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We present a quantum implementation of Parrondo’s game with randomly switched strategies using 1) a quantum walk as a source of
“randomness” and 2) a completely positive (CP) map as a randomized evolution. The game exhibits the same paradox as in the classical
setting where a combination of two losing strategies might result in a winning strategy. We show that the CP-map scheme leads to
significantly lower net gain than the quantum-walk scheme.

1 Introduction

The theory of games [1] studies models in which several parties try to maximize their gains by selecting
different strategies that are allowed by the rules of a particular game. This theory can be applied in many
different areas such as resolutions of economical or political conflicts, investigations in an evolutionary
biology, psychology, etc. In the field of computer science the game theory is used to model distributed or
parallel computing.

Games are formalized by assuming that all parties can choose from a set of well-defined strategies, and
that a deterministic payoff function is defined for any choice of strategies. In the classical game theory a
strategy is considered to be a state of some specific physical system, which may interact with other systems
(strategies) according to a given prescription (a set of rules associated with the game). If strategies are
associated with states of a physical system then it is natural to ask what would happen if this system
obeys laws of quantum physics. This brings us to a notion of quantum games, where strategies of each
party are quantum states and manipulations with strategies are described by completely positive (CP)
maps. The payoff function is then a quantum observable on the tensor product of state spaces of all
parties. A nontrivial aspect of quantum games is the possibility of a superposition of strategies, which
may significantly affect the expected payoff. At this point it should be noted that there is no canonical
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Table 1. The payoff table for the Prisoner’s dilemma game for each player (Alice, Bob) either cooperating (C) or defecting (D).

Bob: C Bob: D

Alice: C (3,3) (0,5)
Alice: D (5,0) (1,1)

quantization procedure of classical games. Quantum games are games with specific rules that include for
instance a possibility to consider superposition of strategies.

Among first models of quantum games that have been extensively studied is the so-called Prisoner’s

dilemma [2]. In the “classical” version of the game, two suspects (prisoners), denoted as Alice and Bob,
are tried by a prosecutor who offers each of them separately to be pardoned if they provide evidence
against the other suspect. Now both suspects may choose either to cooperate, i.e. to not to comply with
the request of the prosecutor , or to defect. Different combinations of behavior lead to a payoff shown in 1.
The optimal strategy for both suspects is to cooperate; however this selection of strategies is unstable in
the sense that any player can separately improve his/her payoff, if the other player does not change his/her
strategy. On the other hand, the strategy (D,D) is stable. It has been shown [3], that the stable selection
of strategies (an equilibrium) exists under rather general conditions. In a quantum version of the game,
each player possess a qubit, whose state determines whether the player will cooperate or defect. Both Alice
and Bob entangle their qubits, then separately (locally) apply unitary operators on their respective qubits,
and then disentangle the qubits. The measurement on both qubits yields the expected payoff. It has been
proven that if the entanglement between the qubits is maximal, (D,D) ceases to be stable; a new stable
selection of strategies emerges, which is also optimal.

In Ref. [4] the author discussed the “penny-flip” model, in which two players take turns applying their
strategies; the payoff is computed after a (short) sequence of turns. It has been proven that one of the
player has an optimal strategy (a definitive advantage) over the other one, provided he uses quantum
operations, while the other uses stochastic operations. Moreover, it turns out that a two-person zero-sum
game does not need to have an equilibrium, when both players use quantum operations on their strategy
spaces.

Sir Peter Knight and his collaborators have recently analyzed various aspects of quantum walks (for
more details see Refs. [5, 6, 7, 8, 9]). In particular, they have investigated physical implementations of
quantum walks. In the present paper we will present a quantum implementation of Parrondo’s game with
randomly switched strategies using quantum walks as a source of “randomness”. We will also analyze a
situation when completely positive (CP) maps are used as randomized evolutions. We will show that the
game exhibits the same paradox as in the classical setting where a combination of two losing strategies
might result in a winning strategy. Our paper is organized as follows: In Sec. 2 we will briefly describe a
classical Parrondo’s game, in Sec. 3 we will show how to implement a random choice of strategies using
quantum walks. Numerical simulations of quantum Parrondo’s game will be presented in Sec. 4. In Sec. 5
we will implement random choice of strategies using general completely positive maps and corresponding
numerical simulations will be presented in Sec. 6. Finally, in Sec. 7 we will analyze connections between
the three versions of Parrondo’s game discussed in the paper.

