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A quantum processor is a programmable quantum circuit in which both the data and the program, which
specifies the operation that is carried out on the data, are quantum states. We study the situation in which we
want to use such a processor to approximate a set of unitary operators to a specified level of precision. We
measure how well an operation is performed by the process fidelity between the desired operation and the
operation produced by the processor. We show how to find the program for a given processor that produces the
best approximation of a particular unitary operation. We also place bounds on the dimension of the program
space that is necessary to approximate a set of unitary operators to a specified level of precision.
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I. INTRODUCTION

Quantum circuits are typically designed to perform one
function, for example, teleportation or cloning. It is useful to
have circuits that are more flexible and can perform a variety
of functions. The operation that the circuit performs can ei-
ther be determined by classically setting the values of some
parameters, for example the rotation angle in a one-qubit
rotation gate, or it can be determined quantum mechanically,
where a quantum system serves as a program to tell the cir-
cuit what to do. The second method has the advantage that
the program could be a result of a previous stage of a quan-
tum computation, which would allow one stage of a compu-
tation to control a subsequent one.

A programmable quantum circuit �quantum processor� has
two inputs, the data register and the program register. The
data register is in the state on which we want to perform an
operation, and the program state specifies the operation. An
example is the controlled-NOT �CNOT� gate in which the con-
trol qubit is the program and the target qubit is the data. If
the control qubit is in the state �0�, nothing is done to the data
state, and if it is in the state �1�, the operation �x �bit flip� is
applied to the data state. The superposition state ��0�+��1�
causes the completely positive quantum map

T��� = ���2� + ���2�x��x �1.1�

to be applied to the data state �= ������.
Suppose that we have a set of N unitary operators that we

want to be able to implement on the data qubit with a pro-
grammable quantum circuit. Nielsen and Chuang showed
that this requires a program space of at least N dimensions
�1�. This follows from the fact that the program states corre-
sponding to any two of the unitary operators must be or-
thogonal. If one wants to be able to realize a large �or infi-
nite� number of unitary operations with a program space of
fixed dimension, one has two possible options. One option is
to make the processor probabilistic, that is, a measurement is
performed at the program output, and if the correct result is
obtained, the desired operation has been performed on the

data �1–5�. The probability of obtaining the proper measure-
ment outcome will, in general, be less than 1 so that the
processor succeeds with only a certain probability. The sec-
ond option is to make the processor an approximate one.
That is, each of the operations is not performed exactly, but
only up to some level of approximation. It is this type of
processor that we wish to discuss here.

Approximate processors have been discussed by Vlasov
�2� and by Vidal and Cirac �3�. Vlasov considered a classi-
cally programmable processor, while Vidal and Cirac consid-
ered one whose programs are arbitrary quantum states. They
made some rough estimates of the resources required for a
processor to be able to program a set of unitary operators to
a specified level of precision �3�. In Refs. �6–8� approximate
programmable quantum measurement devices have been
studied. These devices realize certain classes of positive
operator-valued measures �POVM’s� up to some level of ap-
proximation, and which POVM they perform is determined
by a program state. It was shown by D’Ariano and Perinotti
that for programmable measurement devices the number of
dimensions of the program space is a polynomial function of
the reciprocal of the desired accuracy �8�.

Physical limitations in real systems lead to an additional
reason to study approximate processors. That is, ideal de-
vices in theory become approximate ones in practice. For
example, if one wants to perform a rotation on a qubit that is
a two-level atom, one applies a classical field to the atom.
Real fields, however, consist of photons, and this and energy
constraints on the field place limits on the accuracy of the
rotation that can be achieved �9–12�. Conservation laws can
also place limits on the accuracy of quantum operations �13�.

Other types of processors have been explored. In particu-
lar, processors that evaluate the expectation value of an arbi-
trary operator have been proposed �14,15�. In these proces-
sors, the data are the state in which the expectation value is
to be evaluated, and the program specifies the operator.

In this paper we shall discuss processors that approximate
sets of unitary operators. We shall show, for a given proces-
sor, how to select an optimal program vector to approximate
a particular unitary operator. In addition we shall give a
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lower bound on the number of dimensions the program space
must have to approximate a set of unitary operators to a
given level of accuracy. In the last part of the paper we will
address the question of optimal programmability, i.e., which
processor is the best in approximating all channels.

