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We consider multiqubit systems and relate quantitatively the problems of generating cluster states with high
values of concurrence of assistance, and of generating states with maximal bipartite entanglement. We prove an
upper bound for the concurrence of assistance. We consider dynamics of spin-1 /2 systems that model qubits,
with different couplings and possible presence of magnetic field, to investigate the appearance of the discussed
entanglement properties. We find that states with maximal bipartite entanglement can be generated by an
isotropic XY Hamiltonian, and their generation can be controlled by the initial state of one of the spins. The
same Hamiltonian is capable of creating states with high concurrence of assistance from a suitably chosen
initial state. We show that the production of graph states using the Ising Hamiltonian is controllable via a
single-qubit rotation of one spin-1 /2 subsystem in the initial multiqubit state. We show that the property of
Ising dynamics to convert a product-state basis into a special maximally entangled basis is temporally en-
hanced by the application of a suitable magnetic field. Similar basis transformations are found to be feasible in
the case of isotropic XY couplings with a magnetic field.
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I. INTRODUCTION

One of the key features of a physical system for quantum-
information processing �QIP� is quantum entanglement. The
problem of entanglement of multipartite systems is far from
being completely understood and it has numerous interesting
aspects.

One of the possible approaches to multipartite entangle-
ment is to search for quantum states with prescribed bipartite
entanglement properties �1–3�. This is a nontrivial task as
there exist limitations on sharing of the bipartite entangle-
ment in multipartite systems, which were quantified by Coff-
man, Kundu, and Wootters �4�. In a pioneering work,
O’Connor and Wootters �5� considered a system of quantum
bits, and searched for an entangled state of these with maxi-
mal bipartite entanglement. This state appears to be the
ground state of the antiferromagnetic Ising model, the spins
representing the qubits. This illustrates the relation between
states of maximal bipartite entanglement and the spin cou-
plings known from statistical physics. We will refer to this
approach as the question of direct bipartite entanglement, as

the relevant quantity is the bipartite entanglement present in
the system as it is.

Another approach to the problem of multipartite entangle-
ment is related to cluster �6� and graph �7� states. These are
genuine multipartite entangled states, which can be projected
onto a maximally entangled state of any chosen two spins by
a von Neumann measurement on the others. Such states arise
dynamically in a system of spins with pairwise Ising cou-
plings. They constitute the fundamental entanglement re-
source for one-way quantum computers �8,9�. It is an inter-
esting property of the Ising dynamics in this case that it
transforms a whole basis of product states into a basis that
consists of cluster or graph states. In this way a basis trans-
formation from a product-state basis to a special—in a sense
maximally—entangled basis is realized.

These states are the starting points for the second ap-
proach, the bipartite entanglement in multipartite systems
available via assistive measurements on all but two sub-
systems. The two key concepts in its quantitative description
are entanglement of assistance �10� �or concurrence of assis-
tance �11��, quantifying the entanglement available via assis-
tive measurements, and localizable entanglement �12,13�.
The computational feasibility of concurrence of assistance
for a pair of qubits makes the quantitative study of a part of
this question feasible.
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One of our aims is to relate the above two approaches. We
will show that the optimizations of direct and measurement-
assisted bipartite entanglement are indeed related. Our other
task is to study these generic features in actual spin systems,
as such systems do appear quite naturally in this context.

Coupled-spin systems have attracted a vast amount of re-
search interest in the quantum-information community re-
cently. The couplings studied in statistical physics allow for
performing certain tasks in QIP such as, e.g., quantum state
transfer �14–16�, realization of quantum gates �17,18�, and
quantum cloning �19�. As the systems of coupled spins are
appropriate models for solid-state systems, and also for
quantum states in optical lattices in certain cases �20�, they
bear actual practical relevance.

In the second part of this paper we focus on dynamical
generation of entanglement. We consider a system initially in
a pure product state, and investigate the entanglement of the
states of the system throughout the evolution. The “proto-
type” of such entanglement generation is that of cluster and
graph states. The various aspects of the dynamical behavior
of entanglement in spin systems have been considered by
several authors recently �21–26�.

In addition to interpolating between the two approaches to
bipartite entanglement in multipartite systems, we consider
the possibility of controlling the process through the initial
state of the system. We address the following question. Is it
possible to dynamically generate states with optimal direct
bipartite entanglement? We find a positive answer, and also
that the same couplings are capable of producing states with
high bipartite entanglement available via measurements, if a
different initial state is chosen. Our main tool for describing
measurement-assisted bipartite entanglement will be concur-
rence of assistance. We will examine the possibility of con-
trolling the behavior of this entanglement generation by the
initial state of the system. This is analogous to the control of
quantum operations in programmable quantum circuits
�27–30�. Finally we show that a suitably chosen magnetic
field can enable couplings different from Ising to create
whole entangled bases resembling those of cluster states re-
garding concurrence of assistance. �Note that the generation
of cluster states with non-Ising couplings was considered
very recently in Ref. �31�.� In addition, the application of a
magnetic field in the case of Ising couplings can enhance the
duration of the presence of high pairwise concurrence of as-
sistance.

