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We investigate quantum walks in multiple dimensions with different quantum coins. We augment the model
by assuming that at each step the amplitudes of the coin state are multiplied by random phases. This model
enables us to study in detail the role of decoherence in quantum walks and to investigate the quantum-to-
classical transition. We also provide classical analog of the quantum random walks studied. Interestingly
enough, it turns out that the classical counterparts of some quantum random walks are classical random walks
with a memory and biased coin. In addition random phase shifts “simplify” the dynamics �the cross-
interference terms of different paths vanish on average� and enable us to give a compact formula for the
dispersion of such walks.
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I. INTRODUCTION

The concept of quantum walks �QW’s� has been intro-
duced �see Ref. �1�� in order to explore how the intrinsically
statistical character of quantum mechanics affects the statis-
tical properties of quantum analogs of classical random
walks. In particular, an example of a random process is a
Markov chain such that the position value x�X is iteratively
updated, given by the transition probability P�x �y�.

Quantum walks have been studied in connection with
novel quantum algorithms: Instances thereof are provided in
Ref. �2� �the quantum walk algorithm on the hypercube with
complexity O��n�� and in Ref. �3� �the quantum walk algo-
rithm for subset finding�. The former uses the quantum walk
on the hypercube, while the latter uses the quantum walk on
bipartite graphs. Quantum walks on bipartite graphs were
analyzed in Ref. �4�.

Various aspects of QW’s have been studied in detail re-
cently �for a review of QW’s see Ref. �5��. In particular,
Aharonov et al. have presented an analytic description of
discrete quantum walks on Cayley graphs �6�. A special case
of a Cayley graph, the line, was asymptotically analyzed in
Ref. �7�. It has been shown that, unlike classical random
walks, the probability distribution induced by quantum walks
is not Gaussian �with a peak around the origin of the walk�,
but has two peaks at positions ± n

�2
, where n is the number of

steps. As a result the dispersion of the probability distribu-
tion for quantum walks grows quadratically, compared to
linear growth for classical random walks �CRW’s�. The role
of decoherence in quantum walks has been analyzed by Ken-
don and Tregenna �8,9�.

Quantum walks are intrinsically deterministic processes
�in the same sense as the Schrödinger equation is a determin-
istic equation�. Their “classical randomness” only emerges
when the process is monitored �measured� in one way or
another. Via the measurement, one can regain a classical be-
havior for the process. For instance, by measuring the quan-
tum coin, the quadratic dispersion of the probability distribu-
tion reverts to a classical, linear dispersion. If the quantum

coin is measured at every step, then the record of the mea-
surement outcomes singles out a particular classical path. By
averaging over all possible measurement records, one recov-
ers the usual classical behavior �10,11�. Instead of measuring
the quantum coin after each step, an alternative way to regain
classical randomness from a quantum walk is to replace this
coin with a new quantum coin for each flip.

After n steps of the walk one accumulates n coins that are
entangled with the position of the walking particle. By mea-
suring a set of n quantum coins, one could reconstruct a
unique classical trajectory, and by averaging over all possible
measurement outcomes, one once again recovers the classi-
cal result.

These two approaches to regaining classical behavior
from the quantum walk have been contrasted in a recent
work by Brun et al. �11�. This comparison has been studied
for the particular example of a discrete walk on the line.

In the present paper we analyze the quantum-to-classical
transition using random phase shifts on the coin register. In
Sec. II we give an introduction to the quantum walk model.
In Sec. III �part A� we augment the model by random phase
shift dynamics and present the solution in terms of path in-
tegrals. It turns out that on average the interference of am-
plitudes of different paths is zero, and we derive the formula
for the dispersion of the mean probability distribution in
compact form. We contrast the dynamics of quantum walks
with two different kinds of coins �permutation symmetric
and Fourier transform� with the dynamics of classical ran-
dom walks and find an equivalence between the two �consid-
ering the possibility that the CRW has memory and a biased
coin�. In part B of Sec. III we provide the numerical results
of the problem. In particular, we briefly analyze a situation in
which phases of random shifts are distributed according to a
normal distribution that is peaked around the phase zero and
with the dispersion �. When the dispersion is zero �i.e., �
=0�, we recover the QW, while for large �, we obtain a
uniform distribution on the interval �−� ,�� and the CRW is
recovered. In between we can observe a continuous quan-
tum-to-classical transition of quantum walks. In Sec. IV we
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present our conclusions. Some technical details of the calcu-
lations can be found in the Appendix.