II. OPTIMAL PROGRAM STATES

We now consider a processor that acts on the Hilbert
space H=Hd � Hp, where Hd is the data Hilbert space and
Hp is the program Hilbert space. Let us denote the dimension
of Hd by D and that of Hp by N. The processor itself is
represented by a unitary operator G, which acts on H. The
action of the processor on the input state ���d���p is given by
�16,17�

G����d � ���� = �
j=1

N

Aj������d�j�p, �2.1�

where 	�j�p � j=1, . . . ,N
 is an orthonormal basis of Hp. The
operators Aj��� are expressed in terms of the operators Ajk,
where G is expressed as

G = �
j,k=1

N

Ajk � �j�pp�k� . �2.2�

These operators obey the relations

�
j,k=1

N

Ajk1

† Ajk2
= Id�k1k2

,

�
k=1

N

Aj1k
† Aj2k = Id� j1j2

, �2.3�

where Id is the identity operator on Hd. The operator Aj��� is
given by

Aj��� = �
k=1

N

Ajkp�k���p, �2.4�

from which it follows that

�
j=1

N

Aj
†���Aj��� = Id. �2.5�

We now need to discuss how to measure how close our
processor comes to achieving a particular unitary operation.
We shall use what has been called by Gilchrist et al. the
process fidelity �18�, which was originally proposed by Ra-
ginsky �19�. It is defined as follows. Let T1 and T2 be two
completely positive maps, which map operators on the Hil-
bert space K onto operators on the same space. We shall
assume that the dimension of K is finite and equal to D. The
Jamiolkowski isomorphism allows us to associate a density
matrix on K � K with each of these maps. Define the maxi-
mally entangled state

��� =
1

�D
�
j=1

D

�j��j� , �2.6�

where 	�j� � j=1, . . . ,N
 is an orthonormal basis of K. For
each map Tj, define the density matrix � j to be

� j = �I � Tj��������� , �2.7�

for j=1,2, where I is the identity map. The process fidelity
is defined as

Fproc�T1,T2� = �Tr���1�2
��1�2. �2.8�

The process fidelity has a number of useful properties that
are discussed in Refs. �19� and �18�, one of which is the fact
that it is symmetric, i.e., Fproc�T1 ,T2�=Fproc�T2 ,T1�.

We are going to be interested in the case in which one of
the maps is unitary. In particular, let us assume that T1���
=U�U−1 for some unitary operator U. In this case we have
that �1 is a pure state so that �1

1/2=�1. This gives us that

Tr���1�2
��1 =

1

D
� �

j1,j2=1

D

�j1�U−1T2��j1��j2��U�j2�
1/2

.

�2.9�

If T2 is the result of the action of a processor, we have for a
density matrix �d, representing a data state, that

T2��� = �
j=1

N

Aj����dAj���†, �2.10�

which gives us, finally, that �we denote the map T1 by the
operator U�

F�U,T2� =
1

D2�
j=1

N

�Tr�U−1Aj�����2. �2.11�

Using the notation for the Hilbert-Schmidt scalar product
�A �B�=Tr A†B this can be rewritten in the form F�U ,T2�
= �1/D2�� j��Aj��� �U��2. A similar result was derived inde-
pendently by D’Ariano and Perinotti in �20�.

This fidelity can also be expressed in terms of the opera-
tors Ajk. Defining the matrix

Mk1k2
=

1

D2�
j=1

N

Tr�Ajk1

† U�Tr�U−1Ajk2
� , �2.12�

we have, from Eq. �2.4�, that

F�U,T2� = �
k1,k2=1

N

p���k1�pMk1k2p�k2���p. �2.13�

Now consider the following problem. Suppose we are
given a processor and we wish to find the best program to
approximate the unitary operator U, where by best we mean
the program that maximizes the process fidelity. An exami-
nation of Eq. �2.13� shows that this can be accomplished by
finding the eigenvector of M =�k1,k2