As we are mainly interested in illustrating generic features
and certain examples of entanglement behavior, a part of our
results concerning actual spin systems is simply computed
by numerical diagonalization of the appropriate Hamilto-
nians, even though we present some analytical consider-
ations where we find them appropriate. Thus some of our
considerations are limited to an order of ten spins, even
though according to the numerical experience, they seem to
be scalable. This number coincides with that of the quantum
bits expected to be available in quantum computers in the
near future. As the realization of the discussed couplings is
not necessarily restricted to spins, our results may become
directly applicable in such systems. We consider two topolo-
gies of the pairwise interactions: a ring where each spin in-
teracts with its two neighbors, and also the star topology

where the interaction is mediated by a central spin interact-
ing with all the others. This latter was found interesting from
the point of view of entanglement distribution �32� and also
from other aspects of its dynamics �33� recently.

The paper is organized as follows. In the introductory Sec.
II we briefly review the entanglement measures we use in the
following. Section III is devoted to the review of the dynami-
cal generation of cluster and graph states in spin systems,
which is the background of the second part of the paper. In
Sec. IV we present two interesting properties of concurrence
of assistance, which relates the two above mentioned ap-
proaches to bipartite entanglement in multipartite systems,
and will be useful in the following. In Sec. V, the controlled
generation of specific entangled states is addressed. Section
VI is devoted to the enhanced generation of certain entangled
bases with the help of a magnetic field. Section VII summa-
rizes our results.

II. ENTANGLEMENT MEASURES

In this section we give an overview in a nutshell of the
entanglement measures and related quantities that will be
used throughout this paper.

A. One-tangle

For a bipartite system AĀ �A being a qubit, and Ā the rest
of the system� in the pure state ���AĀ, the one-tangle �34� of
either of the subsystems

T����AĀ� = 4 det��A� �1�

�where �A=trĀ���AĀ���� is a measure of entanglement. It
quantifies the entanglement between the qubit A and the rest
of the system, including all multipartite entanglement be-

tween qubit A and the sets of all the subsystems in Ā. This
justifies the following interpretation: the square root of a
one-tangle is the concurrence of such a two-qubit system in a
pure state, for which the density matrix of one of the qubits
is equal to that of qubit A. This means that it would be the

concurrence itself if the subsystem Ā were also a qubit. Al-
though there is an extension of the one-tangle to mixed
states, it is not computationally feasible except for the case
of 2 qubits, in which case the one-tangle is equal to the
square of concurrence.

B. Concurrence

For bipartite systems in a mixed state the entanglement of
formation is often considered as an entanglement measure:

E��� = min�
i

piE���i��, so that �
i

pi��i���i� = � .

�2�

Its supports the following interpretation. Imagine that the
bipartite system as a whole is a subsystem of a large system.
Entanglement of formation measures the bipartite entangle-
ment available on average, if everything but the bipartite
subsystem is simply dropped.
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If the system in argument consists of two qubits, there is a
closed form for entanglement of formation found by Woot-
ters �35�. Given the two-qubit density matrix �, one calcu-
lates the matrix

�̃ = ���y�
� ��y���*���y�

� ��y�� , �3�

where the asterisk stands for complex conjugation in the
product-state basis. In the next step one calculates the eigen-
values �i �i=1,…,4� of the Hermitian matrix

R̂ = 		��̃	� , �4�

which are in fact square roots of the eigenvalues of the non-
Hermitian matrix

R̂2 = ��̃ . �5�

The entanglement monotone termed the concurrence is then
defined as

C��� = max�0,�1 − �2 − �3 − �4� , �6�

where the eigenvalues are put into a decreasing order. En-
tanglement of formation is a monotonically increasing func-
tion of concurrence:

E��� = h
1 + 	1 − C���2

2
� ,

h�x� ª − x log2�x� − �1 − x�log2�1 − x� . �7�

Concurrence is one of the most prevalently used entangle-
ment monotones for two qubits.

In multipartite systems the one-tangle and concurrence
are linked by the Coffman-Kundu-Wootters inequalities

Tk � �
l�k

Ckl
2 �8�

which have been proven initially for three qubits in a pure
state and certain classes of multiqubit states. For a long time
they were conjectured to be true in general. This conjecture
was very recently proven �36�. These inequalities set limita-
tions to the bipartite entanglement that can be present in a
multipartite system. Note that if the whole multipartite sys-
tem is in a mixed state, then the definition of the one-tangle
for Eq. �8� is different from that in Eq. �1�.

C. Concurrence of assistance

Consider again a bipartite system described by the density
operator �. One can follow a route complementary to that in
the case of entanglement of formation and ask what is the
maximum average entanglement available among the pure-
state realizations, termed the entanglement of assistance
�35�:

Eassist��� = max�
i

piE���i��, so that �
i

pi��i���i� = �

�9�

�cf. Eq. �2��.

Interpreting again the bipartite system as a subsystem of a
larger system, one can consider that the whole system is in a
pure state, that is, we have a purification of � at hand. In this
case entanglement of assistance describes the maximum en-
tanglement available on average in the bipartite system,
when a collaborating third party, instead of omitting the rest
of the system as in the case of entanglement of formation,
makes optimal von Neumann measurements on it. Although
entanglement of assistance is not an entanglement measure,
it is a very informative quantity regarding entanglement.

