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Entanglement-induced state ordering under local operations
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We analyze how entanglement between two components of a bipartite system behaves under the
action of local channels of the form E ⊗ I. We show that a set of maximally entangled states is by
the action of E ⊗ I transformed into the set of states that exhibit the same degree of entanglement.
Moreover, this degree represents an upper bound on entanglement that is available at the output of
the channel irrespective what is the input state of the composite system. We show that within this
bound the the entanglement-induced state ordering is “relative” and can be changed by the action

of local channels. That is, two states ̺
(in)
1 and ̺

(in)
2 such that the entanglement E[̺

(in)
1 ] of the first

state is larger than the entanglement E[̺
(in)
2 ] of the second state are transformed into states ̺

(out)
1

and ̺
(out)
2 such that E[̺

(out)
2 ] > E[̺

(out)
1 ].

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Ta

The success of quantum information theory [1, 2] is
intimately related to the phenomenon of quantum en-
tanglement. The better we will understand properties
of this purely quantum phenomenon the deeper will be
our insight into the quantum realm. Even though the
importance of quantum entanglement has been clearly
acknowledged by founding fathers of quantum mechanics
[3], the true potential of this phenomenon has been ap-
preciated just recently with the development of quantum
information science. Over last ten years many results of
fundamental importance illuminating properties of quan-
tum entanglement have been reported. In spite of all the
progress, there are still many questions that are to be
answered. In particular, criteria of non-separability of
arbitrarily-dimensional bi-partite systems, the study of
intrinsic multi-partite entanglement in composite quan-
tum systems [4, 5], or the role of quantum entanglement
in macroscopic systems is presently under investigation
[6]. One of the problems that has attracted interest of
researchers for quite some time is the issue of “proper”
measures of entanglement [7].

In general, we can identify two conceptually different
approaches in various attempt to define measures of en-
tanglement. These can be named as i) the operational
approach, and ii) the formal (abstract) approach. The
operational approach is based on an assumption that
there exists a process, or an information protocol, in
which the quantum entanglement plays the role of a new
resource that provides some improvement in the perfor-
mance of the protocol compared to its “classical ana-
logue”. The second approach [7] is based on postulation
of the desired properties that an entanglement measure
has to satisfy and defines a functional with these proper-
ties (see below).

In this paper we will adopt this second approach. We
will start our discussion by addressing a specific ques-
tion concerning the entanglement measures. First, we
will answer the question: Do local operations preserve

the entanglement-induced ordering? Then we will ana-
lyze how entangled states that exhibit the same degree
of entanglement are transformed under the action of local
channels.

Let us start with a trivial observation: States of bi-
partite quantum systems can be either entangled or sep-
arable (this is almost a tautological statement since the
presence of entanglement is defined as an absence of the
separability, and vice versa). On the other hand, the def-
inition of entanglement is related to the non-existence of
local hidden variable model for an observed statistics for
a given state ̺AB of a bi-partite system. R.F. Werner
in his seminal work [8] has shown that such assump-
tion restricts the entangled states to those that cannot
be written as convex combinations of product states, i.e.
̺ 6=

∑

k pk̺
A
k ⊗ ̺B

k . The entanglement measure E is
a positive functional defined on the state space of a bi-
partite quantum system. Following Plenio and Vedral [7],
let us summarize basic properties that any entanglement
measure has to satisfy:

1. Sharpness: E(̺) = 0 if and only if ̺AB is separable.

2. Local unitary invariance: E(̺AB) = E(UA ⊗
UB̺

ABU
†
A ⊗ U

†
B).

3. Convexity: E(
∑

k pkω
AB
k ) ≤

∑

k pkE(ωAB
k )

4. Normalization: E(̺AB) = max̺E(̺AB) if and

only if ̺AB =
(

̺AB
)2

, TrA̺
AB = TrB̺

AB = 1

2
I .

States with such properties are called as the maxi-
mally entangled states.