II. QW’s IN MULTIPLE DIMENSIONS

Let us first define a quantum walk in d dimensions—i.e.,
on the lattice Zd. The quantum walk is generated by a unitary
operator repeatedly applied on a vector from a Hilbert space
H�HX � HD. The Hilbert space HX�span��x	 :x�Zd
 is
called the position Hilbert space. For "x ,y�Zd we define
the usual scalar product x ·y�� j=1

d x jy j and the norm �x�
=�x ·x. In the following, the distance between the vertices is
a dimensionless quantity, with the distance between adjacent
vertices equal to 1.

There are 2d vectors ea�Zd such that �ea�=1. The space
HD�span��a	 :a=1, . . . ,2d
 is spanned by states isomorphic
to ea. HD is called the direction Hilbert space. In the follow-
ing we set D= �1, . . . ,2d
.

A single step of quantum walk is generated by the unitary
operator U such that U=S�1 � C�, where

S = �
x�Zd

�
a�D

�x + ea	�x� � �a	�a� � �
a�D

Ta � Pa, �2.1�

with Pa��a	�a� and C is any unitary operator. The operator S
changes the state of the position register in the direction a,
while the coin operator C operates on the direction register.
For simplicity we consider the permutation-symmetric coin

C = 
r t t ¯

t r t ¯

] ] � ¯

t ¯ t r
� . �2.2�

The quantum walk is generated by a sequence Un��0	,
where ��0	 is some initial state. For simplicity, we assume

��0	 = �0	 � �s	 , �2.3�

where �s	� 1
��D��a�D�a	. We also assume the so-called Grover

coin �12�, which is a specific instance of the permutation
symmetric coin in Eq. �2.2�, described by the operator

CG = 2�s	�s� − 1. �2.4�

In order to find the eigensystem of U, we switch to the
translationally symmetric basis �6�. We set

��̃k	 = �
x�Zd

eik·x�x	 , �2.5�

where k�Rd. By virtue of the inverse Fourier transform we
obtain

�x	 =
1

�2��d�
−�

�

e−ik·x��̃k	ddk , �2.6�

where ��̃k	 are eigenvectors of the translation operator in the
ath direction—i.e.,

Ta��̃k	 = e−ik·ea��̃k	 , �2.7�

where Ta=�x�Zd�x+ea	�x�. By applying the evolution opera-
tor, we obtain

U��̃k	 � ��	 = S��̃k	 � C��	

= �
a�D

e−ik·ea��̃k	 � �a	�a�C��	 = ��̃k	 � �kC��	 ,

�2.8�

where

�k = �
a�D

e−ik·ea�a	�a� . �2.9�

In order to simplify the notation in what follows we will
denote the projectors �a	�a� as Pa. To find the eigensystem of
U, we need to find the eigensystem of �kC. Equivalently, we
need to evaluate ��kC�n��	.

We first use the Grover matrix CG in Eq. �2.4�. In order to
find the power of the matrix ��kCG�n we prove the following
lemma.

Lemma 1. Let D= ��a	
 be the orthonormal basis of a Hil-
bert space and CG=2Ps−1, where �s	= 1

��D��a�D�a	. Then

�PaCG�n = pn�a	�s� + qnPa,

with pn= 2
��D�

� 2
�D� −1�n−1 and qn=−� 2

�D� −1�n−1.

Proof. We denote PaCG= 2
��D� �a	�s�− Pa= p0�a	�s�+q0Pa.

Setting �PaCG�k= pk�a	�s�+qkPa we get that pk+1= pk� 2
�D� −1�

and qk+1=qk� 2
�D� −1�. By induction we immediately obtain the

result. �
From Eq. �2.9� we see that with the Grover coin,

��kCG�n = � �
a�D

e−ik·eaPaCG�n

= �
�a1,. . .,an��Dn

e−ik·�ea1
+. . .+ean

�Pa1
CG ¯ Pan

CG.

�2.10�

By induction, the expression Pa1
CG¯Pan

CG from Eq. �2.10�
can be rewritten as the following lemma.

Lemma 2.