Mk1k2
�k1��k2� with the

largest eigenvalue, and choosing the program vector to be
this eigenvector. The corresponding fidelity will just be the
largest eigenvalue of M.
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This procedure is particularly simple to carry out when
the processor is what was called in Ref. �16� a U processor.
This is a processor that is a controlled-U gate. Each basis
vector �k�p in Hp is associated with a unitary operator Uk
acting on Hd. That is, if the program state is �k�p, then the
operator Uk is applied to the data state. The operators Ajk for
this type of processor are particularly simple, Ajk=� jkUk,
which implies that the matrix M is given by

Mk1k2
=

1

D2 �Tr�U†Uk1
��2�k1k2

. �2.14�

Because in this case M is diagonal, we simply find the diag-
onal element that is largest. This is the largest eigenvalue of
M and the maximum value of the fidelity. The value of k
corresponding to this diagonal element tells us which of the
basis vectors �k�p is the program that will achieve this fidel-
ity. This implies that to best approximate a unitary operator
U by a U processor, we simply find which of the unitary
operators that the processor can perform perfectly has the
largest Hilbert-Schmidt inner product with U and perform
that operation. Note that this prescription does not make use
of superpositions of the basis states in the processor.

III. AN EXAMPLE

Before proceeding with the exploration of the general
properties of approximate quantum processors, it is useful to
analyze the following example. We shall consider a proces-
sor acting on qubits with an N-dimensional program space
spanned by the orthonormal basis 	�k�p �k=0, . . . ,N−1
. De-
fine the shift operators E+ and E−, acting on the program
space as E+�k�= �k+1� and E−�k�= �k−1�, where the addition
and subtraction are modulo N. We also define the program
states

�	� =
1

�N
�
k=0

N−1

e−ik	�k� . �3.1�

If 	=	m= �2
m� /N then the state �	m� becomes an eigenstate
of E+ and E−,

E+�	m� = ei	m�	m�, E−�	m� = e−i	m�	m� . �3.2�

For the qubit whose Hilbert space is spanned by the two
orthonormal vectors �0�d and �1�d, define the operators ��+�

and ��−�, where ��+��0�d= �1�d, ��+��1�d=0, and ��−�= ���+��†.
We shall consider a specific realization of the U processor
defined by the operator G acting on Hd � Hp,

G = exp�i�


2

���+�

� E− + ��−�
� E+�� . �3.3�

The fact that G is a U processor can be seen when we let G
act on the state ���d�	m�p. Here we obtain the result

��m� = G����d � �	m�p�

= exp�i�


2

�e−i	m��+� + ei	m��−������d � �	m�p.

�3.4�

Defining

U�	� = exp�i�


2

�e−i	��+� + ei	��−��� , �3.5�

we see that we can perform U�	� perfectly when 	=	m, for
some m. Suppose, however, we are interested in using this
processor to approximately perform U�	�, for 	 not equal to
any of the 	m. We know what the optimal strategy is from the
previous section: find the operator U�	m� which has the
greatest overlap �in the sense of the Hilbert-Schmidt inner
product� with U�	� and perform that operation. Here we are
going to examine a strategy, that is simpler to implement, but
not optimal. We shall simply use the state �	�p as a program
state. We find that this gives us a process fidelity of

F =
1

N2 �
m=0

N−1

cos2�	m − 	�
sin2�N�	m − 	�/2�
sin2��	m − 	�/2�

. �3.6�

This sum is an oscillatory function of 	 with a period 2
 /N.
The minima of this function are achieved for 	=
 /N
+2
k /N when the process fidelity takes the minimal value
Fmin=1−2/N.

Let us see how this compares to using the optimal pro-
gram states. The process fidelity between the operators U�	1�
and U�	2� is given by

F„U�	1�,U�	2�… = cos2�	1 − 	2� . �3.7�

If we approximate U�	� by U�	m�, where m is chosen so that
U�	� and U�	m� have the largest Hilbert-Schmidt inner prod-
uct, then the fidelity is bounded below by

F � cos2�


N

 � 1 − �


N

2

. �3.8�

Note that in this case the error is of order 1 /N2, while in the
previous case it was of order 1 /N, so there is a cost to not
using the best program states.

What we then have is an approximate processor that can
be made very accurate by choosing N large enough. It
achieves an accuracy of order 1 /N in approximating U�	�
with the simple program state �	�d, which is not as good as
the best accuracy, 1 /N2, but the approximation in none the
less a good one for N sufficiently large. Thus, we see that a U
processor, making use of a simple program, can be quite
useful in approximating the action of a set of operators la-
beled by a continuous parameter.