5. Non-increasing under local operations and classical
communication (LOCC): A general LOCC trans-
forms the original state ̺AB into a mixture of
states ωAB

k with a probability pk. We require that
on average the entanglement cannot be increased,
i.e.

∑

k pkE(ωAB
k ) ≤ E(̺AB). Let us note that

̺AB
k = EA

k ⊗ EB
k [̺AB].
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6. Pure state additivity: E(Φ1⊗Φ2) = E(Φ1)+E(Φ2)
for all pure states Φ1,Φ2.

For all protocols in which quantum entanglement
serves as a resource it is true that higher the degree of
entanglement more efficient the application of the proto-
col is. However, even for a two-qubit system there ex-
ist several measures of entanglement satisfying the above
properties (e.g. the concurrence [9], the relative entropy
of entanglement [10], etc.) and nevertheless each of these
measures might induce a different ordering on the set of
states [11, 12]. Thus, it is difficult to say “objectively”
which states are more entangled. The maximally entan-
gled states play a special role here, because the normal-
ization property single them out independently of the
particular measure.

Recently several authors [13–19] have investigated time
evolution of the entanglement when a bi-partite system
has been subjected to either local or global transforma-
tions (time evolution). In these studies, usually it has
been investigated how a maximally entangled state is af-
fected by the action of the corresponding evolution opera-
tion. Certainly, it is very instructive to understand what
happens if the bi-partite system is initially prepared in a
non-maximally entangled state ̺ (in order to simplify the
notation, in what follows we will omit superscripts indi-
cating that the density operator describes two systems A
and B). To illuminate this problem from a perspective of
an action of local channels let us formulate the following
theorem.

Theorem. For each state ω ∈ S(H⊗H) and a quantum
local channel EL = E ⊗ I the following inequality holds

E(EL[ω]) ≤ E(EL[Ψ+]) , (1)

where E is some (normalized) entanglement measure, i.e.
maxω E(ω) = E(Ψ+), where Ψ+ is a maximally entan-
gled state.

Proof. Let us assume the convexity of the entanglement
measure, i.e. E(ω) ≤ ∑

j qjE(ωj). Under such assump-
tion it is sufficient to consider only pure states, i.e. to
show that E(EL[Φ]) ≤ E(EL[Ψ+]). Any pure bipartite
state Φ = |φ〉〈φ| can be written as |φ〉 = I ⊗ A|ψ+〉,
where A is a suitable linear operator. Hence we have
EL[Φ] = (E ⊗ I)[(I ⊗ A)Ψ+(I ⊗ A†)] = (I ⊗ A)(E ⊗
I)[Ψ+](I ⊗ A†) = EAEL[Ψ+]. Next we will use the
fact that local actions cannot increase the value of en-
tanglement, i.e. E(EA[ρ]) ≤ E(ρ). Consequently, by
putting ρ = EL[Ψ+] we obtain the desired inequality
E(EL[Φ]) ≤ E(EL[Ψ+]).

As a consequence we have that a local action applied
on a set of maximally entangled states results in a set of
states with the same amount of entanglement (irrespec-
tive of the measure we use). One can prove this property
directly from the fact that all maximally entangled states
are related by local unitary transformation applied on
one subsystem, i.e. the states |ΨU 〉 = I ⊗ U |Ψ+〉 form a

set of all maximally entangled states. Applying the local
operation E⊗I[ΨU ] = E⊗U [Ψ+] = (I⊗U)(E⊗I[Ψ+]) =
(I ⊗ U)[ΩE ]. This means that states ΩE = E ⊗ I[Ψ+]
and ΩU

E = E ⊗ I[ΨU ] are locally unitary equivalent
(ΩU

E = I ⊗U [ΩE ]). Consequently, they contain the same
amount of entanglement, which proves our statement.
Such result can be extended to all states ω1, ω2 equiv-
alent in the sense ω1 = I ⊗U [ω2], for which the equality
of entanglement is not affected by the local action E ⊗I.