Pa1
CG ¯ Pan

CG =
�− 1�n

�D��2n−1�/2 �
j=1

n−1

��D��aj,aj+1
− 2�

	���D��a1	�an� − 2�a1	�s�� . �2.11�

The product in Eq. �2.11� is taken to be 1 for n=1.
Alternatively, in Eq. �2.10�, the last line can be rewritten

as

Pa1
CG ¯ Pan

CG = �
m1+. . .+mk=n

�a�1�,. . .,a�k���Dk

�Pa�1�CG�m1
¯ �Pa�k�CG�mk,

�2.12�

where a�j��D. According to lemma 1 all the terms in the
product in Eq. �2.12� can be expressed as the linear combi-
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nation of �a�j�	�s� , Pa�j�. Since for j� j�Þ �a�j� �a�j��	=0, we
get the result

��kCG�n = �
partition

e−ik·�ea�1�+. . .+ea�k���S�m1, . . . ,mk��a1	�s�

+ T�m1, . . . ,mk�Pan
� . �2.13�

The expressions for S and T are given by the relations

S�m1, . . . ,mk� = pm1
¯ pmk

, �2.14�

T�m1, . . . ,mk� = pm1
¯ pmk−1

qmk
, �2.15�

where we use the notation of lemma 1. The coefficients
m1 , . . . ,mk give the partitioning of the integer n such that
m1+ . . . +mk=n. The “partition” in Eq. �2.13� means the sum-
mation over all such partitions.

Starting with the initial state ��0	= �0	 � �s	 and using ex-
pression �2.11�, we obtain

��kCG�n�s	 = �
�a1,. . .,an��Dn

e−ik·�ea1
+. . .+ean

� �− 1�n+1

�D��2n−1�/2

	 ��
j=1

n−1

��D��aj,aj+1
− 2���a1	 . �2.16�

This equation takes the singular form for �D�=2 �i.e., for a
one-dimensional quantum walk on a line� such that only the
summands for which all elements �a1 , . . . ,an
 are distinct
contribute to the total sum. As a consequence, the sum in Eq.
�2.16� when �D�=2 is zero for n
2. But this case is special
in that the coefficient r of the Grover matrix is zero. From
now on we will consider the dimension of the lattice to be
equal or larger than 2, so that �D��4.

Expression �2.16� is symmetric with respect to the permu-
tation of elements; i.e., �aj���kCG�n�s	 has the same value for
any aj �D, n�Z. A value of the right-hand side of Eq. �2.16�
depends on the term

�0�a1, . . . ,an� = �
j=1

n−1

��D��aj,aj+1
− 2� . �2.17�

Obviously, ��0�a1 , . . . ,an�� is maximal for a1= . . . =an. More
precisely, if aj =aj+1 for j=0, . . . ,n−1 in Eq. �2.17�, then

��0�a1, . . . ,an�� = O„��D� − 2�k2n−k
… , �2.18�

and there are O��D�n� such terms in the sum of Eq. �2.16�.
Now Eq. �2.16� takes the form

��kCG�n�s	 =
�− 1�n+1

�D��2n−1�/2 �
�a1,. . .,an��Dn

e−ik·�ea1
+. . .+ean

�

	�0�a1, . . . ,an��a1	 . �2.19�

In what follows we will compare the quantum walk de-
scribed by Eq. �2.8� with the quantum walk with random
phase shifts.

III. QW WITH RANDOM PHASE SHIFTS

A. Analytic results

Quantum walks differ from classical random walks in
many respects. One of the main differences is that disper-
sions of probability distributions of CRW’s grow linearly
with the number of steps while for QW’s the dispersions
grow quadratically �7�. In what follows we will show that
introducing random phase shifts �RPS’s� at each step of the
evolution causes the QW’s to behave more like a classical
random walk. The reduction of QW’s to CRW’s has been
discussed in Refs. �10,11�. The authors of these papers have
discussed two possible routes to classical behavior for the
discrete QW on a line. First, the QW-to-CRW transition has
been considered as a result of decoherence in the quantum
“coin” which drives the walk. Second, higher-dimensional
coins have been used to “dilute” the effects of quantum in-
terference. The position variance has been used as an indica-
tor of classical behavior. It has been shown that the multicoin
walk retains the “quantum” quadratic growth of the variance
except in the limit of a new coin for every step, while the
walk with decoherence exhibits “classical” linear growth of
the variance even for weak decoherence.

In what follows we will utilize a different approach to
analyze the QW-to-CRW transition. In Ref. �11� the authors
used a CP map on the coin degree of freedom to simulate the
effects of decoherence on the quantum walks in 1 dimension.
If the CP map is pure dephasing, then the dispersion of the
probability distribution is asymptotically linear. Our ap-
proach is different in two respects: First, we generalize the
problem to an arbitrary number of dimensions; second, we
apply a different map, a sequence of random phase shifts on
the coin. We assume that at each step a random phase shift
�a

�n�� described by a unitary operator

R��n�� = �
a�D

eia
�n�

Pa �3.1�

on the direction register is applied to a particle. This proce-
dure, in effect, is equivalent to an application of another
�random� coin on the whole direction register. Each random
sequence ���R��n��
n=1

� generates a different quantum walk

U��1�� ¯ U��n�� = �
m=1

n

S�1 � R��j��C� . �3.2�

As we shall see later on, particular random walk probability
distributions associated with different sequences of random
phase shifts do not differ significantly.