IV. BOUND ON DIMENSION OF PROGRAM SPACE

We would now like to find a bound on the resources re-
quired to achieve a given accuracy in approximating a set of
unitary operators by means of a fixed processor. In particular,
we want to see how the dimension of the program space
grows as the accuracy of the approximation increases.

The Schwartz inequality ��A �B��
��A �A��B �B� implies
that

�Tr�U†Aj����� 
 �D	Tr�Aj
†���Aj����
1/2, �4.1�

and, therefore, if the action of our processor with the pro-
gram state ���p is given by the map T, we have that
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F�U,T� =
1

D2�
j=1

N

�Tr�U†Aj�����2 

1

D
�
j=1

N

Tr�Aj
†���Aj���� = 1.

�4.2�

In the last equality we used the normalization property of
Kraus operators �2.5�, i.e., � jAj

†���Aj���= I.
We begin by assuming that the fidelity is 1 and seeing

what this implies about the operators Aj���. If F�U ,T�=1,
then we see from above that the Schwartz inequality has to
be saturated. This means that the operators Aj��� and U are
collinear, i.e., Aj���=� jU, where � j is a complex number.
Furthermore, Eq. �2.5� implies � j=1

N �� j�2=1. Now suppose
that we have two different unitary operators that can be re-
alized perfectly, U1 by the program state ��1�p and U2 by the
program state ��2�. Therefore, Aj��1�=�1jU1 and Aj��2�
=�2jU2. We then have that

�
j=1

N

�1j
* �2jU1

−1U2 = �
j=1

N

Aj
†��1�Aj��2� = Idp��1��2�p,

�4.3�

where we have used Eqs. �2.4� and �2.3�. If U1�U2, then
this equation implies that both p��1 ��2�p and � j=1

N �1j
* �2j are

zero. This result is simply a restatement of the Nielsen-
Chuang theorem: If two unitary operators are realized per-
fectly by a processor, their program vectors must be orthogo-
nal.

Now let us suppose that the processor performs the opera-
tion U with a fidelity greater than or equal to 1−�, i.e.,
F�U ,T��1−�, where T is specified by Kraus operators
Aj���. Let us express these operators as

Aj��� = � jU + Bj��� , �4.4�

where Tr�U†Bj����=0. This decomposition is unique. The
inequality F�U ,T��1−� implies the following condition on
coefficients � j = �1/D��U �Aj����:

1 � F�U,T� =
1

D2�
j=1

N

��U�Aj�����2 = �
j=1

N

�� j�2 � 1 − � .

�4.5�

Tracing both sides of the normalization condition

� j
Aj���†Aj��� = I

we obtain the inequality

� j
Tr�Bj���†Bj���� = � j

�Bj����Bj���� 
 D�

.
Next consider the situation in which our processor can

approximate two unitary operators U1 and U2, each with a
fidelity greater than or equal to 1−�. In particular, if T1 is the
map produced by the program state ��1�p and T2 is the map

produced by the program state ��2�p, then both F�U1 ,T1� and
F�U2 ,T2� are greater than or equal to 1−�. We also have that

Aj��1� = �1jU1 + B1j��1� ,

Aj��2� = �2jU2 + B2j��2� , �4.6�

where Tr�U1
†B1j��1��=Tr�U2

†B2j��2��=0. As in the case
when the unitary operators were performed perfectly, con-
sider the quantity

Id��1��2� = �
j=1

N

Aj��1�†Aj��2�

= �
j=1

N

��1j
* U1

† + B1j
† ��1����2jU2 + B2j��2�� .

�4.7�

Let us evaluate the absolute value of the traces of both sides

D���1��2�� = ��
j

�Aj��1��Aj��2��� = ��
j

��1j
* �2j�U1�U2�

+ �1j
* �U1�B2j� + �2j�B1j�U2� + �B1j�B2j���


 ��U1�U2�� · ��
j

�1j
* �2j� + 2D�� + D� . �4.8�

In the last line we used the formulas

�
j

��B1j�B2j�� 
 �
j

��B1j�B1j��B2j�B2j�


 ��
j

�B1j�B1j��
j

�B2j�B2j� 
 D� ,

�4.9�

and

��
j

�1j
* �U1�B2j�� 
 �

j

��1j���U1�U1��B2j�B2j� 
 D�� .