The above theorem has served as the motivation to
the main question considered in this paper. Specifically,
whether all local channels of the form EL = E⊗I preserve
the ordering induced by a given entanglement measure.
Or in other words, for which entanglement measures E
the following implication holds

E(ω1) ≤ E(ω2) ⇒ E(ω′
1) ≤ E(ω′

2) , (2)

where ω′
j = E ⊗ I[ωj ] (j = 1, 2). One might think that

for a “good” measure of entanglement such inequality
should be valid. However, this property is not listed
among the usually required properties of entanglement
measures. Surprisingly enough, there is a simple argu-
ment that such “natural” property cannot hold in gen-
eral. Firstly, we will present an explicit counterexample
for the entanglement measure of two-qubit states called
the concurrence [9]. Secondly, we will give a general ar-
gument why the answer to our question is negative, i.e.
local actions may affect nontrivially the ordering induced
by entanglement measures.

Example 1. Let us consider two families of two-qubit
states: i) Werner states ̺1 = qΨ++(1−q)1

4
I (0 ≤ q ≤ 1),

and ii) pure states ̺2 = Φ = |φ〉〈φ|, |φ〉 = α|00〉 + β|11〉
with α, β real and α2 + β2 = 1. Both of these families
of states cover the whole interval of possible values of
entanglement. Applying the local depolarizing channel
E [̺] = p̺+ (1 − p)1

2
I we obtain

̺in
1

E⊗I−→ ̺out
1 = pqΨ+ + (1 − pq)

1

4
I ; (3)

̺in
2

E⊗I−→ ̺out
2 = pΦ + (1 − p)

1

2
I ⊗ ̺B , (4)

where ̺B = TrAΦ. The states (̺in
1 , ̺

out
1 , ̺in

2 , ̺
out
2 ) belong

to the set of states represented by ̺out
2 , i.e. a mixture of

pure state Φ with the mixed state 1

2
I ⊗ ̺B. Therefore, it

is sufficient to calculate the amount of entanglement for
the state ̺out

2

̺out
2 =









α2 1+p
2

0 0 pαβ

0 β2 1−p
2

0 0
0 0 α2 1−p

2
0

pαβ 0 0 β2 1+p
2









. (5)

The entanglement measure called the concurrence [9] is
defined via the square roots of eigenvalues of the matrix
R = ̺out

2 (σy ⊗ σy)[̺out
2 ]∗(σy ⊗ σy). Let us denote by

Eig[R] = {λ1, λ2, λ3, λ4} the eigenvalues of the matrix
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FIG. 1: (Color online) The input/output concurrence dia-
gram for both families of states ̺1, ̺2 and for the depolarizing
channel with p = 1/2. The states from the counterexample
1 discussed in the paper are displayed and the change in the
ordering is visible. The region under the line Cout = Cin rep-
resents the allowed region that is achievable by local channels.
Concurrence is measured in dimensionless units.

R ordered in a decreasing order, i.e. λ1 ≥ λ2 ≥ λ3 ≥
λ4. The concurrence is given by the expression C =
max{0,

√
λ1−

√
λ2−

√
λ3−

√
λ4}. For the states ̺out

2 one
can find a compact expression for the concurrence Cout

2 =
αβ(3p−1). Using this formula we find all quantities that
are need for our considerations. In particular,

C in
1 =

1

2
(3q − 1)

E⊗I−→ Cout
1 =

1

2
(3pq − 1) ; (6)

C in
2 = 2αβ

E⊗I−→ Cout
2 = αβ(3p− 1) . (7)

Moreover, we are able to determine the functional depen-
dence Cout = f(C in). In particular, we obtain parametric
linear functions

̺1 : Cout
1 = max{0, pC in

1 +
1

2
(p− 1)} ;

̺2 : Cout
2 = max{0, 3p− 1

2
C in

2 } , (8)

where the parameter p represents the action (strength)
of the depolarizing channel. Let us consider the depo-
larizing channel with p = 0.5 and two input states such
that C in

1 = 1

2
+ ǫ, C in

2 = 1

2
− ǫ. The degree of entangle-

ment of the resulting output states reads Cout
1 = 1

2
ǫ and

Cout
2 = 1

8
− 1

4
ǫ. It is easy to see that whenever 0 < ǫ < 1

6

the original inequality C in
1 > Cin

2 is transformed into the
opposite inequality, i.e. Cout

1 < Cout
2 [see Fig. 1].

