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et al. fPhys. Rev. A65, 022301s2003dg to execute a general Us1d transformation with greater probability using
complex program states appears not to hold.
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I. INTRODUCTION

In conventional classical computation, the data are ma-
nipulated by the computersthe “processor”d according to the
dictates of a program. Picking the program correctly ensures
that the output data of the operation are as desired; the pro-
cessor itself has general utility and can execute many differ-
ent programs.

Nielsen and Chuangf1g have investigated the possibility
of a general quantum processor. Modeling the processor as a
quantum gate array into which we input a data stateucld
represented by an array of qubits, and a program stateuJlp
that is also represented by an array of qubits, we can consider
the operation of the quantum processor as effected by a uni-
tary G

ucld ^ uJlp → Gfucld ^ uJlpg. s1.1d

In the case where the processor is to execute a particular
unitary,U, on the data register, we would have

Gfucld ^ uJUlpg = sUudldd ^ uJU8 lp, s1.2d

as shown in Fig. 1, whereuJUlp is a program state to cause
the execution ofU on the data state. It can be shown that the
subsequent state of the program register,uJU8 lp, cannot be
dependent on the data state, which for general processing
will be unknownto us. Nielsen and Chuangf1g have shown
that a deterministicuniversal quantum processor of finite
size does not exist. The problem is that a new dimension
must be added to the program space for each unitary operator
U that one wants to be able to perform on the dataucld. A
similar situation holds if one studies quantum circuits that
implement completely positive, trace-preserving maps rather
than just unitary operatorsf2,3g. Some families of maps can
be implemented with a finite program space, for example, the
phase damping channel, but others, such as the amplitude
damping channel, require an infinite program space. If one
drops the requirement that the processor be deterministic,
then universal processors become possiblef1,4–6g. These
processors are probabilistic: they sometimes fail, but we
know when this happens.

In a probabilistic processor we demand that, by measure-
ment of the program register, we can tell whether the desired
unitary operation has been performed on the data state or
whether some other unitary operation has been performed
upon it, i.e., that the state of the program register associated
with the execution ofU, uJU8 lp, is orthogonal to the states of
the program register associated with other, undesired, out-
comes on the data statesthe identity of these states of the
program register will in general be dependent on the nature
of the processor itselfd. A model of this is shown in Fig. 2,
where the outcome of the measurement of the program reg-
ister, uklp, indicates which unitary operation,Uk, has been
performed on the data state.

The simplest case of desired programmable operation on a
qubit is the execution of a Us1d transformation, Usud
=eiusz/2, upon a data qubitucld=au0ld+bu1ld. Here, theun-
knownphase of the rotationu is encoded in the program state

uJulp =
1
Î2

su0lp + e−iuu1lpd, s1.3d

while the processor itself is represented by a controlled-NOT
sCNOTd gate with data qubit as control and program qubit as
target, followed by a measurement of the program qubit in
the basishu0lp, u1lpj ssee Fig. 3d. The action of the CNOT
processor on the data and the program input states is

uclduJulp → 1
Î2

Usuducldu0lp +
1
Î2

Us− uducldu1lp.

s1.4d

From this equation we see that, when a projective measure-
ment in the computer basishu0l , u1lj on the program qubit at
the output of the CNOT is performed and the resultu0l is
registered, then the data qubit that has been prepared in an
unknown stateucl is rotated by theunknownangleu as de-
sired, i.e., with probability 1/2 we obtain the stateUsuducld

ssee Fig. 4d. On the other hand, when the program qubit is
measured in the stateu1lp, then the data qubit is rotated in the
opposites“wrong”d direction, i.e., with probability 1/2 we
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obtain at the output of the probabilistic processor the state
Us−uducld ssee Fig. 5d.