Having a system of two qubits, one can also use concur-
rence instead of entanglement in Eq. �9�, yielding the defini-
tion of concurrence of assistance:

Cassist��� = max�
i

piC���i���i��,

so that �
i

pi��i���i� = � . �10�

The advantage of this quantity is that it can be easily calcu-
lated for two qubits. As shown in �11�, it is simply

Cassist��� = tr		��̃	� = �
i=1

4

�i �11�

�cf. Eq. �6��. Note that this quantity is essentially a fidelity
between the physical density matrix � and the matrix �̃.

Thanks to the formula in Eq. �11�, concurrence of assis-
tance is not only an informative quantity, but is as feasible as
concurrence itself in the case of qubit pairs.

III. GRAPH STATES RECONSIDERED

In this section we briefly review the properties of the Ising
dynamics for spin-1 /2 particles without magnetic field,
which are known from Refs. �6,7�. We will consider spins in
this context, and the �̂�z� eigenstates will represent the com-
putational basis: �0�= �↑ � , �1�= �↓ �. Consider a set of spins,
with pairwise interactions between them:

Ĥ = − �
�k,l�

�̂k
�x�

� �̂l
�x� �12�

where the summation �k , l� goes over those spins that interact
with each other. �Hence the name graph states for the states
to be considered here: the geometry can be envisaged as a
graph, where the vertices are the spins, and the edges repre-
sent pairwise Ising interactions.� As the summands in Eq.
�12� commute, the time evolution can be written as a product
of two-spin unitaries

Û��� = e−iĤ� = �
�k,l�

Ûk,l��� , �13�

where

Ûk,l��� = ei�̂k
�x�

��̂l
�x��. �14�

Here � stands for the scaled time measured in arbitrary units.
First we study the time instant �=� /4: one may directly

verify that
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Ûk,l =
1
	2

�1̂ + i�̂k
�x�

� �̂l
�x�� . �15�

The evolution operators without a time argument will denote
those for �=� /4 in what follows. These describe conditional
phase gates in a suitably chosen basis. Let us assume that the
system is initially in a state �em� of the computational basis, a
common eigenvector of all the �̂�z�’s:

�̂n
�z��em� = en,m�em�, en,m = ± 1. �16�

The state Û�em� will be an eigenvector of the following com-
plete set of commuting observables:

K̂n = Û�̂n
�z�Û†, �17�

with the same eigenvalues as the en,m’s in Eq. �16�. The

operators K̂n in Eq. �17� depend on the geometry of the
graph. The joint eigenstates of these operators are termed
graph states �7�. It can be shown that many of the so-arising
states corresponding to different graphs are locally unitary
equivalents.

As an example, consider a ring of N spins with pairwise
Ising interaction. In this case

K̂l
�ring� = − �̂l−1

�x�
� �̂l

�z�
� �̂l+1

�x� , �18�

where the arithmetic in the indices is understood in the
modulo N sense. The common eigenstates of these commut-
ing variables are termed cluster states, and they were intro-
duced in Ref. �6�, although in a different basis. They are
suitable as an entanglement resource for one-way quantum
computers �8�.

Note that the generated evolution is periodic: at such time
instants the initial computational basis state appears again.
Thus the Ising dynamics without magnetic field produces
oscillations between the computational basis state and a
graph �or in some of the cases, a cluster� state. The achieved
graph state is selected by the initial basis state.

To obtain a more complete picture of the whole process of
the entanglement oscillations, we plot the temporal behavior
of the entanglement quantities in Fig. 1 for the ring topology.
In the figure we observe that the concurrence of assistance of
the qubit pair is almost equal to the square root of the one-
tangle of one of the constituent spins. We will show later in
this paper that the square root of a one-tangle is an upper
bound for concurrence of assistance. Thus for the states in
argument, the entanglement of a subsystem with the rest of
the system can be indeed “focused” to a pair of qubits via a
suitably chosen measurement on the rest of the system. This
is obvious for the cluster states, but it appears to hold for
most of the time evolution.

The dynamical entanglement behavior of the systems in
argument can be controlled by the appropriate choice of the
initial state. Consider for instance the following polarized
initial state:

��A�t = 0�� = �
k=1

N 
cos
�

2
��0�k + sin
�

2
��1�k� . �19�

The A index reflects that all the spins are rotated from the z
direction in the same way. This state can be prepared by a
simultaneous one-qubit rotation, which is available even in
optical lattice systems. If �= l� �l being integer�, we obtain
the graph state periodically, while for �= l� /2 the state is
stationary and thus no entanglement will be generated. Be-
tween these values, the entanglement measured by one-
tangle or concurrence of assistance is a monotonic and con-
tinuous function of � for all values of time. Thus by varying
this parameter of the initial state, one can control the amount
of the generated entanglement.

From the above discussion we find that Ising dynamics
without a magnetic field has the following properties from
the point of view of entanglement generation.

�1� The generated bipartite entanglement is always small.
�2� In the case of the cluster states one can project the

state with certainty to a maximally entangled pair of two
spins by a measurement on the others. Moreover, the re-
quired measurement is a local one.