2 Parrondo’s game - an overview

Parrondo’s game [10,11] is a 1-player paradoxical game (the player plays “against the environment”). The
player repeatedly chooses from among two strategies A,B. Each strategy involves a coin flip; the player
adds or subtracts one unit to his capital depending on the flip outcome. The coin is biased, and the bias
may depend on the amount of capital accumulated so far. We may choose the bias of both coins to be
such that if sequences of strategies AA . . . A or BB . . . B are played then, the capital converges to −∞.
However, if we switch between the strategies, the capital may converge to +∞.

We restate the above arguments in a rigorous way:
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Figure 1. The expected capital c(n) versus the number of steps n for the Parrondo’s game with the sequence of strategies A · · · (solid
line),B · · · (dotted line),AABB · · · (slashed-dotted line) and random choice (slashed line) of strategies. The biases of the coins are

p = 1
2
− ǫ, while for the coin B is p0 = 1

10
− ǫ, p1 = 3

4
− ǫ, (ǫ = 1

100
). The initial capital is equal to 0.

Definition 2.1 (Parrondo’s game, [11]) Parrondo’s game is a sequence {s(n) ∈ {A,B} : n ∈ N} where
A,B are two strategies. Both strategies consist of a coin toss and adding or subtracting one unit of capital
to the player’s account according to the result of the toss. The probability that A wins is p; the probability
that B wins is p0 if the capital is multiple of 3, and p1 otherwise.

We see that Parrondo’s game is characterized by three coefficients p, p0, p1, which determine the bias of
both coins and the overall evolution of the capital. The capital of the game c(n) is a random variable of the
number of coin tosses n. If its mean value 〈c(n)〉 increases (decreases), the game is called winning (losing).
If s(n) = A for all n and p = 1

2 − ǫ, then the game is obviously losing. If s(n) = B, the conditions for p0, p1

can be derived from the properties of the stationary distribution of the Markov process q(n) = c(n) mod 3
(for more details see Refs. [12,13]). It turns out that this sequence of strategies is losing iff

p0 <
1 − 2p1 + p2

1

1 − 2p1 + 2p2
1

. (1)

Parrondo’s paradox rests in the fact that some sequences of strategies can nevertheless be winning. One
such example is the sequence {s(n)} = AABB · · · (the strategy A is used if n ≡ k(mod 4), k = 0, 1, and
B is used otherwise) or random mixture of strategies, when A or B is played at each step with probability
1
2 [12, 13]. This is true, for example, for p0 = 1

10 − ǫ, p1 = 3
4 − ǫ. The time dependence of the expected

capital is shown in Fig. 1.
Parrondo’s game may be thought of as a stochastic motion of a particle on the line [12]. For example

(see Ref. [14]), any game driven by one coin which depends on the amount of capital modulo L may be
thought of as a stochastic motion on the line is governed by the master equation

Px(n+ 1) = px−1Px−1(n) + qx+1Px+1(n) , (2)

where Px(n) is the probability that the capital amounts to x after n coin tosses, px probability of the
winning coin toss when capital is equal to x, and qx = 1 − px Eq. (2) is just the discretization of the
Fokker-Planck equation

∂P (ξ, t)

∂t
= − ∂

∂ξ
[F (ξ)P (ξ, t)] +

1

2

∂2

∂ξ2
P (ξ, t) , (3)

where F (ξ) is the drift coefficient. The discrete version of F (ξ) is Fx = px − qx and the Parrondo’s game
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is equivalent to the diffusion of a particle in the potential

Vx = −1

2

x
∑

y=1

ln

(

px−1

1 − px

)

. (4)

The mean position of the particle is equivalent to the expected capital. An application of the strategy
is equivalent to turning on some potential, which will cause the particle to drift in a certain direction.
The potential corresponding to the strategy A is linear, while the capital (=position) dependence of the
strategy B is modelled by a sawtooth potential with a period equal to 3. By periodic switching of the
potential on and off, the particle can drift in either direction. This is an example of a Brownian motor,
when a thermal movement of the particle is directed by means of an external source with global (overall)
zero effect.