In Sec. II we shall consider three methods of increasing
the success probability of this operation: the Vidal-Masanes-
Cirac sVMCd f5g method, which uses a specialN-qubit pro-
gram stateiterativelyand terminates when a “good” result is
achieved; the Hillery-Ziman-BužeksHZBd f7g scheme,
which uses the same program state as the VMC scheme but
performs the operation in one step; and last, in Sec. III, we
consider simply usingN copies of the basic program state
uJul given by Eq.s1.3d. In the latter case, we consider three
scenarios: iterative use of the program states, one-step use of
the program states, and finally, preprocessing of the program
states to produce a program state of the sort used by the
VMC and HZB schemes, which is then put through a VMC
or HZB processor. Section IV is devoted to conclusions, and
some technical details of our calculations are presented in the
Appendix.

II. INCREASING THE PROBABILITY OF SUCCESS

A. The VMC scheme

The probability of successfully carrying out the Us1d op-
eration on the data qubit can be increased through the en-
largement of the program spacef5,7g. In the VMC scheme, if
the first operation failed, that is, we performedUs−ud on the
data state, we could attempt to correct this by performing
the rotationUs2ud on the wrongly transformed data state
Us−uduCld and, if that failed, we could attempt to perform
the transformationUs4ud on the data stateUs−3uduCld, etc.
The N-qubit program stateuJu

sNdlpW used for this iterative op-
eration can be written as

uJu
sNdlpW = uJ2Nulp1

^ uJ2N−1ulp2
^ ¯ ^ uJulpN

=
1

Î2N o
j=0

2N−1

e−i j uu jlpW , s2.1d

with u jlpW = u jNlpN
^ u jN−1lpN−1

¯ ^ u j1lp1
, where j l is the lth bit

in the binary representation ofj .

B. The HZB scheme

Instead of using the CNOT processor iteratively, follow-
ing Ref. f7g one can design a general quantum processor

Gdp = o
j ,k=1

2N−1

Ajk ^ u jlp pkku, s2.2d

where h jlpu j =0, . . . ,2N−1j is an orthonormal basis for the
program space and theAjk are operators acting on the data
space such that

o
j=0

2N−1

Axj
† Ajy = o

j=0

2N−1

AxjAjy
† = Iddxy. s2.3d

The result of the circuit on the combined data and program
states inputuCld ^ uJlpPHd ^ Hp can be expressed as

GsuCld ^ uJlpd = o
j=0

2N−1

AjsJduCld ^ u jlp, s2.4d

FIG. 1. sColor onlined Model of a general quantum
processor.

FIG. 2. sColor onlined Model of a probabilistic general quantum
processor. A measurement is performed on the output of the pro-
gram register.

FIG. 3. sColor onlined Model of a probabilistic CNOT quantum
processor performing the Us1d rotation of the input data stateucl by
the angleu that is encoded in the program stateuJul given by Eq.
s1.3d. A measurement is performed on the output of the program
register.

FIG. 4. sColor onlined Model of a probabilistic CNOT quantum
processor performing the Us1d rotation of the input data stateucl by
the angleu that is encoded in the program stateuJul. When the
measurement performed on the program qubit results in the state
u0lp, the desired rotationUsud is performed on the data qubit. The
probability of success is equal to 1/2.
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where theprogram operators AjsJd are given by

AjsJd = o
k=0

2N−1

pkkuJlpAjk. s2.5d

If the measurement of the program state returnsunlp, then Eq.
s2.4d tells us that the operationAnsJd has been carried out on
the data state.

To perform the Us1d operation with only one iteration of
the processor in the HZB scheme, we use the same program
state as for the VMC scheme given by Eq.s2.1d. The circuit
sprocessord is then determined by the operators

Ajk = d j ,ku0lddk0u + d j %1,ku1lddk1u, s2.6d

with % indicating addition modulo 2N. The program state is
then measured and any result other thanu2N−1lp indicates
success. The success probability for this circuit is the same
as that for the VMC circuit, and it reads

p = 1 −
1

2N . s2.7d

This is the highest possible success probability achievable
from the starting stateuJu

sNdlp for a general probabilistic
quantum processorf5g.