What is significant about the QW-RPS is that it has mix-
ing properties similar to the classical random walk �the linear
growth of variance�, and in particular for dimension=2, the
mean probability distribution is exactly the same as for the
classical random walk. Before we prove both statements, we
derive the formula for the dispersion of the probability dis-
tribution for QW-RPS’s, using a generalized Grover �i.e.,
permutation symmetric� coin.
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The generalized Grover coin is �cf. Eq. �2.2��

Gr,t = r �
a�D

Pa + t �
a,b�D

a�b

�a	�b� = �r − t�I + t�D�Ps, �3.3�

where Pa= �a	�a�. This operator is unitary iff the following
relations hold:

�r�2 + ��D� − 1��t�2 = 1, �3.4�

��D� − 2��t�2 + r*t + rt* = 0. �3.5�

The QW-RPS’s may be thought of as a sequence of ran-
dom operators U�� such that

Ur,t�� = � �
a�D

Ta � Pa��1 � Ĉ��� �3.6�

and

Ĉ�� = 1 � �
a�D

eiaPaGr,t. �3.7�

Here = �1 , . . . ,�D�� is a sequence of independent random
real variables. Hence we actually get a sequence of random
operators �U��j��
 j which creates the QW-RPS’s.

One step of a QW-RPS is given by

Ur,t��1�� = SĈ��1��

= � �
a1�D

Ta1
� �a1	�a1��

	 �1 � �
a�D

eia
�1�

�t��D��a	�s� + �r − t�Pa��
= �

a1�D

Ta1
� eia1

�1�
�t��D��a1	�s� + �r − t�Pa1

� .

�3.8�

For the chain of n evolution operators of QW-RPS’s we ob-
tain the following lemma.

Lemma 3. Let �Ur,t��j��
 j=1
� be a sequence of random op-

erators according to Eq. �3.6�. Then

Ur,t��1�� ¯ Ur,t��n�� = �
a1,. . .,an�D

Ta1+. . .+an
� ei�a1

�1�+. . .+an

�n��

	��r − t��a1	�an� + t��D��a1	�s��

	 ��a1, . . . ,an��a1	 , �3.9�

where

��a1, . . . ,an� � �
j=1

n−1

�t + �r − t��aj,aj+1
� . �3.10�

Proof. By induction. �
It can be analyzed how a specific QW-RPS evolves given

a specific initial state ��0	= �0	 � �s	.
Lemma 4. Let �U��j��
 j=1

� be a sequence of random opera-
tors according to Eq. �3.6�. Then

����,n�	 � U��1�� ¯ U��n���0	 � �s	

= �
a1,. . .,an�D

�0 + ea1
+ . . . + ean

	

� ei�a1

�1�+. . .+an

�n����a1, . . . ,an�

	� r − t

��D�
+ ��D�t��a1	 . �3.11�

Proof. From lemma 3. �
The probability distribution of ���� ,x ,n�	 shall be de-

rived by projecting it onto Px � 1 and tracing over the coin
Hilbert space. Hence by setting

a � �a1, . . . ,an� , a� � �a1, . . . ,an�� ,

�a� � �a1
+ . . . + an

� , �3.12�

we obtain

P��,x,n� = ��Px � 1����,n��2

= � r − t

��D�
+ ��D�t�2

	 �
a,a��Dn

a�x�a�

ei��a�−�a�����a���a��*�a1�a1	 ,

�3.13�

where �a� is the sum of the sequence of independent ran-
dom variables for each a and � is the same as in Eq. �2.17�.
The symbol a�x means that 0+� j=1

n eaj
=x. It is clear that

P�� ,x ,n�= P�� ,x ,n�* since we are summing over all tuples
a ,a�.

Equation �3.13� depends on �, which is an event gener-
ating n�D� random variables �aj

: j=1, . . . ,n ,a�a
. We can
split Eq. �3.13� into two parts:

P��,x,n� = � r − t

��D�
+ ��D�t�2� �

a�Dn

a�x�a�

���a��2

+ �
a�a�

a�x�a�

ei��a�−�a�����a���a��*�a1�a1	� .

�3.14�

To obtain the mean probability distribution, we integrate
over the random variable , assuming uniform distribution
for all phases of :
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�P��,x,n�	� = �
0

2� d�D�n

�2���D�n P��,x,n�

= � r − t

��D�
+ ��D�t�2

�
a�Dn

a�x�a�

���a��2.