3 Random choice of strategies with quantum walk

Quantum games which have properties of Parrondo’s game were proposed in Refs. [15, 16]. In Ref. [15]
the authors considered a scheme which is essentially equivalent to our quantum walk scheme (see below),
except that they do not use a qubit which “randomly” determines which strategy we use (|d〉 in our
notation). Hence, they are constrained to deterministic strategies sequences. Moreover, the state of the
quantum coin which determines whether we win or lose one unit of the capital is reset after each step. We
decided to keep the state of the coin unchanged after each step, possibly enforcing quantum interference
effects. Our model may lead to a higher rate of capital growth (see Fig. 4) depending on the initial state
of the coin which affects the “random” choice of strategies.

In Ref. [16] the authors considered the quantization of a classical stochastic motion with a finite memory,
which also leads to the Parrondo’s effect. This was attained by keeping the state of n last “coin tosses” in
a quantum register and using a sequence of unitary operators acting on one qubit of the register depending
on the state of other qubits in the register. In what follows we will focus, on the “quantization” of a random
sequence AB . . . . If the condition in Eq. (1) is satisfied, this game is winning.

There is no unique way how to quantize the Parrondo’s game. We should require that the amount of
capital be encoded in the state of a quantum register with base states from H = {|x〉 : x ∈ Z}. Classically,
updating of the capital can be achieved by a random walk conditioned by the coins (strategies) A,B. The
“quantization” of the random walk was performed in Ref. [17] as a controlled permutation on H, with an
additional register holding the result of the coin toss (unitary operation). The connection of this dynamics
with a classical Markov process is shown in Ref. [18]: It may be thought of as a random walk in 1 dimension
with an arbitrary bias to move in either direction, which contains an additional “interference” term between
left and right steps in order to preserve the unitarity. For consistency, we can also use the quantum coin
tosses for the simulation of random choice of strategies. Since the strategy B requires dependence of the
coin toss on the state of |x〉 modulo 3, we need an additional control qubit |o〉 which determines whether
x is divisible by 3 or not. This register can be reset after each application of the strategy, based on the
information stored in other registers.

A quantum walk [17] is a unitary evolution (of a particle, for simplicity) similar to a discrete random
walk. The state of the particle is a vector from the Hilbert space H, which is spanned by the edges of some
underlying oriented graph. We restrict ourselves to regular graphs.

Definition 3.1 (Quantum walk in 1D) Let HC = span{|c〉 : c = 0, 1} (the coin space), HX = span{|x〉 :
x ∈ Z} (the position space) and H = HC ⊗ HX be the Hilbert space of the quantum walk. Let T0, T1

be operators on HX such that T0|x〉 = |x − 1〉, T1|x〉 = |x + 1〉, U ∈ SU(2) and πj = |j〉〈j|, j = 0, 1 be
projection operators on HC . Then the evolution for one step of a quantum walk is given by a unitary
operator

E = (π0 ⊗ T0 + π1 ⊗ T1)(U ⊗ I) (5)
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The intuitive picture of the quantum walk in 1D is a particle endowed with an internal degree of freedom
(chirality), which may take values 0 (left) and 1 (right), and whose state is rotated at each step by U .
Then the particle takes a step to the left or to the right, depending on the chirality.

We introduce a new model of the quantum Parrondo’s game as follows: We have four registers
(C,D,X ,O), states of which are described by vectors in Hilbert spaces HC ,HD,HX ,HO, respectively.
The register X stores the amount of capital; D is the coin register for the strategy used; C is the chirality
register which determines the strategy we use; O is the auxiliary register. The quantum circuit which
processes the data stored in these registers is shown in Fig. 2. The quantum Parrondo’s game is defined as

Definition 3.2 (Quantum Parrondo’s game) We have H = HC ⊗HD ⊗HX ⊗HO such that:

(i) The Hilbert spaces Hj = span{|k〉 : k = 0, 1} for j ∈ {C,D,O}. All operators on Hj will be henceforth
written in the basis (|0〉, |1〉), so that |0〉 = (1, 0)T , |1〉 = (0, 1)T . The Hilbert space HX = span{|x〉 :
x ∈ Z}

(ii) U is the unitary operator on HC :

U =
1√
2

[

1 i
i 1

]

. (6)

(iii) The operator X is the NOT gate:

X =

[

0 1
1 0

]

. (7)

(iv) The operator c−A is a controlled SU(2) operator (rotation) on HC ⊗HD, the operators c−B0, c−B1 are
controlled SU(2) operators on HD ⊗HC ⊗HO. In both cases, HD is the target space. For any SU(2)
operator G we use the parametrization