III. USING MULTIPLE COPIES OF THE BASIC
PROGRAM STATE

A. Iterative process with multiple copies of the program
state zJu‹

Given thatu is not known, it is not clear how the program
states for the improved schemes above might in general be
produced deterministically given no prior knowledge ofu.
General execution of Us1d on a data qubit using a single
program qubit and a CNOT gate is known to be optimally
achieved using the program stateuJul given by Eq.s1.3d ssee
Ref. f8gd, so assuming the availability of this state seems a
reasonable minimal assumption. To increase the probability
of success above 1/2 using just a CNOT, we require more
copies of this basic program state and, if the operation
Us−ud has been carried out, we can reprocess the data state
with a new copy ofuJul and continue this process until the

desired transformation has been executed or until the avail-
able program states are exhausted.1 If N, the number of avail-
able copies ofuJul, is an odd numbersthere is no benefit to
using an even number of program statesd, the probabilityp of
succeeding before running out of copies ofuJul is given by
the expression

p = 1 −
1

2NS N

sN − 1d/2
D , s3.1d

and, in the limit of largeN

pN→` = 1 −Î 2

pN
. s3.2d

B. Single-shot process with multiple copies of the program
state zJu‹

The process can be carried out with one iteration of a
larger gate array, where we use an odd number of program
qubitsN so that our combined program and data state is

ucld ^ uJulp
^N =

ucld

Î2N
^ o

j=0

2N−1

e−i u j uuu jlpW , s3.3d

whereu j u is the Hamming weight of the binary representation
of j and we use the same basis for the program space as
previously. SettingAkk= u0lddk0u as before, we select the po-
sition of the termsAjk= u1lddk1u according to the Hamming
weight of thej andk such that

uku = u j u + 1, s3.4d

to the largest extent possible so that Eq.s2.3d is obeyed and
we can position the other terms arbitrarily so as to respect
Eq. s2.3d. Where we can give theAjk values according to Eq.
s3.4d, measurement in the program basis will, up to global
phase, ensure that the data qubit has been transformed by
Usud. The rowssvalues ofjd whereAjk= u1lddk1u are not po-
sitioned according touku= u j u+1 indicate measurement out-
comes where the desired transformation has not been carried
out but instead a rotation through some negative multiple of
u has occurred. The numberR of rows that cannot be created
so that Eq.s3.4d is obeyed is given by

R= S N

sN − 1d/2
D . s3.5d

Each sincorrectd program operator corresponding to one of
these rows has probability 2−N, so again the success probabil-
ity is given by Eq.s3.1d.2

C. Preprocessing

If we wish to use, from a starting state of multiple copies
of uJul, the VMC or HZB schemes, we can process these

1This is analogous to the Markov process “gambler’s ruin,” where
the game is fair and the gambler has unlimited credit.

2In this case, unlike the VMC and HZB schemes, the distribution
of particular incorrect results can differ according to how theAjk are
selected, although the overall probability of success is unchanged.

FIG. 5. sColor onlined Model of a probabilistic CNOT quantum
processor performing the Us1d rotation of the input data stateucl by
the angleu that is encoded in the program stateuJul. When the
measurement performed on the program qubit results in the state
u1lp, the rotationUs−ud in the wrong direction is performed on the
data qubit. The probability of this result is equal to 1/2.
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copies to produce a state of the form given in Eq.s2.1d that
can then be used as the program state for the VMC or HZB
processors. TheX-qubit program stateuJu

sXdlp can be proba-
bilistically constructed from a minimum ofN=2X−1 copies
of uJul, and so it is possible, by preprocessing these copies
of uJul, to construct with some probability a stateuJsudslp

wheresøX. A preprocessing scheme that produces the same
overall probability of success in executingUsud on a data
qubit as the schemes in Sec. II can be constructed by per-
muting the phases inuJul^2X−1 and making a measurement in
the computational basis, initially on 2X−1−X=M of the qu-
bits.