�3� All the states of the computational basis are periodi-
cally transferred into states that have properties 1 and 2.

�4� One can control the amount of the dynamically gen-
erated entanglement by a parameter of the initial state, which
can be altered by the same local rotation applied on all the
spins.

During our investigations we will check which of these
properties may arise under different couplings, initial states,
and topologies.

IV. TWO PROPERTIES OF CONCURRENCE
OF ASSISTANCE

In this section we present two properties of concurrence
of assistance for multiqubit systems.

Our first proposition formulates an upper bound of con-
currence of assistance.

FIG. 1. �Color online� Overlap with the initial state and en-
tanglement measures for the first two qubits, during the entangle-
ment oscillations for five spins in a ring, generated by the Ising
Hamiltonian without magnetic field in Eq. �12�. In the initial state
all spins are up and thus in state �0� if we consider qubits. The
plotted quantities are dimensionless.
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Proposition 1. For an arbitrary state of two qubits A and
B, the square root of the one-tangle of either qubit serves as
an upper bound for concurrence of assistance, i.e.,

	TA � CAB
assist. �20�

Proof. Consider the ensemble realization of the state �AB
of the qubits A ,B,

�AB = �
k

pk��k���k� �21�

which provides the maximum in Eq. �10�, and use the nota-
tion

�k = trB��k���k�; �22�

thus

�A = trB�AB = �
k

pk�k, �23�

due to the linearity of the partial trace. Substituting Eq. �23�
into the definition in Eq. �1� we obtain

	TA = 2	det
�
k

pk�k� , �24�

while according to the definition in Eq. �10�,

CAB
assist = 2�

k

	det�pk	k� , �25�

where we have exploited the fact that for pure states

C���k�� = 2	det �k. �26�

Substituting Eqs. �24� and �25� into the statement of the
proposition in inequality �20�, what we have to show is that

�
k

	det�pk�k� 
 	det
�
k

pk�k� , �27�

i.e., the concavity of the square root of the linear entropy.
This is a consequence of the recursive application of the
inequality �A1�, which is proven in Appendix A. �

Proposition 1 is physically equivalent to the entropic
bound of entanglement of assistance �10�. Intuitively, in the
spirit of the considerations concerning the lower bound of
localizable entanglement in Ref. �13�, we can claim that a
local measurement on the ancillary systems of a purification
of �AB cannot create additional entanglement between the

spin A and the rest of the system Ā, as such a measurement is
an operation on the complementary system. Thus, by choos-
ing the optimal measurement we can, at best, concentrate all
of the originally available entanglement �	TA� into the en-
tanglement between the qubits A and B.

The appearance of the one-tangle in the context of con-
currence of assistance suggests that there might be some re-
lation to the Coffman-Kundu-Wootters �CKW� inequalities,
and this is the case indeed. Nevertheless, it is simple to prove
the following.

Proposition 2. For a system of three qubits A ,B ,C in a
pure state,

CAB = CAB
assist and CAC = CAC

assist �28�

is equivalent to the fact that the Coffman-Kundu-Wootters
inequalities in Eq. �8� are saturated and

CAB
2 + CAC

2 = TA �29�

holds.
This immediately follows from the same derivation as in

Ref. �4�: both of the statements of the proposition hold if and
only if the matrices R2 of Eq. �5� for subsystems AB and AC
are of rank 1 �cf. Eqs. �6� and �11��; thus they are equivalent.

Proposition 2 relates the direct and measurement-assisted
approaches to bipartite entanglement of pure states of multi-
partite systems. The question remains open, of course,
whether it is true in general for more parties, too.

As already pointed out in Sec. III, for the graph states
themselves 	TA=CAB

assist=1, and besides 	TA�CAB
assist holds

throughout the whole time evolution generated by Ising cou-
plings. According to Proposition 1 it is correct to call such
states those with maximal concurrence of assistance. Mean-
while CAB�CAB

assist, which suggests that CKW inequalities are
far from being saturated, which is indeed the case. The gen-
erated entanglement is essentially multipartite, but it can be
converted to bipartite via a measurement. On the other hand,
if CKW inequalities are saturated, then we can expect con-
currence of assistance well below the square root of the one-
tangle. In addition, the question naturally arises whether it is
possible to dynamically create entanglement oscillations in
spin systems that saturate CKW inequalities instead.

V. CONTROLLED GENERATION OF CONCURRENCE
AND CONCURRENCE OF ASSISTANCE

Now we turn our attention to spin-1 /2 systems as those
naturally realize multiqubit systems. We assign the �̂�z�

eigenstates as the computational basis states as �0�
= �↑ � , �1�= �↓ �. We will use the qubit notation for simplicity.

We have seen in Sec. III that certain states with maximal
concurrence of assistance can be generated in dynamical os-
cillations, and the control over the available entanglement is
realized by the altering of the initial state. This control re-
quires a simultaneous operation on all the spins, and as for
bipartite entanglement, it affects the entanglement available
via assistive measurements only, as concurrence itself takes
low values throughout the evolution. First we consider
whether it is possible to control the concurrence itself too,
and if it is possible to control the evolution by varying a
single spin only.