�3.15�

The terms coming from � a�a�
a�x�a�

cancel out. Now the mean

probability distribution depends only on the term ��a�.
For d=2 and the Grover coin �i.e., r= 2

�D� −1, t= 2
�D� �, this term

is the product of ±2 and ���a��2=2−2�n−1�. Then

�P��,x,n�	� =
1

4n �
a�Dn

a�x

1. �3.16�

The sum over all paths in Eq. �3.16� is the same as the sum
of all classical paths. The constant is the product of the prob-
ability to take any individual direction at each step. Hence
the mean probability distribution of QW-RPS’s for dimen-
sion 2 is the same as the CRW in two dmensions. We easily
show that the probability distribution resulting from Eq.
�3.16� is normalized:

�
x�Zd

�P��,x,n�	� =
1

4n �
a�Dn

1 = 1. �3.17�

It is an interesting question whether the equivalence of QW-
RPS with CRW’s in two dimensions is merely a coincidence
or whether the same result applies for higher dimensions
with a modified Grover coin.

Now we arrive at the conclusion that the averaged prob-
ability distribution of QW-RPS’s with the generalized Grover
coin Gr,t, is

�P��,x,n�	� = � r − t

��D�
+ ��D�t�2

�
a�Dn

a�x

���a��2. �3.18�

This equation is one of the main results of our paper, as it
shows that the probability distribution of a QW-RPS corre-
sponds to a classical sum over paths.

In order to study specific properties of the mean probabil-
ity distribution let us consider its dispersion that is defined as

D�D,n� = �
x�Zd

�P��,x,n�	��x�2. �3.19�

The dispersion corresponding to the mean probability dis-
tribution is evaluated in the Appendix �see Eq. �A15�� from
which we can derive the following theorem.

Theorem 5. The dispersion of QW-RPS’s with a general-
ized Grover coin with coefficients r, t for n
2 is

D�D,n� =
1 + �r�2 − �t�2

1 − �r�2 + �t�2
�n − 2� + O„��r�2 − �t�2�n

… .

�3.20�

We want to find the coefficients r , t such that the above
equation is identical to the probability distribution of a CRW.
The sufficient condition is that all the terms in � have the
same absolute values. It is obvious that this is equivalent
with the following requirement.

Theorem 6. The dispersion of QW-RPS’s with Grover
coin Gr,t is identical to that of a CRW if and only if �r�= �t�.

Comparing this requirement with Eqs. �3.4� and �3.5� it
follows that the condition �r�= �t� is satisfied only in two
cases:

�i� dimension=1, r= 1
�2

ei�, t= 1
�2

ei�, �−�= �
2 +k�,

�ii� dimension=2, r= 1
2ei�, t= 1

2ei�, �−�=�+2k�.

The average probability distribution of QW-RPS’s with
generalized Grover coefficients r , t is actually identical to the
probability distribution of a CRW with memory �CRW-M�.
We define a CRW-M as the random walk of a particle on a
d-dimensional lattice, whose direction is changed at each
step, depending on the direction from which it came. The
CRW-M is given by the sequence ��xn ,an�
n=1

� , where xn

�Zd is the position of the particle, ean
�xn−xn−1 is the unit

vector in any of the 2d directions, and a0 is preset. One step
of the CRW-M is given by the transformation �xn ,an�
→ �xn+1 ,an+1� such that xn+1−xn=ean+1

, where

Prob�an+1�an� = ��r�2, an+1 = an,

�t�2, otherwise.
� �3.21�

Beginning with x0=0 and a0 in the uniform mixture of �D�
=2d directions, the probability Prob�xn=y� is given by the
sum of all paths from 0 to y, each weighed by the product of
terms �r�2 , �t�2, depending on whether the path continues in
the same direction for two consecutive steps. The sum of the
amplitudes is the same as in Eq. �3.18�, weighted by the
factor �r−t�2

�D� = 1
�D� , which corresponds to the mixture of differ-

ent values of the initial direction of the walker a0 �see Eqs.
�3.4� and �3.5��.

The memory effect in the QW-RPS’s with the Grover coin
is due to different absolute values of the coefficients r , t.
Although Eq. �3.18� shows that a QW-RPS using a symmet-
ric coin yields a probability distribution which corresponds
to a CRW with memory �QRW-M�, it is also interesting to
consider what QW-RPS’s correspond to CRW’s with no
memory. Using the Fourier coin instead and using random
phase shifts will give the mean probability distribution
equivalent to a CRW.

