encryption of all qubit states (optimal key H = 2), and (ii)
encryption of real superpositions (optimal key H = 1), i.e. the equatorial plane in the Bloch
sphere picture.

Before we get to a specific case of single-qubit PQC let us introduce some important
notions and properties of private quantum channels. Due to linearity the PQC transformation
E encrypts not only the set P , but also arbitrary trace-preserving linear combination of its
elements, i.e. the whole set P tp = {� = ∑

k qk�k : such that �k ∈ P,
∑

k qk = 1, qk is real}.
The set of operations U ′

j = V Uj (V is unitary) forms a PQC [P, E ′, �(0)′ ] (�(0)′ = V �(0)V †),
providing that the quadruple [P, E, �(0)] establishes a PQC for the plaintexts in P . We note
that ancilla states ξ

(j)
anc and probabilities pj remain the same for both E ′, E .

In what follows we will restrict ourselves to PQC schemes using a fixed ancilla state, i.e.
ξ

(j)
anc = �anc for all j . Thus for PQC we have

E[�] =
∑

j

pjUj (� ⊗ �anc)U
†
j = �(0). (2)

Such a restricted definition was used in the original work [11] and it is sufficient for our
purposes, because in the next sections we will consider only PQC schemes without ancillas.
The general case deserves a deeper investigation, but it is beyond the scope of this paper. Let
us analyse the optimality for private quantum channels with a fixed state of the ancilla.

The entropy exchange function Sex(�, E) quantifies the amount of quantum information
lost in quantum environment due to interaction resulting in the transformation E providing
that the initial state of the system is �. In our case the state � describes the system
together with the ancilla, because both of them are transmitted via the quantum channel
together. Due to the Stinespring theorem each quantum channel E can be expressed as a
unitary transformation on a larger system, i.e. E[�] = TrenvG(� ⊗ |0〉〈0|)G† = ∑

j Aj�A
†
j ,

where G is a unitary transformation describing the interaction with the environment.
The entropy exchange is defined as the von Neumann entropy of the environment state
after the interaction, i.e. Sex(�, E) = S(ωenv) with ωenv = Trsystem[G(� ⊗ |0〉〈0|)G†] =∑

jk Tr
[
Aj�A

†
k

]|j 〉〈k|. This quantity does not depend on particular Kraus representation,
because different Kraus representations of the same quantum channel are related by unitary
transformation. Since PQCs are always random unitary channels, it follows that ωenv =∑

jk

√
pjpk Tr

[
Uj�U

†
k

]|j 〉〈k|. From the definition of the von Neumann entropy [20] as the
minimum of the Shannon entropy over all projective measurements the following inequality
holds S(ωenv) � S(diagB[ωenv]) for arbitrary state ωenv. Thus, the equality is achieved if the
basis B coincides with the eigenbasis of the density operator ωenv. The operation diagB cancels
all off-diagonal terms in the description of the density matrix in the basis B. In our case we
have S(diag[ωenv]) = H({pk}), i.e. the entropy of the shared key equals to the entropy of the
diagonal elements of the state ωenv. Hence, we obtain the following lower bound on the key
entropy

H({pk}) � max
�

Sex(�, E). (3)

The left side of this inequality does depend on the particular convex decomposition of the
quantum channel E , but the right-hand side is independent of the particular realization of
E . Therefore, the smallest possible entropy of the key H is given by the maximum of the
entropy exchange. We have seen that this inequality is saturated only if the environment
state is diagonal, i.e. Tr

[
Uj�U

†
k

] = 0 for j 	= k. Choosing � ∼ I we obtain the

orthogonality condition for unitary transformations Uj , i.e. Tr
[
UjU

†
k

] = 0 for j 	= k.
Thus, convex decomposition into orthogonal unitary transformations saturates the above
inequality. The right side is independent of the Kraus representation (decomposition)
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of E and, moreover, for random unitary channels the maximum of Sex is achieved for
the total mixture, because the diagonal elements are independent of the state �, i.e.
diag[ωenv] = diag

[∑
jk

√
pjpk Tr

(
Uj�U

†
k

)|j 〉〈k|] = ∑
j pj |j 〉〈j | for all states �. As a result

we have obtained that the optimal realization of PQC minimizing the entropy of classical key
is achieved for the encryption with mutually orthogonal unitary transformations. The open
question is whether such orthogonal decomposition exists for all random unitary channels, or
at least for all PQCs.