�4.10�

As a result we obtain the bound on the inner product between
two program states,

���1��2�� 

1

D
��U1�U2����

j

�1j
* �2j� + 2�� + � .

�4.11�

Next we will estimate the first term. The idea is to use Eq.
�4.7� and apply both sides to a special vector ���� that maxi-
mizes the quantity 1− ����U1

†U2����2. Let us denote this maxi-
mum by �, i.e.,

� = max
�

�1 − ����U1
†U2����2� . �4.12�

This quantity describes the distinguishability of two unitary
transformations, and a short calculation shows that �
 �U1
−U2�2. After applying both sides of Eq. �4.7� to ���� we find
the components of the resulting vectors orthogonal to ���� by
applying the projection operator P�

�= I− �������� to both
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sides. The left side vanishes and we obtain the equality

0 = P�
���

j

Aj��1�†Aj��2������ = �
j

�1j
* �2jP�

�U1
†U2����

+ ��� , �4.13�

where

��� = P�
��

j=1

N

��1j
* U1

†B2j��2� + �2jB1j
† ��1�U2

+ B1j
† ��1�B2j��2������ . �4.14�

We now want to find a bound on ���. Using the facts that the
operator norm is bounded by the Hilbert-Schmidt norm, we
have that

��
j=1

N

Bj
†��1�Bj��2�� 
 �

j=1

N

�Bj��1��Bj��1��1/2

� �Bj��2��Bj��2��1/2 
 �D

�4.15�

and

��
j=1

N

�1j
* U1

†B2j��2�� 
 �
j=1

N

��1j��Bj��2��Bj��2��1/2 
 ��D .

�4.16�

Applying these inequalities we have that ���
�D+2��D. In
addition, we find that �P�

�U1
†U2���=��. Therefore, we can

conclude

��
j=1

N

�1j
* �2j� 


�D + 2��D
��

. �4.17�

Defining

F = min�1,
�D + 2��D

�

 , �4.18�

we have, finally, that

���1��2�� 

F

D
��U1�U2�� + 2�� + � . �4.19�

Note that in the case that both operations are carried out
without error, in which case �=0, this inequality implies that
the program vectors must be orthogonal, recovering the
known result.

Now suppose that we have M unitary operators that we
want implemented by a processor so that the process fidelity
for each of the operators is greater than or equal to 1−�.
How many dimensions must Hp have? In order to answer
this question, we first find the values ofY jk= �F /D���Uj �Uk��
corresponding to each pair of operators in our set, and use
these values to find the largest set of linearly independent
vectors in the set of program vectors. Linear independence
can be deduced from the following result: If 	vk �k
=1, . . . ,K
 are vectors of length 1, and ��vk1

�vk2
���1/ �K

−1�, then the vectors 	vk �k=1, . . . ,K
 are linearly indepen-

dent �3,16�. Suppose that there is a subset of our operators,
with M� members, whose pairs have small values of Y jk, and
let the largest value of Y jk for this subset be Ymax. Then we
have for all of the program vectors corresponding to this set
that

��� j��k�� 
 Ymax + 2�� + � = q�Ymax,�� . �4.20�

Let Kq be the largest integer such that Kq� �1/q�+1. What
the result we just quoted implies is that any set of vectors
whose size is Kq or less will be linearly independent. There-
fore, if M�
Kq, then all of the program vectors will be
linearly independent, and the dimension of Hp must be at
least M�. If M��Kq, then the dimension of Hp must be at
least Kq. This, then, is the restriction our result imposes on
the dimension of the program space.

As an example, suppose we want to implement the opera-
tors I, �1, �2, and �3 on qubits, where the operators � j, for
j=1,2 ,3, correspond to the usual Pauli matrices. For all
pairs of these operators we find that Y jk=0, and

q�0,�� = 2�2� + � . �4.21�

Our bounds then give us that for ��0.02 the program space
must have four dimensions, for ��0.05 it must have at least
three dimensions, and for ��0.17 it must have at least two
dimensions.