Example 2. Let us assume a four-qubit system divided
into two pairs: the left (L) and the right (R). Consider
two pure states |Ωj〉 = |ψj〉L1R1

⊗ |φj〉L2R2
for j = 1, 2,

i.e. the parties L and R share two pairs of two-qubit pure
states. We will act locally on the right couple of qubits
only, i.e. we apply the channel E = IL1L2

⊗ ER1R2
. In

particular, we assume that ER1R2
= E ⊗ I and E is the

contraction into a fixed pure state, i.e. ̺ → Ξ. The
additivity of entanglement for pure states implies that
initially E(Ω1) = E(Ψ1)+E(Φ1) = x1 +y1 and E(Ω2) =
E(Ψ2) + E(Φ2) = x2 + y2. After the action of the local
channel we obtain the states Ω′

1 = [TrR1
Ψ1] ⊗ ΞR1

⊗ Φ1

and Ω′
2 = [TrR1

Ψ2] ⊗ ΞR1
⊗ Φ2. The convexity implies

E(Ω′
1) ≤ λE(|ω1〉〈ω1|⊗Ξ⊗Φ1)+(1−λ)E(|ω2〉〈ω2|⊗Ξ⊗

Ψ1), where |ωj〉 are eigenvectors of TrR1
Ψ1 and λ, 1 − λ

are the corresponding eigenvalues. On the right hand
side we have pure states, for which the entanglement can
be found by using the additivity of E for pure states.
We obtain E(Ω′

1) ≤ λE(Φ1) + (1 − λ)E(Φ1) = E(Φ1) =
y1 and by a similar line of arguments we find E(Ω′

2) ≤
y2. Let us consider that originally x1 + y1 > x2 + y2
(E(Ω1) > E(Ω2)) and y2 > y1 = 0. After the action of
the local channel we have E(Ω′

1) = 0 and E(Ω′
2) ≤ y2,

i.e. we obtain an un-sharp inequality E(Ω′
1) ≤ E(Ω′

2).
In what follows we will argue that this inequality cannot
be saturated, i.e. 0 < E(Ω′

2). In other words, we would
like to show that there is still some entanglement present
between the left and the right systems. Since one pair
(Φ1, or Φ2) has not been affected at all by the action
of the local channel it can be still used to violate Bell
inequalities (the state Φ2 is pure and entangled). This
violation of Bell inequalities is an evidence of presence
of entanglement between the two parties. In conclusion,
E(Ω′

1) < E(Ω′
2), but E(Ω1) > E(Ω2).

Let us summarize the line of arguments in the last
example: We have two pairs of qubits such that x1 +
y1 > x2 + y2 and we put y1 = x2 = 0, i.e. x1 >
y2. In other words we have two different pure states
of two pairs: 1) the entangled⊗factorized, and 2) the
factorized⊗entangled states. The contractive channel is
applied on the first pair only. The first state is trans-
formed and become unentangled, while the second state
can be used to violate Bell inequalities, because the en-
tangled part has not been affected at all by the action
of the local channel. As a result, we conclude that the
entanglement-induced ordering of states is not absolute
under the action of local channels. Consequently, in some
circumstances less entangled states can be more “robust”
against local operations.

Using the above theorem we can justify the choice
of maximally entangled states in our analysis of time-
dependent entanglement ordering induced by local evo-
lutions. That is, maximally entangled states when sub-
jected to a local evolution (i.e., one particle is evolving
freely while the second is subjected to an action of a local
channel) bound the maximally available entanglement.
However, one has to be careful to draw general conclu-
sions about the entanglement behavior. Here we have
analyzed the simplest situation in which only one of the
subsystems undergone a nontrivial local evolution. Let
us note that the Theorem does not hold if one considers
bi-local channels, i.e. in that case even the maximality
of entanglement is a “relative” notion.