The Fourier coin is defined by the operator of a
d-dimensional Fourier transform

Fd �
1
�d

�
j=0

d−1

�
k=0

d−1

e2�ijk/d�j	�k� . �3.22�

One step of d-dimensional QW-RPS’s with Fourier coin is
defined by the unitary operator

UF�� = � �
a�D

Ta � Pa��1 � F̂��� , �3.23�

with

QUANTUM WALKS WITH RANDOM PHASE SHIFTS PHYSICAL REVIEW A 74, 022310 �2006�

022310-5



F̂�� = 1 � �
a�D

eiaPaF�D�. �3.24�

Obviously,

U��1�� ¯ U��n�� = �
a1,. . .,an�D

Ta1+. . .+an
ei�a1

�1�+. . .+an

�n��

� �Pa1
F�D� ¯ Pan

F�D�� . �3.25�

As before, we study the mean probability distribution in-
duced by QW-RPS’s with the Fourier coin and we conclude
that the cross terms vanish. It is straightforward to prove �cf.
lemma 2�.

Lemma 7.

Pa1
F�D� ¯ Pan

F�D��s	 =
�an,�D�

�D��n−1�/2 e2�i�a1a2+¯+an−1an�/�D��a1	 .

�3.26�

Now the probability distribution after n steps, with the
initial state �0	 � �s	 and the sequence � of random phases, is
�cf. Eq. �3.13��

PF��,x,n� = �
a�Dn

a�x

��F�a��2

+ �
a�a�

a�x�a�

ei��a�−a���F�a��F�a��*�a1�a1	 ,

�3.27�

where

�F�a1, . . . ,an� =
�an,�D�

�D��n−1�/2e2�i�a1a2+¯+an−1an�/�D�.

�3.28�

By averaging over all sequences of random phases � �cf. Eq.
�3.15�� the second term in Eq. �3.27� vanishes and we get

�PF��,x,n�	� =
1

�D�n−1 �
a�x

�an,�D�. �3.29�

Notice that despite the symmetric initial coin state �s	, there
is an asymmetry manifested in the term �an,�D�. This is due to
the fact that after the initial coin toss, the coin register is in
the state F�D��s	= ��D�	. We can symmetrize the evolution by
taking the initial coin state to be F�D�

† �s	= ��D�	. Then we can
compute that the probability distrubution has the same form
as Eq. �3.27�, with �F replaced by

�F,sym =
1

�D�n/2e2�i�a1a2+. . .+an−1an��a1	 , �3.30�

yielding the mean probability distrubution

�PF,sym��,x,n�	� =
1

�D�n �
a�x

1. �3.31�

This is exactly the form for the probability distribution of a
�memoryless� CRW, the sum being over all paths from 0 to
x, weighed by 1

�D� .

B. Numerical results

To complement our analytical results, we plot the disper-
sion of the average probability distribution of the QW-RPS’s
for the Grover coin:

D0�D,n� = � �
x�Zd

�x�2Tr�Px����,n�	����,n����
�

.

�3.32�

The results are shown in the following figures: in Fig. 1
we plot the dispersion �3.32� as a function of the number of
steps for a two-dimensional �d=2� QW, CRW, and QW-RPS,
respectively.

Comparing the three corresponding lines we find that the
dispersion in the QW grows quadratically with number of
steps �13� �see solid red line in Fig. 1�. This is in a sharp
contrast to a classical random walk for which the dispersion
is a linear function of the number of steps �see dotted blue
line in Fig. 1�. The lines for QW-RPS’s and CRW’s overlap.
The dispersion of either grows linearly with the number of
steps n �see dashed blue line in Fig. 1�.

In Fig. 2 we plot the dispersion �3.19� as a function of
number of steps for a three-dimensional �d=3� QW, CRW,
and QW-RPS, respectively.

As in the two-dimensional case, the dispersion of the
probability distribution of the QW grows quadratically. The
dispersion of the classical random walk is a linear function
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FIG. 1. �Color online� Dispersions of the probability distribu-
tions corresponding to the n steps of quantum walk �solid red line�,
the �memoryless� classical random walk with equal probabilities of
step in any direction �dotted blue line�, and the quantum walk with
random phase shifts �dashed green line� for a two-dimensional sys-
tem. The initial state of the quantum system system is described by
a vector ��0	= �0	 � �s	, and we assume the Grover coin CG. The
quantities for QW-RPS’s were obtained by generating 50 evolutions
of QW-RPS’s with respective dispersions of probability distribu-
tions and by averaging over them.
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of number of steps, and it does not depend on the dimension
of the random walk. Interestingly enough, the dispersion of
the quantum walk with random phase shifts is again a linear
function, but unlike in the two-dimensional case, for d�3
the linear growth of the dispersion is faster than in the clas-
sical case.