V. ONE-PARAMETER GROUP: TWO APPROACHES

Programmable processors can be exploited to implement
quantum maps probabilistically. In this case a specific mea-
surement on the program state is performed and if an a priori
defined result is obtained then we know that a desired opera-
tion has been performed on the data. In other words the
specific measurement that is accompanied by a post-selection
induces the desired transformation of the data register. As
was discussed in �3� a probabilistic processor without mea-
surement can be used as an approximate processor. In this
case the transformation can be expressed as

E���� = psuccessT��� + perrorN��� , �5.1�

where T is the channel we want to approximate, and psuccess
and perror are independent of the input data state �. Due to
the concavity of the square root of the process fidelity we
find that psuccess
F�E� ,T�, i.e., the accuracy of the approxi-
mation is bounded from below by the probability of success.

Here we want to compare the performance of a probabi-
listic processor used as an approximate one with a different
type of approximate processor in order to see which requires
greater resources. Both will be used to implement operators
in the same one-parameter group. In particular, consider the
operations on qudits �with orthonormal basis 	�k� �k
=1, . . . ,D
� specified by

U�	� = ei	�1��1� + X , �5.2�

where X=�k=2
D �k��k�, and 0
	�2
.

Consider the processor described by the operators Ajk for
1
 j ,k
N, where
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Ajk = �� jkX + �k,j+1�1��1� , j � N ,

�NkX + �k,1�1��1� , j = N ,
� �5.3�

originally described in Ref. �5�. With the program state

��� =
1

�N
�
k=1

N

ei�k−1�	�k� , �5.4�

we find that for 1
 j
N−1

Aj��� =
1

�N
ei�j−1�	U�	� , �5.5�

and for j=N

AN��� =
1

�N
�ei�N−1�	X + �1��1�� . �5.6�

What this means is that if after the action of the processor,
the program state is measured in the basis 	�1�p , . . . , �N�p
 and
if the result �j�p is obtained, where j�N, then the operation
U�	� has been carried out on the data. However, if the result
�N�p is obtained, then the operation U�	� has not been per-
formed. Because each of these outcomes is equally likely, the
probability of obtaining the desired result is �N−1� /N. If
instead of measuring the output of the program register we
discard it, i.e., trace over it, we can use this processor as an
approximate one. The process fidelity in this case is given by

F = 1 −
2�D − 1�

ND2 �1 − cos�N	�� . �5.7�

Another processor that will approximate this one-
parameter group can be constructed by dividing the interval
�0,2
� into subintervals and approximating all of the opera-
tors U�	� for 	 in a particular subinterval by a single opera-
tor. In particular, let �	=
 /N, and approximate U�	� for
2j�	
	
2�j+1��	 by Uj =U�	 j�=U��2j+1��	�, where j
=0,1 , . . . ,N−1. We now define a U processor by setting, for
j ,k=0,1 , . . . ,N−1,

Ajk = � jkUj . �5.8�

In order to approximate U�	� for 2j�	
	
2�j+1��	, we
choose the program state ���p= �j�p. For this processor we
find that

1 − F = min
j

2�D − 1�
D2 �1 − cos�	 − 	 j�� 


2�D − 1�
D2 �1 − cos �	�

�
2�D − 1�

D2


2

4N2 . �5.9�

By comparing the two fidelities, we see that for a fixed value
of the program space dimension N, the second processor will
provide a greater accuracy.

This result shows that simply using a probabilistic proces-
sor, without changing the set of program states, as an ap-
proximate processor does not provide the best accuracy for a

specified program space dimension. However, it is important
to note that if we change the program states for the probabi-
listic processor when using it as an approximate one, better
precision can be obtained. Let us return to our example, and
consider the probabilistic processor with a general program
state ���. With this program, we find that the process fidelity
between U�	� and the operation implemented by the proces-
sor is