For a mixture of pure states � = ∑
j pj |ψj 〉〈ψj | the following inequality holds

S(�) � H({pj }). Consider a pure state |ψ〉 ∈ P tp. Encryption operation E results in a
mixture �(0) = ∑

j pj |ψj 〉〈ψj | with |ψj 〉 = Uj |ψ〉, i.e. we can use the entropy of the state
�(0) to bound the entropy of the key from below

H({pj }) � S(�(0)). (4)

The previous lower bound in equation (3) determines the optimal value of the classical key
entropy for a given PQC E , but this bound enables us to limit the key entropy of PQC based on
the state �(0). This inequality suggests that the smaller the entropy of �(0), the more optimal
PQC could exist. For a given set of plaintexts this means that the most optimal PQC should be
the one with the purest possible state �(0). However, this bound is not achievable in general.
For instance, the encryption of all single-qubit states requires H = 2, but the entropy of the
maximally mixed single-qubit state is S

(
�(0) = 1

2I
) = 1.

3. Single-qubit private quantum channels

In the previous section we have shown that the optimal realization of a fixed PQC consists of
orthogonal unitary transformations. However, the more general question is the optimal PQC
for a given set of plaintexts P . The first question is to specify the states �(0) achievable by
PQC. As we have argued at the end of the previous section the purer the state �(0), the smaller
could be the entropy of the classical key. Using the fact that the arbitrary trace-preserving
linear map cannot increase the trace distance between two states (D(�, σ ) = Tr|� − σ |) we
obtain

δ = min
�∈P tp

D

(
� ⊗ �anc,

1

N
I

)
� D

(
�(0),

1

N
I

)
, (5)

where N = dim(H ⊗ Hanc) is the dimension of the system together with the ancilla. This
inequality restricts the possible states �(0) to the δ vicinity around the total mixture 1

N
I , but

the achievability of all such states must be proved, see below.

3.1. Single-qubit ancilla-free PQCs

The PQC channel is a special random unitary channel, hence it is unital (preserves the total
mixture 1

N
I ). This feature makes it easy to analyse all PQCs for a single qubit, i.e. for a two-

dimensional quantum system, if we restrict ourselves to PQC without ancillas (ancilla-free
PQC). Under such a condition the PQCs are just single-qubit unital channels that coincide with
random unitary channels, i.e. each single-qubit unital channel can be expressed as a convex
combination of unitary transformations [21]. In what follows we will use the Bloch sphere
representation of qubit states, i.e. as three-dimensional real vectors �r specifying the state
� = 1

2 (I + �r · �σ), where �σ = (σx, σy, σz) is the vector of Pauli operators. The unital quantum
channels E correspond to Bloch vector transformations �r → �r ′ = T �r , where T is a 3 × 3
real matrix with coefficients Tjk = Tr(σjE[σk]). Each unital quantum channel can be written
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via two unitary transformations U,V and a specific quantum channel �E in the following
way E[�] = U�E [V †�V ]U †. The operation �E is just the convex combination of mutually
orthogonal unitary transformations (Pauli operators I, σx, σy, σz), i.e. �E [�] = ∑

j pjσj�σj .
In Bloch sphere representation this corresponds to the product of three matrices (singular value
decomposition) T = RUDRV , where RU,RV are the corresponding rotations of the Bloch
sphere around its origin and D = diag{λ1, λ2, λ3} is a diagonal matrix with λj being singular
values of the matrix T (for details see [21, 22]). They are related to the probabilities pj via
the following identities

px = 1
4 (1 + λ1 − λ2 − λ3)

py = 1
4 (1 − λ1 + λ2 − λ3)

pz = 1
4 (1 − λ1 − λ2 + λ3)

p0 = 1 − px − py − pz.