The second example illustrates that the entanglement-
induced ordering is not absolute in general: The original
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entanglement-based ordering (irrespective of the choice
of the entanglement measure) within a set of states can
be changed (even) under the action of a local channel.
However, for two-qubit systems it is still an open ques-
tion, whether there exist an entanglement measure, for
which the entanglement-induced state ordering is not af-
fected by the action of local channels. Another open
problem is the characterization of those local channels
that preserve the state ordering induced by a given mea-
sure, for instance the concurrence. The characterization
and classification of channels using the Eout vs. Ein dia-
gram can be very useful in such analysis. This approach
can be applied to any measure and any channel. For
instance, the action of local unitary channels U ⊗ I are
represented by the line Eout = Ein in this diagram. Anal-
ogously, for entanglement-breaking channels [20, 21] we
have Eout = 0, i.e. the action of these channels is repre-
sented again by a line in the Eout vs Ein diagram. Both
of these families of channels preserve the entanglement-
induced ordering for an arbitrary measure of entangle-
ment. Presently it is still an open problem whether there
exist some other local channels that have the same prop-
erty (at least for a particular measure of entanglement).

From the construction that has been used in Exam-
ple 1 it follows that whenever we obtain a region that
is bounded by two lines corresponding to two input
states that exhibit the same degree of initial entangle-
ment in the Eout vs Ein diagram we can find two states
for which the entanglement-induced ordering is not pre-
served. Channels represented by a line in Eout vs. Ein di-
agram not only preserve the state ordering, but they also
preserve the “isoentangled” classes of states. In other
words, if the “in” states are equally entangled, then the
“out” states are equally entangled as well. This is a
very confining constraint imposed on the action of lo-
cal quantum channels and therefore we do not expect
that there exists a nontrivial channel (except unitary, or
entanglement-breaking channels mentioned above) that
preserve the entanglement-induced ordering.

In conclusion, we have addressed the question how the
entanglement between two components of a bipartite sys-
tem behaves under the action of local channels of the
form E ⊗ I. We have shown that a set of maximally en-
tangled states is by the action of the local channel E ⊗ I
transformed into the set of states that exhibit the same
degree of entanglement. Moreover, this degree represents
an upper bound of entanglement that can be available at
the output of the channel irrespective what is the in-
put state. We have shown that within this bound the
the entanglement-induced state ordering is “relative” and
can be changed by the action of local channels. Moreover,
our study suggests that this is a rather common prop-
erty of most of the local channels. That is, most of the
local channels affect the entanglement-induced state or-
dering. Our analysis opens several interesting questions
related to “dynamics” of entanglement and provides a
novel tool of the characterization of arbitrary quantum
operations (both local and global) using the Eout vs. Ein

diagram. Let us note that already for the so called bi-
local channels of the form E1 ⊗ E2 this picture looks dif-
ferently, because in this case even the set of maximally
of entangled states transforms differently, i.e. the out-
put states might not posses the same degree of entan-
glement. In addition, it is not clear whether the “maxi-
mality” of entanglement is absolute, or not, i.e. whether
ωmax = arg supω E(E1 ⊗ E2[ω]) is one of the maximally
entangled states, or not. This problem illustrates the
fact that dynamical features of quantum entanglement
are still not understand in all details and many interest-
ing features remain to be explored and understood.
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[19] M. Ziman and V. Bužek, Purity vs. concurrence pic-

ture under subsystems evolution, LANL preprint archive
quant-ph/0508106

[20] The channel is called as the entanglement-breaking if the
state ̺′ = E ⊗ I[̺] is separable for all ̺.

[21] M. Horodecki, P.W. Shor, and M.B. Ruskai, General

entanglement-breaking channels, Rev. Math. Phys 15,
629-641 (2003)