We give two specific examples, of preprocessing. First,
we will assume three identical program statesuJul^3. Then
we will consider the case with seven identical program
states, i.e.,uJul^7. Using the three- and seven-program
states, we can probabilistically prepare the program states
uJu

s2dlp and uJu
s3dlp, respectively. In the Appendix we will

quote the result for generalN.

1. Preprocessing with three copies ofzJu‹

We have that

uJul^3 =
1

2Î2
su000l + e−iuu001l + e−iuu010l + e−2iuu011l

+ e−iuu100l + e−2iuu101l + e−2iuu110l + e−3iuu111ld,

s3.6d

in the computational basis. The states that can be constructed
from this areuJu

s1dl and uJu
s2dl which are, up to global phase

and in the computational basis

uJu
s1dl =

1
Î2

su0ld + e−iuu1l, s3.7d

and

uJu
s2dl = uJ2ul ^ uJul = 1

2su00ld + e−iuu01l + e−i2uu10l

+ e−3iuu11l. s3.8d

The state is permuted, which has the effect of reassigning the
phases

uJul^3 °
1

2Î2
su000l + e−iuu001l + e−2iuu010l + e−3iuu011l

+ e−iuu100l + e−2iuu101l + e−iuu110l + e−2iuu111ld
s3.9d

=S u0l
Î2

^ uJu
s2dlD + Se−iuu1l

Î2
^ S u0l

Î2
^ uJu

s1dl +
u1l
Î2

^ uJu
s1dlDD . s3.10d

Equations3.10d shows that a measurement on the firstsleft-
most in the right-hand side of the previous equationd qubit
would either giveuJu

s2dl upon measurement outcomeu0l, or a
state on measurement outcomeu1l which can be reduced to

uJu
s1dl, up to global phase, by measurement of the remaining

left-most qubit. Each of these final results occurs with prob-
ability 1/2 and so, using Eq.s2.7d, we find that the overall
probability of successfully executing the operationUsud fol-
lowing preprocessing of the state and then input of the out-
come, as a program state, into a HZB or VMC process is
5/8, which is in fact the same as that for iterative or single-
shot processing of the stateuJul^3 from Secs. III A and
III B, as can be calculated from Eq.s3.1d.

The preprocessing transformations3.10d can be easily re-
alized using a single CNOT gate, with the second qubit in
Eq. s3.6d playing the role of a control and the first qubit
acting as a target.

2. Preprocessing with seven copies of the program statezJu‹

In considering the preprocessing ofuJul^7, we introduce
a technique for permutation design that is helpful in describ-
ing the derivation of the general preprocessing procedure for
uJul^N.

The starting point is the state

uJul^7 =
1

Î128
o
j=0

127

e−i u j uu jl =
1

Î128
o
p=0

15

upl ^ o
q=0

7

e−isuqu+upuduuql,

s3.11d

and the procedure is to perform a permutation of the state so
that measurement of the first four qubits in the computational
basis will yield eitheruJu

s3dl or a state from which measure-
ment of the one or two remaining left-most qubits will yield
uJu

s2dl or uJu
s1dl, respectively, up to a global phase. The num-

bers of terms with each phase are given by

−iku 0 −iu −2iu −3iu −4iu −5iu −6iu −7iu

m 1 7 21 35 35 21 7 1

and the aim is to allocate those phases to terms so that, upon
measurement of the left-most four qubits, the state is either
projected intouJu

s3dl or else a state from which further mea-
surement will project intouJu

s2dl or uJu
s1dl up to global phase.