(6)

To guarantee the positivity the parameters λ1, λ2, λ3 are constrained by the inequalities pj � 0.
In the previous section we have shown that orthogonal decompositions of a given channel

E are the optimal ones (in the sense of the key entropy). Moreover, the entropy of the classical
keys is the same for quantum channels E and �E (they are unitarily equivalent). Therefore it
is sufficient to analyse only the so-called Pauli channels �E , for which the optimal realization
is clearly a convex combination of Pauli unitary rotations. Let us start with the specification
of possible sets of plaintexts P tp. The smallest possible set consists of a single plaintext
(P1 = {�}), but in this case the situation is trivial, because there is nothing to hide. We
recall that the set of plaintexts is publicly known. The largest possible set contains all qubit
states, i.e. P4 = S(H). We can meet with such case whenever the set P contains four (not
only three!) mutually independent quantum states (Bloch vectors). The mutual independence
means that one of them cannot be written as some trace-preserving linear combination of the
others. The trace-preserving linear combinations form a set covering the whole Bloch sphere,
i.e. P tp = S(H). For this maximal possible set of plaintexts the optimal private quantum
channel is represented by the completely depolarizing channel mapping all states into the
total mixture, i.e. �E [�] = 1

4 (� + σx�σx + σy�σy + σz�σz) = 1
2I for all �. Thus a classical

key of the length of two bits is necessary for the encryption of the whole Bloch sphere,
i.e. H = 2 [11].

Our aim is to investigate the minimal length of the classical key for other possible sets
of plaintexts P . In principle, there are only two remaining options: the set P tp is generated
either by two states (P2 = {�1, �2}), or by three states (P3 = {�1, �2, �3}). The goal is to find
the dependence of the key entropy on particular properties of these generating states. In the

Bloch sphere picture the sets P2
tp and P3

tp can be illustrated as lines and planes, respectively,
intersecting the Bloch sphere (for details see [22]). It is known [11] that for the so-called real
qubits, i.e. real superpositions of two orthogonal pure states, only a single bit is sufficient to
establish a private quantum channel. Such states form a particular set of plaintexts consisting
of all equatorial states of the Bloch sphere. Using this result we can conclude that there exists

a private quantum channel for the arbitrary set P2
tp with the entropy H = 1. This can be

seen directly from the Bloch sphere representation, because real superpositions form a circle

containing the centre of the Bloch sphere, but each line associated with P2
tp belongs to some

plane containing the total mixture. Therefore, the real qubit encryption PQC scheme works for
all lines belonging to the corresponding real qubit plane. However, it is not known whether for
a specific set of plaintexts (not containing the total mixture) we cannot do better and establish
a PQC with H < 1.
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3.2. All ancilla-free PQCs

In what follows we will address the following question: which single-qubit unital maps
constitute a PQC? Except the trivial case (P1), the set P tp contains at least two pure states
|ψ1〉, |ψ2〉 ∈ P tp. The PQC maps these two states into the state �(0). Using the Bloch sphere
representation this means that �r1 → �r ′

1 = �s and �r2 → �r ′
2 = �s, where �r1, �r2 correspond to pure

states, respectively, and �s is associated with �(0). Using the explicit form of Pauli channels
(�E ↔ D = diag{λx, λy, λz}) the identity �r ′