The same conclusions can be derived from our simula-
tions of quantum walks in four-dimensional space �see Fig.
3�.

In Fig. 4 we plot dispersion of probability distributions for
quantum walks with random phase shifts as a number of
steps for various dimensions d=2,3 ,4. We generated 50
evolutions of QW-RPS’s for each dimension and averaged
over the respective dispersion generated by each evolution.

We can conclude that as the dimension increases, the lin-
ear growth of the dispersion also increases.

We have shown that the introduction of random phase
shifts causes the transition of a QW to a �quasi�classical ran-
dom walk. In our previous discussion we have considered
random phases to be uniformly distributed in the interval
�−� ,��. Here we briefly analyze a situation when phases of
random shifts are distributed according to a normal distribu-
tion that is peaked around phase zero and with dispersion �.
When the dispersion is zero �i.e., �=0�, we recover the QW
�see Fig. 5�, while for large �, we obtain uniform distribution
on the interval �−� ,�� and the CRW is obtained. The results
are shown in Fig. 5. This analysis clearly shows the
quantum-to-classical transition for quantum walks which is
generated by random phase shifts. As the phase shifts be-
come more random, the walk becomes more classical.

IV. CONCLUSION

We have shown that by shifting the amplitudes of the coin
register in a quantum walk by random phases, we can obtain

the classical behavior of the quantum walk. For a Grover
coin, the mean probability distribution of such a walk is
equivalent to the CRW with memory and a biased coin; for
the Fourier coin, the mean probability distribution is equiva-
lent to the memoryless CRW with an unbiased coin �given an
unsymmetric initial coin state�.

The results underlying Fig. 5 also show how the transition
from QW-RPS’s to CRW’s occurs when we increase the dis-
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FIG. 2. �Color online� Dispersions of probability distributions
corresponding to the n steps of quantum walk �solid red line�, the
�memoryless� classical random walk with equal probabilities of step
in any direction �dotted blue line�, and the quantum walk with ran-
dom phase shifts �dashed green line� for a three-dimensional sys-
tem. The initial state of the quantum system system is described by
a vector ��0	= �0	 � �s	, and we assume the Grover coin CG. The
quantities for QW-RPS’s were obtained by generating 50 evolutions
of QW-RPS’s with respective dispersions of probability distribu-
tions and by averaging over them.
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FIG. 3. �Color online� Dispersions of probability distributions
corresponding to n steps of quantum walk �solid red line�, the
�memoryless� classical random walk with equal probability of step
in any direction �dotted blue line�, and the quantum walk with ran-
dom phase shifts �D0�D ,n�: dashed green line� for a four-
dimensional system. The initial state of the quantum system is de-
scribed by a vector ��0	= �0	 � �s	. We assume the Grover coin CG.
The quantities for QW-RPS’s were obtained by generating 50 evo-
lutions of QW-RPS’s with respective dispersions of probability dis-
tributions and by averaging over them.
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FIG. 4. �Color online� Dispersion of QW-RPS processes for
different dimensions for n steps. We see that these dispersions
D0�D ,n� are linear functions with gradients that depend on the
dimensionality of the system under consideration. Only the case
d=2 coincides with the classical random walk. The quantities
for QW-RPS’s were obtained by generating 50 evolutions of
QW-RPS’s with respective dispersions of probability distributions
and by averaging over them.
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persion of the normal distribution of random phases �for the
Grover coin�. Our results are in a way complementary to a
standard quantization procedure in physics. Specifically,
classical dynamics of physical systems can be canonically
quantized, so it is clear what is the quantum version of a
classical process. On the other hand, a quantum walk is not
obtained by a canonical quantization procedure from a clas-
sical random walk. It is simply defined by a set of instruc-
tions that govern the evolution of the quantum walk. There-
fore it is of importance to know what is the underlying
classical process. This underlying process can be recon-
structed either by measuring the coin at each step �cf. Ref.
�6�� or when the quantum walk is subject to random phase
shifts that totally suppress quantum interference between dif-
ferent evolution paths. As a result of the suppression of the
quantum interference, the classical random walk that corre-
sponds to the underlying quantum walk emerges. Moreover,
our approach allows random phase shifts with continuously
varying dispersions; i.e., we can observe a continuous “tran-
sition” from the quantum to classical domain. This would
correspond to a performance of specific positive-operator-
valued measurements �POVM’s� on the coin. A quantum
walk on the line in which a POVM measurement is per-
formed on a the coin was studied by Brun et al. �14�. They
find, as we do, that a gain of partial knowledge about the
state of the coin results in a partial deterioration of quantum
coherence of the quantum walk.
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APPENDIX: DISPERSION OF QW-RPS’s
WITH THE GROVER COIN