G(θ, α, β) =

[

eiα cos θ
2 ieiβ sin θ

2
ie−iβ sin θ

2 e−iα cos θ
2

]

, (8)

with θ ∈ [0, π], α, β ∈ [−π, π]. We define

c−A = π0 ⊗A+ π1 ⊗ I ; (9)

c−Bj = π0 ⊗ (Bj ⊗ π0 + I ⊗ π1) + π1 ⊗ I ⊗ I , (10)

for j ∈ {0, 1}.
(v) The gate MOD is the conditional operator:

MOD|x〉|o〉 =

{

|x〉|o〉 3 | x
|x〉|o⊕ 1〉 otherwise.

(11)

(vi) The operator S acting on HC ⊗HX updates the X register (the capital by)

S = π0 ⊗ T0 + π1 ⊗ T1, (12)

where T0|x〉 = |x− 1〉, T1|x〉 = |x+ 1〉.
(vii) The gate MODinv acting on HC ⊗ HX ⊗ HO (HO is the target) is the conditional operator which

resets the register O. If the state of the (C,X) register at the n-th step is (cn, xn), we have xn−1 ≡
xn− (2cn −1) (mod 3). At the n-th step, the operator MODinv flips |o〉 if and only if xn−1 ≡ 0 (mod 3).
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|d〉 U • X • •

|c〉 A B0 B1 • •

|x〉 • S •

|o〉 = |0〉 MOD • X • MODinv

Figure 2. The quantum circuit for the quantum Parrondo’s game.

|dc〉 W • •

|x〉 • S •

|o〉 = |0〉 MOD • MODinv

Figure 3. A simplified version of the quantum circuit for the quantum Parrondo’s game.

The logical circuit shown in Fig. 2 can be simplified to obtain the circuit presented in Fig. 3. In this
circuit, the operator W acting on HD ⊗HC ⊗HX ⊗HO has the form

W = |0〉〈1|U ⊗
[

B0 ⊗ 1 ⊗ |1〉〈0| +B1 ⊗ 1 ⊗ |0〉〈1|
]

+ |1〉〈0|U ⊗A⊗ 1 ⊗X (13)

and the operators S,MODinv depend nontrivially only on |c〉.
We introduce a notation HW ≡ HD ⊗ HC and further we express the state of the whole system using

the eigenvectors of the translation operator on HX :

|φj
k〉 =

∑

x∈Z;x≡j(mod 3)

eikx|x〉, (14)

for j ∈ {0, 1, 2}, k ∈ [−π, π]. It is clear that T0|φj
k〉 = eik|φj⊖1

k 〉 and T1|φj
k〉 = e−ik|φj⊕1

k 〉. We also set

|φk〉 =
∑2

j=0 |φ
j
k〉. The inverse transform is given by an expression

|x〉 =

∫ π

−π

dk

2π
e−ikx|φk〉 . (15)

The action of W · MOD on the state |χ〉|φj
k〉|0〉 gives

|χ〉|φ0
k〉|0〉 7→

(

π01U ⊗B0 ⊗ 1 ⊗ π10 + π10U ⊗A⊗ 1 ⊗X
)

|χ〉|φ0
k〉|0〉 ; (16)

|χ〉|φ1,2
k 〉|0〉 7→

(

π01U ⊗B1 ⊗ 1 ⊗ π01 + π10U ⊗A⊗ 1 ⊗X
)

|χ〉|φ1,2
k 〉|1〉 , (17)

where πab ≡ |a〉〈b|. Application of the operator S and reseting the last register with MODinv gives the
evolution operator

E =
(

1D,C ⊗ 1X ⊗ MODinv

)

· S ·W ·
(

1D,C ⊗ 1X ⊗ MOD
)

(18)
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whose action on |χ〉|φj
k〉|0〉 is

E|χ〉|φk〉|0〉 =
{

(M10 +M11)|χ〉|φ0
k〉 + (M10 +M01)|χ〉|φ1

k〉 + (M11 +M00)|χ〉|φ2
k〉

}

|0〉 (19)

with

Mjd = esdik(π01U ⊗ πdBj + π10U ⊗ πdA), (20)

where j, d ∈ {0, 1}, sd = 1 − 2d. Multiple application of E on the initial state gives