1 − �r ′
2 = �0 results in the system of equations

λj (r1j − r2j ) = 0 for all components j = x, y, z. These equalities hold only if λj = 0,
or r1j = r2j . If none of the λs vanishes (λxλyλz 	= 0), then necessarily �r1 = �r2, i.e. the
states are identical. Therefore at least one of the λj must vanish. Choose λz = 0. The
complete positivity constraint [21] restricts the possible values of λx, λy so that the inequality
|λx ± λy | � 1 specifies all possible (non-ancillary) single-qubit private quantum channels,
i.e. the general single-qubit PQC is up to a unitary rotation represented in its optimal form as
follows:

E[�] = 1
4 ((1 + b)� + (1 + a)σx�σx + (1 − a)σy�σy + (1 − b)σz�σz) (7)

such that a = λx − λy, b = λx + λy and complete positivity constraints |a| � 1, |b| � 1.
The (optimal) entropy of the classical key necessary for establishing the general PQC channel
equals

H(E) = 2 − 1
4 [h(a) + h(b)], (8)

where h(x) = (1 + x) log(1 + x) + (1 − x) log(1 − x).

3.3. Two linearly independent states

Consider a set of plaintexts Pxy = {�z = 1
2 (I + xσx + yσy + zσz)} with x, y fixed. Each PQC

given by D = diag(λx, λy, 0) enables us to transmit these sets securely. In the Bloch sphere
representation these sets form lines parallel to the line connecting the poles of the Bloch sphere.

Without loss of generality we can assume that sets Pxy are the most general sets of type P2
tp.

Indeed, the arbitrary set P2
tp is just a unitarily rotated set Pxy = {�z = 1

2 (I + xσx + yσy + zσz)}
for some values x, y. In particular, given a set P2 as a segment of the line l crossing the
Bloch sphere, it is always possible to choose the coordinate system in the following way: the
x axis is given by the centre of the Bloch sphere ( 1

2I ) and the middle point of the segment

of the line l (most mixed state in P
2
tp), the y axis is perpendicular to the plane given by the

whole line l and the total mixture. This choice of the new coordinates corresponds to a unitary
rotation of the Pauli operators σj → Sj = UσjU

†. In this basis the line is given by the states
�z′ = 1

2 (I + x ′Sx + z′Sz) for some fixed x ′. For instance, the states in Pxy can be transformed

into this form by a suitable rotation around the z axis. Therefore, the analysis of P2
tp reduces to

the analysis of this type of states. Using the expression for the distance between an arbitrary
state � ↔ �r and the total mixture D

(
�, 1

2I
) = |�r| it follows that the closest state from the

general set of plaintexts P tp is always the one associated with the shortest Bloch vector. For the
states of the form �z′ the minimum is achieved for z′ = 0, i.e. for the state �min = 1

2 (I + x ′Sx),
for which D

(
�min,

1
2I

) = δ = |x ′|. The solution for real qubits guarantees the existence of
PQC with H = 1 and �(0) = 1

2I (i.e. δ = 0), but PQCs for other states �(0) are possible as
well. Nevertheless, the formula for the entropy for a general PQC channel guarantees that H

cannot be smaller than 1, i.e. H � 1. Although we cannot improve the entropy rate for P2
tp
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we are still curious about the possibility of �(0) = �min. A direct calculation gives us that the
encryption

(
1
2 , I

)(
1
2 , Sx

)
establishes a PQC with the desired property, i.e.

�(0) = 1
2 (�z′ + Sx�z′Sx) = 1

2 (1 + x ′Sx) = �min (9)

with the entropy of the key H = 1. In fact, an arbitrary state within the sphere |�r| � δ = |x ′|
is achievable with the entropy H = 1.