Consider first a system of N+1 spins with isotropic XY
couplings

ĤXY = − �
�i,j�

��̂i
�x��̂ j

�x� + �̂i
�y��̂ j

�y�� , �30�

in a star topology: spin 0 is the middle one, while spins 1 to
N are the outer ones, each coupled to the central one. Even
though the summands of the Hamiltonian do not commute,
the eigenvalues and eigenvectors can be calculated. One
would expect that the state of the middle spin can control the
entanglement behavior, as the interaction of the outer spins is
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mediated by this one. Indeed, if one considers the initial state
where only the middle spin is rotated and the others point
upward, i.e., they are in the state �0�,

��M�t = 0�� = 
cos
�

2
��0�0 + sin
�

2
��1�0� � �

k=1

N

�0�k,

�31�

the time evolution, as shown in Appendix B, reads

��M�t�� = cos
�

2
�
�0�0 � �

k=1

N

�0�k� + sin
�

2
�
cos�2	Nt��1�0

� �
k=1

N

�0�k − i sin�2	Nt��0�0

�
1

	N
�
l=1

N

�0,…,0,1l,0,…�� . �32�

The rotation of the central spin indeed controls the en-
tanglement behavior of the system: for �=0 no entanglement
is created, while for �=� the maximal entanglement oscilla-
tion will appear. The state is a superposition of a product and
an entangled state depending on �; thus this parameter con-
trols the available entanglement continuously.

These entanglement oscillations are different from those
in the case of Ising couplings. As shown in Appendix C,
concurrence is equal to concurrence of assistance in the case
of any superposition of the computational basis states with
all spins up but for one down. This means that in the states
arising throughout this evolution measurements do not facili-
tate “focusing” entanglement onto two spins. In addition, it
has been proven in Ref. �4� that these states saturate CKW

inequalities in Eq. �8�; thus the bipartite entanglement
present in the states is maximal. This scheme provides a
dynamical way of preparing multipartite states with maximal
bipartite entanglement, which is controlled by the initial state
of one spin. In addition, it illustrates that Proposition 2 works
for more than two subsystems, which is shown exactly in this
specific case. Note that at certain times the central spin gets
disentangled from the outer ring, which is meanwhile in a
state with the highest pairwise concurrence possible. Such a
maximally entangled state is reached for the whole system,
too, at different times; see also Fig. 2�a�.

In Fig. 2 we present the behavior of the concurrence and
the square roots of one-tangles for a ring topology, and for an
outer spin in a state different from the others, as an illustra-
tion. Here we consider the initial state producing the maxi-
mal entanglement, that is, one spin is considered to point
downward, while all the others point upward. An analytical
solution similar to that in Appendix B would be feasible too,
but more energy eigenstates have nonzero weights in the
initial state. Of course the functions are not equal for all the
spins in such case, but their behavior is similar to the star
topology. According to Appendix C, concurrence is equal to
concurrence of assistance, and of course CKW inequalities
are saturated.

From the above discussion one might conclude that the
XY couplings “prefer” pure bipartite entanglement. This is,
however, not the case. In order to examine this issue, we
have plotted the behavior of entanglement quantities for an
XY-coupled star configuration with the initial state in Eq.
�19�, that is, the polarized state arising as a product of all the
spins in the same state �Fig. 3�. It appears that in this case
concurrence between two outer spins is heavily suppressed,
but concurrence of assistance takes rather high values for

FIG. 2. �Color online� Concurrence and one-tangle for spins coupled by isotropic XY interactions in the absence of a magnetic field. Each
row of figures corresponds to certain physical setting illustrated by the topology scheme at the right of the row. In �a�–�d� 6+1 spins are
ordered into a star topology, while in �e�–�f� a ring of six spins is considered. In the initial state all spins are up �empty circles in the topology
schemes�, except for one of them, which is down �filled circles�. Figures in the left column display concurrences of the indicated qubit pairs;
those on the right display square roots of one-tangles, as functions of time. Time is measured in arbitrary units; the other quantities are
dimensionless. The figure is obtained from exact numerical diagonalization and direct calculations.
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certain initial states. Moreover, the concurrence of assistance
is very close to the square root of the one-tangle, just as in
the case of the Ising couplings. Thus XY couplings can, if the
initial state is suitably chosen, produce states with a high
amount of bipartite entanglement available via assistive mea-
surements. Notice, however, that the square root of the one-
tangle is still higher than the concurrence of assistance.

Consider now Ising interactions, and ask whether it is
sufficient to rotate just one spin in order to control the
amount of available entanglement, e.g., disable entanglement
oscillations. For the rotation of an outer spin in the star con-
figuration or the ring topology we have found that entangle-
ment cannot be completely suppressed. However, if we ro-
tate the central spin in a star topology, it is possible to control

entanglement behavior. This is illustrated in Fig. 4. Similarly
to the case of the initial state of Eq. �19�, the concurrence of
assistance is almost equal to the square root of the one-
tangle, while the concurrence itself is close to zero.