En|χ〉|φk〉|0〉 =
(

µ
(n)
0 |χ〉|φ1

k〉 + µ
(n)
1 |χ〉|φ1

k〉 + µ
(n)
2 |χ〉|φ2

k〉
)

|0〉 . (21)

The terms M
(n)
j are related by the matrix-matrix equation







µ
(n+1)
0

µ
(n+1)
1

µ
(n+1)
2






=





0 M10 M11

M01 0 M10

M00 M11 0



 ·







µ
(n)
0

µ
(n)
1

µ
(n)
2






, (22)

with µ
(0)
j = 1. The problem can be solved by computing the eigensystem of this 12 × 12 matrix.

4 Numerical simulation of quantum Parrondo’s game

In this section we present results of numerical simulations of the quantum Parrondo’s game for different
initial states. We assume a coin which is an analogue of the classical coins A,B; namely we consider
A = G(2(π

2 − ǫ), 0, 0), B0 = G(2( π
10 − ǫ), 0, 0), B1 = G(2(3

4 − ǫ), 0, 0), ǫ = 1
100 , We simulate the evolution for

up to 1000 steps, counting the expected capital as

c(n) ≡
∑

x∈Z

x〈x|ρX(n)|x〉 , (23)

where

ρX(n) ≡ TrD,C,O(En)|ψ(0)〉〈ψ(0)|(E†)n . (24)

For our purposes we observe four combinations of the basis states of |d〉, |c〉 (see Fig. 4). We see that the
game may be winning, losing or fair, depending on the initial state of the register |d〉|c〉. The initial state
of |c〉 determines whether the change in c(n) is positive or negative (the two being symmetric), while the
initial state of |d〉 determines the size of this change. The rate of losing/gaining the capital is much bigger
than for the corresponding classical Parrondo’s game with random switching of the strategies (compare
with Fig. 1).

The variance of the expected capital reads

v(n) ≡
∑

x∈Z

x2〈x|ρX(n)|x〉 . (25)

It is easy to see that v(n) does not depend on the initial state of the register C, since the evolution
is symmetric with respect to the exchange of directions. However, it does depend on the initial state of
register D, since this register determines the overall strategy. The numerical value of v(n) is shown on
Fig. 5.
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Figure 4. The expected capital c(n) of the quantum Parrondo’s game for the zero initial capital and different initial states of the
registers (C, D).
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Figure 5. The variance v(n) of the expected capital of the quantum Parrondo’s game for the zero initial capital and different initial
states of register D. The variance does not depend on the initial state of register C. For comparison purposes we also simulate the

variance for classical Parrondo’s game with random choice of strategies.

5 Random choice of strategies with CP-map

In Ref. [4] the author considered the difference between quantum strategies, and the mixed quantum

strategies. In these mixed strategies one applies different unitary operators on the qubit with certain
probabilities. It is probably a better analogue of a random sequence of classical strategies A,B to consider
quantum evolution, where the application of the operators A,B0, B1 depends on a priori probabilities
rather than on a state of the register |d〉. For our purposes, we discard the register |d〉 and the state of the
game is described by a density operator

ρ =
∑

x,y∈Z

ρxy ⊗ |x〉〈y| . (26)

We do not need to consider the state of the register |o〉, as any “garbage” information which is written into
it is discarded by the operator MODinv. We need to reset the register |o〉 so that the projection 1⊗1⊗πx⊗1
of the state vector |ψ〉 will effectively be from the subspace HD ⊗HC .
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Figure 6. The capital of the mixed Parrondo’s game for zero initial capital and the initial state of the C register being |0〉 (1), |1〉 (2).

One step of the evolution of ρ is described by the CP-map E such that (we omit the action of
MOD,MODinv)

E [ρ] =
∑

j,k∈{0,1}

(πj ⊗ Tj)
[

∑

x,y∈Z

1

2

(

AρxyA
† +B01ρxyB

†
01

)

⊗ |x〉〈y|
]

(

πk ⊗ Tk

)†
. (27)

Here B01 depends on a state of the register |o〉 in the usual way. In this dynamics respective operators are
applied with probabilities equal to 1

2 .