3.4. Three linearly independent states

The sets Px = {
�yz = 1

2 (I + xσx + yσy + zσz)
}

for a fixed x and arbitrary y, z represent

up to unitary rotations the most general sets of plaintexts of the type P3
tp, i.e. planes in the

Bloch sphere representation perpendicular to the x axis. In this case not all PQCs (up to
unitary rotation) are suitable, but only those, for which λy = λz = 0 and λx 	= 0. This

class of PQCs is more powerful, because it encrypts not only the sets P2
tp, but also the sets

P3
tp. These channels correspond to so-called phase damping channels, i.e. they describe the

most general pure decoherence processes [23]. Using a suitably rotated PQC of this form

(D = diag{λx, 0, 0}) we can encrypt any possible set P2
tp and P3

tp with the entropy

H = 2 − 1
2 [(1 + λx) log(1 + λx) + (1 − λx) log(1 − λx)]. (10)

It follows that the smallest possible value of the entropy is the same for both types of sets
and equals H = 1, i.e. except the plaintexts containing the whole set of states P tp = S(H),
a single bit classical key is sufficient to establish a private quantum channel transmitting all
plaintexts � ∈ P tp for arbitrary set P , for which P tp 	= S(H).

3.5. Optimality

The optimal value is achieved for λx = 1, i.e. the corresponding private quantum channels are
unitarily equivalent to

�
opt
E [�] = 1

2 (� + σx�σx). (11)

We have analysed the achievability of states �(0) 	= 1
2I for sets P2

tp and the question is whether

the situation is similar as it was in the case of sets P3
tp. In particular, �min = 1

2 (I + xσx) is the
state with the smallest length of the Bloch vector among all states in Px . Is it possible to design
a PQC such that �(0) = �min? The answer is simple, because the PQC given in equation (11)

satisfies this property, i.e. �
opt
E [Px] = 1

2 (I + xσx). Since all other sets P3
tp are just unitarily

rotated sets Px , it follows that the states �min are achievable in general. For a general PQC

[P3
tp,D = diag{λx, 0, 0}, �(0)] the allowed states �(0) are inside the sphere determined by the

condition |�r| � δ. In particular, D
(
�(0), 1

2I
) = |λxx| = |ax| � δ and the entropy H is given

by the formula in equation (10), i.e. it increases as the distance D
(
�(0), 1

2I
)

is decreasing.
Denote by θ the distance D

(
�(0), 1

2I
)
. Then for a given value of θ the corresponding PQC

transformation is D = diag{θ/δ, 0, 0}.
As a result we have derived that the optimal entropy of the classical key for arbitrary

(two or three dimensional) set of plaintexts equals H = 1. Moreover, we have found the
dependence of the optimal entropy on the distance θ between the state �(0) and the total
mixture (see also figure 1)

H
(
P2

tp, θ
) = 1 (12)

H
(
P3

tp, θ
) = 2 − 1

2 [(1 + θ/δ) log(1 + θ/δ) + (1 − θ/δ) log(1 − θ/δ)]. (13)
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Figure 1. Optimal entropy as a function of the distance θ = D(�(0), 1
2 I ) for the arbitrary set

of plaintexts characterized by the parameter δ = min�∈P tp
D(�, 1

2 I ). The upper line describes
the dependence for sets of plaintexts containing three independent states (planes) and the lower
(constant) line describes the situation for plaintexts containing only two independent states (lines).

4. Approximate private quantum channels

Approximate private quantum channels (APQC) generalize the ideal version in the following
sense. The quadruple [P, E, �anc, ε] constitutes an ε-private quantum channel (ε-PQC), if

D(E[�1 ⊗ �anc], E[�2 ⊗ �anc]) � ε (14)

for all �1, �2 ∈ P . As before, the encryption operation E consists of a mixture of unitary
transformations Uj applied with probabilities pj . Similarly, the decryption operation is given
by the application of the inverse operations U

†
j according to a shared classical key represented

by the sequence of unitaries Uj1 , . . . , Ujn
. In such generalization of PQC the transmission

is still perfect and ε quantifies the security of the protocol, i.e. the distinguishability of the
transferred states.