In this section we have shown that it is possible to gener-
ate entanglement oscillations not only between product and
graph �or cluster� states, but also between product states, and
states with maximal possible bipartite entanglement, and to
control this entanglement behavior by the initial state.

VI. ENTANGLED BASES IN THE PRESENCE OF A
MAGNETIC FIELD

In Sec. III we have seen that in the absence of magnetic
field the Ising couplings induce such dynamics that all the

FIG. 3. �Color online� Comparison of rotating all spins or the central spin in the initial state of a �6+1�-spin star with XY couplings. �a�
displays the temporal behavior of concurrence if the central spin is rotated, i.e., the initial state in Eq. �31� is used, while the other three
figures display the evolution of concurrence, concurrence of assistance, and square root of one-tangle with the initial state in Eq. �19�, that
is, all spins in the same superposition of �0� and �1�. All the bipartite quantities correspond to two outer spins; the square root of the
one-tangle is that of one of these. � stands for the dimensionless parameter of the input state.

FIG. 4. �Color online� Control
of entanglement generation in a
system of 6+1 Ising-coupled
spins in a star configuration. The
central spin is rotated, i.e., the ini-
tial state is that in Eq. �31�; the
others are in the state �0�. �a� and
�c� display the temporal behavior
of concurrence as a function of the
parameter � of the initial state, for
�a� two outer spins and �c� an
outer and a central spin. �b� shows
the difference between the square
root of the one-tangle and the con-
currence of assistance for two
outer spins. �d� shows concur-
rence for the central and an outer
spin. This quantity is zero for the
outer spins.
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states of the computational basis evolve into graph states
periodically. In the Heisenberg picture we may interpret this
so that the product of the �̂�z� operators evolves to such a
joint observable, which has an eigenbasis formed fully by
graph states. One of the key features of such states is that
they can be projected onto a maximally entangled state of
any pair of selected spins by a von Neumann measurement
on the rest of the spins. We show here that this property is
preserved and moreover enhanced if the magnetic field is
present.

First we consider the Ising Hamiltonian with a magnetic
field pointing toward a direction characterized by the angle
�:

ĤIsing = − �
�k,l�

�̂k
�x�

� �̂l
�x� − B�

k

ei��/2��̂k
�x�

�̂k
�z�e−i��/2��̂k

�x�
.

�33�

Thus we have two free parameters characterizing the mag-
netic field, its magnitude B and direction �. Note that the
rotation of the magnetic field is equivalent to a rotation of the
initial state in this case.

In particular, we are interested in the temporal behavior of
the concurrence of assistance Cassist for certain pairs of spins.
Therefore we calculate the time evolution of all the states �ei�
of the computational basis:

�ei��B,t�� = exp�− iĤIsingt��ei�, i = 1,…,2N. �34�

Then we can evaluate the average

Cassist�B,t� =
1

2N�
i

Cassist��ei��B,t��� , �35�

and also the standard deviation

�Cassist
�B,t� = 	Cassist

2 − Cassist
2 �36�

of concurrence of assistance over the computational basis
states as initial states. The deviation is informative regarding

the deviation of the quantity from the average for the differ-
ent initial states.

A typical result of the calculation is plotted in Fig. 5. For
B=0 the expected entanglement oscillations are present. If
the magnetic field is nonzero, the system does not tend to
return to the initial product state. A magnetic field resolves
many of the the high degeneracies of the Ising Hamiltonian,
and the eigenvalues become incommensurable. Therefore,
even though the evolution of the system will be almost peri-
odic according to the quantum recurrence theorem �37�, rea-
sonable approximate recurrences occur after an extremely
long time.

For B�0, the ensemble average of concurrence of assis-
tance appears to be rather strictly close to 1 for quite long
time intervals, while its standard deviation is low. The devia-
tion can be further suppressed by a suitable choice of the
magnetic field. This behavior of concurrence of assistance is
very similar to that in Fig. 5 also for different chosen pairs of
qubits, for qubit pairs of a ring topology, and also for differ-
ent computationally feasible numbers of qubits. From this we
can conclude that the computational basis is transformed into
a special entangled basis, having elements with concurrence
of assistance almost equal to 1. The temporal duration of the
presence of this property is significantly enhanced by the
magnetic field.

The entanglement so arising is essentially multipartite: the
appearance of the magnetic field does not enhance concur-
rence of the qubit pairs as can be verified by performing the
same calculation with concurrence. Note that the character-
istic behavior of the entanglement as reflected by the Meyer-
Wallach measure for the kicked Ising model, also in the case
of the presence of a magnetic field pointing toward an arbi-
trary direction, was also reported in �24�.

Another relevant question might be whether the required
measurements are local, i.e., how much localizable entangle-
ment is present. To illustrate this issue in our numerical
framework, we have evaluated a lower bound for localizable
entanglement by the mere consideration of a measurement
on the computational basis. According to our experience, the

FIG. 5. �Color online� Average �a�,�c� and
standard deviation �b�,�d� of concurrence of assis-
tance for a pair of outer spins of a star topology,
taken over all the possible computational basis
states as initial states. Ising Hamiltonian with a
magnetic field as in Eq. �33�, 4+1 spins in a ring
topology. In �a� and �b�, �=0, B dependence is
plotted; in �c� and �d�, B=1, � dependence is
plotted. Similar figures are obtained for different
choices of the spin pair, and ring topologies too.
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behavior of the bipartite entanglement so available resembles
that of concurrence of assistance, but takes lower values.
However, quite remarkable bipartite entanglement is still
available, which is in most cases still higher than the limit
that CKW inequalities would allow for, without measure-
ments.