6 Numerical simulation of mixed Parrondo’s game

We have simulated the evolution of the mixed Parrondo’s game for different initial states of the register
|c〉 and zero initial capital. The results (see Fig. 6) show that dynamics is different from both the random
Parrondo’s game and the quantum Parrondo’s game in that the capital converges to a stationary value,
which is either positive or negative, depending on the initial state of |c〉. The expected capital resulting
from the evolution given by Eq. (27) depends on the initial state in a symmetric way. To see this, let us
consider the evolution

E [(X ⊗ 1)ρ(X† ⊗ 1)] , (28)

where X is the swap operator on HC . It is obvious that X commutes with A and B0, B1, and (πL ⊗ TL +
πR ⊗ TR)(X ⊗ 1) = (X ⊗ 1)(πR ⊗ TL + πL ⊗ TR). Hence, n steps of the evolution with the swapped state
give

En[(X ⊗ 1)ρ(X† ⊗ 1)] = (X ⊗ Y )En[ρ](X ⊗ Y )† , (29)

where Y |x〉 = | − x〉. The symmetry in the expected capital with respect to initial states πL ⊗ π0 and
πR ⊗ π0 as seen in Fig. 6 immediately follows. The variance of the expected capital resulting from the
mixed Parrondo’s game is shown in Fig. 7. Since the capital depends symmetrically on the initial state of
C, the variance is independent of it.
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Figure 7. The variance of the expected capital of the mixed Parrondo’s game for zero initial capital and the initial state of the C

register being either |0〉 or |1〉.

7 Conclusions: Connection between Parrondo’s games

The natural question arises: what is the connection between the three versions of Parrondo’s game we
have considered in this paper? The quantum Parrondo’s game may be transformed into both the classical
Parrondo’s game with quasi-random (memory dependent) strategies, and the mixed Parrondo’s game. To
see this, let us consider that in the quantum Parrondo’s game we measure the register D at each step (just
after the application of the operator U). If the initial state of D is either |0〉 or |1〉, the operator U prepares
equally weighed superposition of states |0〉, |1〉. Measurement of the register D gives a uniform probability
distribution over |0〉, |1〉, hence the rest of the dynamics corresponds to random choice of strategies of A,B
and we obtain the mixed Parrondo’s game (compare Fig. 6 and Fig. 8).

0 5 10 15 20
n

-0.1

-0.05

0

0.05

c

2

1

Figure 8. The evolution of the capital which arises when we make a measurement of the register C immediately after we apply the
operator U , averaged over 5000 samples. The initial state of D is |0〉 and the initial state of C is |0〉 (1),|1〉 (2).

Moreover, let us consider that we also measure the register C at each step (after the action of A,B0, B1).
Then the state of |c〉 collapses onto |0〉, |1〉 (with the biased probability) and the state of |x〉 is changed to
the orthogonal state |x± 1〉. However, this evolution differs from the classical Parrondo’s game in that the
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bias of the coins depends on the outcome of the last measurement. To see this, let us consider that the
initial state of C is |0〉 and in the first step we apply A. Then the new state of C is [sin ǫ|0〉 + i cos ǫ|1〉]
and the measurement on |c〉 gives |0〉, |1〉 with respective probabilities. If at the next step we happen to
apply A again, the new state of C will be either [sin ǫ|0〉 + i cos ǫ|1〉] (if the last measurement gave |0〉) or
[sin ǫ|1〉+ i cos ǫ|0〉] otherwise. We see that the bias to measure |0〉, |1〉 changed (in classical terms, the new
coin toss is more likely to win, if the last coin toss was losing, and vice versa).

In this paper we have shown how we can implement the Parrondo’s game with random switching of
strategies using quantum formalism, and what is the difference between the “randomness” in the sense
of quantum walks and the true randomness implemented via CP-maps. The first case leads to strictly
positive or negative gain in the capital, or even to zero outcome, depending on the initial state of the coin
registers. The second case may also lead to the positive or negative gain; however the capital converges
to a fixed value. The measurement of a selected register may reduce the quantum Parrondo’s game to the
mixed Parrondo’s game, and hence suppress the winning ratio of the game.

Finally, we note that there exist other versions of the quantum Parrondo’s game. Specifically, in Ref. [19]
the authors discussed how the paradox arises when coin tosses depend on the states of the coins at the
previous steps. Cooperative Parrondo’s game are also of interest. The problem of coins with memories and
other modifications of Parrondo’s game as well as physical realization of the game via quantum walks will
be presented elsewhere.
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