We are not going to discuss the problem of optimality for such generalization in its
full generality, but we will pay attention to encryption of the qubit states without using any
additional ancillas. The set of all approximate private quantum channels is a specific subset of
all random unitary channels determined by the value of ε. As we have mentioned, the arbitrary
single-qubit unital channel can be written as a convex combination of unitary transformations
and upto unitary transformations the general unital qubit channel E is specified by three
parameters λx, λy, λz related to probabilities p0, px, py, pz via equation (6). The entropy
achieves its optimal value (minimum) for the orthogonal unitary decomposition of E ; hence it
equals the entropy of this probability distribution, H = −∑

j pj log pj .
It follows that each unital qubit channel establishes an ε-PQC, but we still need to specify

the particular value ε and then analyse the optimal entropy as a function of the degree of
privacy for different sets of plaintexts P . Let us analyse the case when the set of plaintexts P
consists of all quantum states, i.e. P equals the Bloch sphere. For a given PQC E (i.e. arbitrary
unital channel) we have

ε = max
�1,�2∈S(H)

D(E[�1], E[�2]) = max
�r1,�r2

√∑
j

λ2
j |r ′

1j − r ′
2j |2

= 2 max{|λx |, |λy |, |λz|} ≡ 2λmax. (15)

Without loss of generality we can assume that |λx | � |λy | � |λz| = ε/2. Our aim is to
analyse and relate the functions ε = ε(λx, λy, λz) and H = H(λx, λy, λz). In particular we
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Figure 2. The dependence of the entropy of the optimal key H for a given degree of secrecy ε is
depicted for all depolarizing channels characterized by λx = λy = λz = λ ∈ [−1/3, 1].

are interested in two questions: (i) given ε what is the optimal approximative PQC, i.e. with
the minimal entropy H, and (ii) given the entropy H what is the most perfect PQC, i.e. with
the smallest ε.

Consider λz is fixed and |λx | � |λy | � |λz|, i.e. the security parameter ε = 2|λz| is fixed.
For unital single-qubit channels the conditions of complete positivity (see equation (6)) read

1 − λz � ±(λx − λy) 1 + λz � ±(λx + λy). (16)

The values λx, λy, λz satisfying these conditions form a tetrahedron with vertices associated
with the orthogonal unitary transformations I, σx, σy, σz. Since these vertices are unitarily
related, the whole tetrahedron can be divided into four unitarily equivalent parts containing
channels with the same values of entropy. It follows that it is sufficient to analyse only two
regions (forming a particular single part): with strictly positive values (λx, λy, λz � 0) and
with strictly negative values (λx, λy, λz � 0).

Intuitively, the geometric picture suggests that the most optimal APQC should shrink the
Bloch sphere symmetrically, i.e. |λx | = |λy | = |λz| = λ. However, not for all positive, or
negative combinations of λx, λy, λz such transformation is associated with some completely
positive map, i.e. the probabilities pj in equation (6) are not positive. Let us assume that
λx = λy = λz = λ then

HI = 2 − 1
4 [(1 + 3λ) log(1 + 3λ) + 3(1 − λ) log(1 − λ)]. (17)

However, the transformation is physical (and entropy makes sense) only if − 1
3 � λ � 1.

Using the relation ε = 2|λ| we obtain the dependence of the entropy on the approximation
(security) parameter ε (see figure 2) for this class of channels. As we can see from figure 2
for smaller values of the security parameter ε the channels given by negative values of λ

are more optimal. Indeed, one can test numerically that these points are optimal among all
possible private quantum channels for ε ∈ [0, 2/3]. Let us note that the point λ = −1/3
corresponds to the best physical approximation of the universal NOT operation (given by
unphysical values λx = λy = λz = −1). At this point the entropy equals H = 1.585. In the
interval 2/3 � ε � 0.958 the optimal entropy is constant because the optimal depolarizing
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Figure 3. The optimal entropy of the key H with respect to the accuracy ε for single-qubit
approximate private quantum channels. The optimal values are achieved for depolarizing channels
except the interval 2/3 � ε � 0.9826, when the optimal APQC is given by phase damping
channels.

channel is still the best approximation of the universal NOT (λ = −1/3). After that interval
the entropy decreases again until its minimal value H = 0 is achieved (for ε = 2).