Next we investigate the properties of the XY model from
the same point of view: into Eq. �34� we substitute the
Hamiltonian

ĤXY = − �
�k,l�

��̂k
�x�

� �̂l
�x� + �̂k

�y�
� �̂l

�y��

− �
k

ei��/2��̂k
�x�

�̂k
�z�e−i��/2��̂k

�x�
. �37�

A homogeneous magnetic field parallel to z does not have
any effect on the entanglement behavior of the system, as


�
l

�̂�z�; �
�k,l�

��̂k
�x�

� �̂l
�x� + �̂k

�y�
� �̂l

�y��� = 0; �38�

thus the local rotations generated by 
l�̂
�z� can be taken into

account after calculating the effect of the couplings. There-
fore we pick B=1, and investigate the dependence of con-
currence and concurrence of assistance on the direction � of
the field.

The quantities evaluated are again those in Eqs. �35� and
�36�, for both concurrence and concurrence of assistance. A
typical result is displayed in Fig. 6. It appears that for �=0
we obtain oscillations in the average concurrence, too, while
the concurrence of assistance is not significantly higher than
the concurrence itself. The appropriate choice of the direc-
tion of the magnetic field can suppress concurrence, signifi-
cantly enhance concurrence of assistance, and decrease its
deviation. Thus even though the couplings are not Ising type,
at least the feature of the Ising couplings that they produce
bases with high concurrence of assistance can be retained.

VII. CONCLUSIONS

In this paper we have related the problems of maximizing
pairwise concurrence and pairwise concurrence of assistance
in a system of multiple qubits. We have shown that the
square root of the one-tangle of a qubit is an upper bound for
the concurrence of assistance of a qubit pair containing the
particular qubit. We have also shown that for a certain set of
states for which the CKW inequality is known to be satu-
rated, the concurrence is equal to the concurrence of assis-
tance. This means that the bipartite subsystem under consid-
eration is not correlated with the rest of the system via
intrinsic multipartite entanglement.

We have also studied the entanglement behavior of spin-
1 /2 systems modeling qubits, from this perspective. We have
shown that in a star configuration of XY-coupled spins, en-
tanglement oscillations between product states and states
with maximal bipartite entanglement according to CKW in-
equalities can be dynamically generated. The oscillations can
be controlled by rotating the spin which mediates the inter-
action, and at some points it gets disentangled from the rest
of the outer ring, which is maximally entangled in the CKW
sense. This maximal entanglement is reached for the whole
system, too. We have shown numerically that the star topol-
ogy facilitates the similar control of entanglement oscilla-
tions between product and graph states. The rotation of all
the qubits of the initial state on the other hand leads to dif-
ferent behavior of the concurrence of assistance, as the en-
hancement of bipartite entanglement to the measurement ap-
pears. We have found similar behavior for different
topologies numerically.

According to our numerical results magnetic field can
lead to the temporal enhancement of concurrence of assis-
tance in the entanglement oscillations starting from the states
of the computational basis, in the case of spins coupled by
Ising interactions, arranged into ring or star topologies.
Thereby a special entangled basis can be accessed. We have
found similar behavior for the case of XY couplings: the

FIG. 6. �Color online� Time evolution of av-
erages �a�,�c� and deviations �b�,�d� of concur-
rence �a�,�b� and concurrence of assistance �c�,�d�
for two outer spins of a star configuration of 4
+1 spins coupled by the XY Hamiltonian with
magnetic field in Eq. �37�. Parameter � describes
the direction of the magnetic field. Similar behav-
ior was observed for ring topologies and different
choices of the qubit pair too.
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magnetic field applied along a properly chosen direction sup-
presses concurrence and enhances concurrence of assistance.

According to the presented results, pairwise couplings be-
tween spins and qubits can be used effectively for different
tasks of distributing bipartite entanglement between multiple
parties. It is also possible to control the dynamical behavior
of entanglement by local quantum operations such as rota-
tion of control qubits. In addition, the magnetic field can be
utilized to temporally enhance certain entanglement features,
or to choose between qualitatively different kinds of en-
tanglement behavior. It would also be interesting to investi-
gate whether the entangled bases available in the described
means are useful for quantum-information processing tasks.
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APPENDIX A: AN INEQUALITY

In this appendix we show, that for two Hermitian, positive

semidefinite 2�2 matrices Â and B̂,

	det Â + 	det B̂ 
 	det�Â + B̂� �A1�

holds.
First we remark that for the square root of a Hermitian

positive semidefinite matrix

det	Â = 	det Â . �A2�

Thus we can rewrite inequality �A1� as

det	Â + det	B̂ 
 	det�Â + B̂� , �A3�

or equivalently,

�det	Â + det	B̂�2 
 det�Â + B̂� . �A4�

Without the loss of generality we can perform calculations

on the eigenbasis of Â. Thus we can introduce the notation

	Â = a
a1 0

0 1 − a1
� ,

	B̂ = b
b1 b2

b2
* 1 − b1

� , �A5�

where a, b, a1, and b1 are real. Substituting Eq. �A5� into Eq.
�A4�, after some calculation we obtain

det�Â + B̂� − �det	Â − det	B̂�2 = a2b2��b2�2 + �a1 − b1�2� � 0,

�A6�

which is always justified.