F = 1 −
2�D − 1�

D2 �1 − Re�ei	���Ushift����� , �5.10�

where Ushift is the shift operator Ushift�k�= �k+1�, where the
addition is modulo D. Let us take as program states the
eigenstates of Ushift, and note that the eigenvalues of Ushift
are given by ei�, where �=2�k+1�
 /N for k=0, . . . ,N−1.
Choosing one of these states as our program state, we find
that the fidelity is given by F=1− �2�D−1� /D2��1−cos�	
+���. This is very similar to the result we obtained from the
processor specified by Eq. �5.8�. In choosing the program
state to best approximate the operator U�	�, we select the
eigenstate of Ushift for which cos��+	� is maximal. Doing so
we obtain the same bound on the accuracy as in Eq. �5.9�.
Consequently, we find that our two processors have the same
fidelity and approximate the operators U�	� for 0
	�2

with the same accuracy. What this shows is that in using a
probabilistic processor as an approximate one, it is some-
times possible to obtain better results by changing the set of
program states that are used. The program states that are
useful for operating the processor in a probabilistic mode,
where the goal is to realize an operator perfectly some of the
time, are not always the best ones for using it in a determin-
istic one, where the goal is to accurately approximate an
operator every time.

VI. CONCLUSION

We have examined the approximation of a set of unitary
operators by means of a programmable quantum circuit, i.e.,
a quantum processor. The programs themselves are quantum
states. We have shown, for a fixed processor, how to find the
program that induces the best approximation of a particular
unitary operator. In addition, we have found bounds on the
size of the program space that is necessary to approximate a
set of operators to a given precision.

Approximate processors can be characterized by their ac-
curacy and by the resources they require. By the accuracy, or
level of precision, we mean the quantity �G=1
−minE��max��S�Hp�F�E ,E�� �21�. Here � is the set of maps
we want to realize, S�Hp� is the set of positive operators on
Hp with trace 1 �note that we are allowing mixed program
states here�, and E����=TrpG� � �G†. The dimension of the
program space, N, characterizes the resources required. We
wish to know how these two parameters are related. We have
made some progress here in exploring this relation for lim-
ited sets of maps. The problem becomes more difficult if one
considers � to be the set of all unitary maps and harder yet if
it is the set of all completely positive trace-preserving maps.
Once we have these definitions of precision and resources,
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we can consider two problems. First, given a specific degree
of precision �G for some set of maps �, how large must the
program space be? Second, for fixed resources, what is the
optimal processor, i.e., for which G is the accuracy the best
��G the least�? In Ref. �20� one case of this problem was
solved by D’Ariano and Perinotti. The data states were qu-
bits, and � was the set of unitary operators acting on a single
qubit. The program space was also a single quibit so that
N=2. They then showed that the optimal accuracy is given
by �G=3/4. This precision can be achieved when G is a
SWAP gate �22�, i.e., GSWAP���� � ����= ��� � ��� for all
states ��� , ���. For a processor with both the data and pro-
gram spaces having the same dimension D and G given by
the d-dimensional version of the SWAP gate, we find that
F�U ,E��, where E� is the map induced on the data by the
processor with program �, is independent of both the pro-
gram and U, and is equal to 1/D2. This implies that for this
processor, the accuracy is given by �G=1−1/D2. We suspect
that this is the optimal value if the size of the program reg-
ister equals the size of the data register, i.e., N=D, but
whether this suspicion is correct is beyond the scope of this
paper and will be analyzed elsewhere �22�.

There are many open issues remaining. One possibility is
to shift our focus, and rather than ask what type of processor
can perform a given set of operations with a particular level
of precision, ask instead if it is possible to characterize the
operations that a given processor can perform to a specified
accuracy. Another issue is the following. So far, we have
assumed that we are approximating a set of unitary operators
with just a single use of a processor. What happens if we can

use the same processor more than once? It turns out that
multiple usage of the processor can significantly improve the
accuracy of the approximation. In particular, when the U
processor �which can perform a set of unitary operators per-
fectly� is used n times, the one can perfectly perform not
only the original set of operators, but any product of these
operators that is of length n or less.

It would also be useful to find specific processors, which
are not U processors, that can approximate a wide class of
unitary operations. As we have seen, superpositions of the
basis program states are not useful in optimally approximat-
ing a unitary operator with a U processor, but they very well
may be useful in doing so with other types of processors.

Probabilistic processors have shown themselves to be
very flexible devices. They can perform large classes of op-
erations while requiring only limited resources. Their draw-
back is that these operations are performed with a probability
that is less than 1. It remains to be seen how flexible deter-
ministic processors are, but the results here place some con-
straints on what they can accomplish. In this paper we have
given an example of how a probabilitic processor can be
used as an approximate one.
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