While the depolarizing channels are optimal in the region of channels with the positive
λs for each value of ε, in the negative region these channels are optimal only for ε ∈ [0, 2/3],
because for other values the ‘depolarizing’ channels are not physical. Let us remark that
in the previous paragraph we have discussed the optimality for depolarizing channels, but
for ε > 2/3 these are no longer optimal. We have found numerically that the channels
parametrized as follows: λz = −λ (also for λ � 1/3) and λx = λy = −κ (κ � λ) are optimal.
The inequalities (16) result in the bound κ � (1 − λ)/2, which is nontrivial only if λ > 1/3.
In fact, only in this case the condition κ � λ holds. The minimal entropy for λ > 1/3 is
achieved for κ = (1 − λ)/2 when

HII = 1
2 [3 + λ − (1 − λ) log(1 − λ) − (1 + λ) log(1 + λ)] (18)

and ε = 2λ. For a given ε this function should be compared with the entropy for depolarizing
channel HI for λ � 1/3. If |λ| = 0.4913 (ε = 0.9826) these two functions coincide, i.e.
HI = HII .

We have found that the optimal entropy for a given value of the security parameter is
given by the following function (see figure 3)

H =




H1(−ε) for 0 � ε � 2/3

H2(ε) for 2/3 � ε � 0.9826

H1(ε) for 0.9826 � ε � 2,

(19)

where H1(ε) = 2 − 1
4

[(
1 + 3

2ε
)

log
(
1 − 3

2ε
)

+ 3
(
1 − ε

2

)
log

(
1 − ε

2

)]
and H2(ε) =

1
2

[
3 + ε

2 − (
1 − ε

2

)
log

(
1 − ε

2

) − (
1 + ε

2

)
log

(
1 + ε

2

)]
. This function characterizes optimal

approximate private quantum channels for the encryption of the whole state space. Discussing
the optimality of APQC for general sets of plaintexts is beyond the scope of this paper. The
main obstacle is that the analysis cannot be reduced to some typical sets like it was in the case
of perfect PQC. Let us note that for APQC not all the trace-preserving linear combinations
must be encrypted with the given security ε. A similar result for approximatively private
quantum channels has been derived also in [24], where also the optimality for qubit was
discussed using different methods and slightly different definition of the security parameter ε.
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5. Conclusion

For single qubits we have characterized and analysed all possible ancilla-free private quantum
channels and all possible approximate private quantum channels. We have shown that
except the set of plaintexts P generating the whole set of states via trace-preserving linear
combinations, i.e. if P tp 	= S(H), for arbitrary set of plaintexts one bit of the classical key is
sufficient to establish a private quantum channel. However, if P tp = S(H) then two classical
bits are necessary. In order to use a single bit of the key even in such case, one should employ
an unphysical operation—universal NOT (ENOT). The encryption of the single qubit based on
the operations I, ENOT (with equal probabilities) would map the arbitrary input state into the
total mixture �(0) = 1

2 (I[�] + ENOT[�]) = 1
2 (� + �⊥) = 1

2I .
Except the results valid for single-qubit private quantum channels we have derived a

bound on the optimal entropy for the arbitrary system. In particular we have shown that
for PQC [P, E, �(0)] the entropy of the key cannot be smaller than the entropy exchange
H � max� Sex(�, E). We have also shown that for a given random unitary channel E the
decomposition into mutually orthogonal unitaries optimizes the entropy H. For qubits such
decomposition always exists, but for larger dimensional systems its existence is an open
problem. Except extending the results to larger systems, it would be of interest to perform
similar analysis for private quantum channels involving the usage of ancilla in its full generality,
i.e. including ancilla. This opens a lot of new possibilities and some improval is very likely to
happen.
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