Note that the inequality just proven is a special property

of 2�2 matrices: if we replaced Â and B̂ by positive num-
bers such as 1�1 matrices, the direction of inequality �A1�
would be reverse.

APPENDIX B: ANALYTICAL SOLUTION FOR THE
XY-COUPLED STAR

Here we derive the time evolution for our specific input
states in an XY-coupled star configuration, based on Refs.
�32,33�. Consider the Hamiltonian in Eq. �30� for a star to-
pology of N+1 spins. Let spin 0 be the central one; thus the
Hamiltonian reads

ĤXY = − �̂0
�x��

k=1

N

�̂k
�x� − �̂0

�y��
k=1

N

�̂k
�y�. �B1�

Introducing the joint spin operators of the outer spins

Ĵ� = �
k=1

N
1

2
�̂�, � = x,y,z ,

Ĵ± = �
k=1

N

Ĵx ± iĴy , �B2�

and the operator for the z component of the total angular
momentum

L̂z = Ĵz +
1

2
�̂�z�, �B3�

the following commutation relations hold:

�ĤXY,L̂z� = �ĤXY, Ĵ2� = 0. �B4�

Therefore the computational basis states with equal spins
down span invariant subspaces of the evolution, and the
outer spins behave collectively as one big spin. It is conve-
nient to rewrite the Hamiltonian in the Jaynes-Cummings
type form

ĤXY = − ��̂0
�+�Ĵ− + �̂0

�−�Ĵ+� , �B5�

which has the eigenvalues and eigenvectors

�� j,m,±� =
1
	2

��1��j ;m� ± �0��j ;m − 1�� ,

� j,m,± = � 2	�j + m��j − m + 1� , �B6�

where the states �j ;m� are the eigenvectors for the outer
spins, while the states �0� and �1� are the states of the central
spin in our qubit notation. �Note that in our notation, �0�
= �↑ �, thus �̂�+��1�=2�0�.�

We consider the possibility of the control by the rotation
of the central spin; thus our initial state reads
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���t = 0�� = A0�0� � �00…� + A1�1� � �00…�

= A0�0� � � j =
N

2
,m =

N

2
�

+ A1�1� � � j =
N

2
,m =

N

2
� . �B7�

Rewriting this in the energy basis in Eq. �B6� we obtain

���t = 0�� = A0�0� � � j =
N

2
,m =

N

2
�

+
A1

2

�1� � � j =

N

2
,m =

N

2
�

+ �1� � � j =
N

2
,m =

N

2
− 1��

+
A1

2

�1� � � j =

N

2
,m =

N

2
�

− �1� � � j =
N

2
,m =

N

2
− 1�� . �B8�

Substituting the e−i�t factors, where according to Eq. �B6�,
the �’s are 0, −2	N , +2	N for the three summands of Eq.
�B8� respectively, after some algebra we obtain

���t = 0�� = A0�0� � �0,0,…� + A1
cos�2	Nt��1� � �0,0,…�

− i sin�2	Nt��0� � � j =
N

2
,m =

N

2
− 1�� . �B9�

This shows that the complex phases of A0 and A1 are irrel-
evant from the point of view of the entanglement properties.
Substituting A0=cos�� /2� and A1=sin�� /2� into Eq. �B9�,
and calculating �j=N /2 ,m=N /2−1� by applying Ĵ− on �j

=N /2 ,m=N /2�, we obtain Eq. �32�, the desired result.

APPENDIX C: RELATION OF CONCURRENCE AND
CONCURRENCE OF ASSISTANCE FOR STATES WITH

MAXIMUM ONE SPIN DOWN

In this appendix we show that for states of N qubits of the
form

��1� = �
k=0

N

Ak�k� �C1�

where

�0� = �0,0,…,0� ,

�k� = �0,…0,1k,0…�, k � 0, �C2�

the concurrence equals the concurrence of assistance for any
pairs of qubits.

Consider the spins k and l. Their density matrix in the
computational basis is of the form

��kl� =�
�00,00 �00,01 �00,10 0

�00,01
* �01,01 �01,10 0

�00,10
* �01,10

* �10,10 0

0 0 0 0
� . �C3�

Direct calculation of concurrence and concurrence of assis-
tance according to Eqs. �6� and �11� yields

Ckl = 2��01,10�, Ckl
assist = 2	�01,01�10,10. �C4�

Calculating the required matrix elements from Eq. �C1� we
find

�01,01 = Ak
*Ak, �10,10 = Al

*Al, �01,10 = Ak
*Al. �C5�

Substituting Eq. �C5� into Eq. �C4� gives Ckl=Ckl
assist for ar-

bitrary k , l.
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