Starting with Eq. �3.18� we can evaluate the dispersion
D�D ,n� of QW-RPS’s with a generalized Grover coin Gr,t.
The dispersion reads

D�D,n� = K �
a�Dn

�ea1
+ . . . + ean

�2���a��2, �A1�

with K= � r−t
��D� +

��D�t�2. Turning Eq. �A1� into the recursive
relation we obtain

D�D,n� = K �
a�Dn+1

��ea1
+ . . . + ean

�2

+ 2�ea1
+ . . . + ean

� · ean+1
+ 1


	���a1, . . . ,an��2���an,an+1��2. �A2�

We find that �an+1�D���an ,an+1��2= �r�2+ ��D�−1��t�2=1 for
all an�D. Hence the first and last terms in the braces con-
tribute to Eq. �A2� with D�D ,n�+1. The middle term has the
form

2K �
a�Dn

���a��2�ea1
+ . . . + ean

� �
an+1�D

���an,an+1��2ean+1
.

�A3�

In the sum over an+1 in Eq. �A3�, we can keep just the terms
an+1 such that ean+1

is parallel with ea1
+ ¯ +ean

. The remain-
ing an+1’s cancel out, since for each such an+1 there is an+1�
such that ean+1

+ean+1
� =0. Hence the second term of Eq. �A3�

can be rewritten as

2K��r�2 − �t�2� �
a�Dn

���a��2�ea1
+ . . . + ean

� · ean

� 2K��r�2 − �t�2�Rn. �A4�

The expression for D�D ,n� reads as

D�D,n + 1� = D�D,n� + 1 + 2K��r�2 − �t�2�Rn, �A5�

with

D�D,2� = K �
a1,a2�D

���a1,a2��2�a1 + a2�2

= K�4�D��r�2 + 2��D�2 − �D� − 1��t�2
 . �A6�

The expression Rn can be rewritten as a recursive equation

Rn+1 = ��r�2 − �t�2�Rn +
1

K
, �A7�

with the initial condition

R2 = �
a1,a2�D

���a1,a2��2�ea1
+ ea2

� · ea2

= 2�D��r�2 + ��D�2 − �D� − 1��t�2. �A8�

Equations �A7� and �A8� can be solved to obtain
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FIG. 5. �Color online� Dispersion D0�D ,n� of n steps of QW-
RPS’s in dimension 2 with random phases normally distributed
around 0 with respective standard deviation. We see a “continuous”
transition between the QW’s and CRW’s as function of the standard
deviation of the random phase distribution.
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Rn =
��r�2 − �t�2�n−2�KR2�r�2 − KR2�t�2 − KR2 + 1� − 1

K��r�2 − �t�2 − 1�
.

�A9�

Solving Eq. �A5� and collecting the terms from Eqs. �A6�,
�A8�, and �A9� we obtain

D�D,n� =
1

��r�2 − �t�2��1 − �r�2 + �t�2�2

	 ��n − 2�� − 2��r�4 + �t�4� + 4�r�2�t�2

+ �2 + ����r�2 − �t�2�n + ���t�2 − �r�2�
 , �A10�

where

� = �r�2 − �r�6 − �t�2 + 3�r�4�t�2 − 3�r�2�t�4 + �t�6� �A11�

and

� = 2� r + ��D� − 1�t
��D�

���r�2 − �t�2 − 1�

	 �2�D��r�2 + ��D�2 − �D� − 1��t�2
 . �A12�

We may assume that r is real and t= �t�ei�. Solving Eqs. �3.4�
and �3.5� we obtain

�t� = � 1 − r2

�D� − 1
�1/2

, �A13�

� = ± arccos� 1

2r
�2 − �D��� 1 − r2

�D� − 1
�1/2� , �A14�

where �D��4, �D�−2
�D� �r�1. Obviously, 0� �r�, �t��1, and

�r�2− �t�2= �D�r2−1
�D�−1 . Equation �A10� contains only two terms

dependent on n: �n−2�� and ��r�2− �t�2�n. The latter goes to 0
as n→�; hence, we get �n
2�

D�D,n� =
1 + �r�2 − �t�2

1 − �r�2 + �t�2
�n − 2� + O„��r�2 − �t�2�n

… .

�A15�
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