Noting that one set of the phases 0, −iu, −2iu, −3iu, −4iu,
−5iu, −6iu, −7iu is available, the permutation can be con-
structed so that the 4-qubit measurement outcomeu0l in Eq.
s3.11d is

1

4
u0l ^

1
Î8

su0l + e−iuu1l + e−2iuu2l + e−3iuu3l + e−4iuu4l

+ e−5iuu5l + e−6iuu6le−7iuu7ld =
1

4
u0l ^ uJu

s3dl. s3.12d

The following phases:

−iku 0 −iu −2iu −3iu −4iu −5iu −6iu −7iu

m 0 6 20 34 34 20 6 0

remain unassigned in the permutation. It can be seen that the
terms associated with the 4-qubit measurement outcomeu1l
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cannot constituteuJu
s3dl, as the requisite phases have already

been allocated to the terms associated with the measurement
outcomeu0l. However, allocation of the phases −iu, −2iu,
−3iu, and −4iu and also −3iu, −4iu, −5iu, and −6iu allows
the permutation to be designed such that the 4-qubit mea-
surement outcomeu1l is

1

4
u1l ^

1
Î8

se−iuu0l + e−2iuu1l + e−3iuu2l + e−4iuu3l + e−3iuu4l

+ e−4iuu5l + e−5iuu6l + e−6iuu7ld

=
1

4
u1l ^

1
Î2

su0l ^ e−iuuJu
s2dl + u1l ^ e−3iuuJu

s2dld. s3.13d

A further measurement of the left-most remaining qubit will
project the state of remaining qubits intouJu

s2dl up to a global
phase ofe−iu or e−3iu. The remaining phases are

−iku 0 −iu −2iu −3iu −4iu −5iu −6iu −7iu

m 0 5 19 32 32 19 5 0

The same allocation can be performed for the 4-qubit mea-
surement outcomesu2l to u6l. The remaining unallocated
phases are

−iku 0 −iu −2iu −3iu −4iu −5iu −6iu −7iu

m 0 0 14 22 22 14 0 0

and it is therefore possible to construct the permutation so
that the measurement outcomesu7l to u13l are

1

4
u jl ^

1
Î8

se−2iuu0l + e−3iuu1l + e−4iuu2l + e−5iuu3l + e−2iuu4l

+ e−3iuu5l + e−4iuu6l + e−5iuu7ld =
1

4
u jl ^ S u0l + u1l

Î2
D

^ e−2iuuJu
s2dl; j = 7, . . . ,13. s3.14d

Any measurement on the left-most remaining qubit projects
into the statee−2iuuJu

s2dl. Finally, the remaining phases

−iku 0 −iu −2iu −3iu −4iu −5iu −6iu −7iu

m 0 0 0 8 8 0 0 0

are allocated to the 4-qubit measurement outcomesu14l and
u15l as

1

4
ull ^

1
Î8

se−3iuu0l + e−4iuu1l + e−3iuu2l + e−4iuu3l + e−3iuu4l

+ e−4iuu5l + e−3iuu6l + e−4iuu7ld

=
1

2
u14l ^ S u0l + u1l + u2l + u3l

2
D ^ e−3iuuJu

s1dl, s3.15d

with l =14,15. A measurement of the two left-most remain-
ing qubits will project the remaining qubits into the state
e−3iuuJu

s1dl. Thus, the permutation construction is complete

and the overall, permuted state,uJ̃ul7 is given by

uJ̃ulN =
1

4
u0l ^ uJu

s3dl +
1

4o
k=1

7

ukl ^
1
Î2

su0l ^ e−iuuJu
s2dl + u1l

^ e−3iuuJu
s2dld +

1

4o
k=8

13

ukl ^ S u0l + u1l
Î2

D ^ e−2iuuJu
s2dl

+
1

2 o
k=14

15

ukl ^ S u0l + u1l + u2l + u3l
2

D ^ e−3iuuJu
s1dl.

s3.16d

The probability of the preprocessing procedure, following
the 4-qubit measurement in the computational basis, produc-
ing the outcomeuJu

s3dl is 1/16, that of producing outcome
uJu

s2dl is 13/16, and that of producing outcomeuJu
s1dl is 1/8.

The overall probability,p, then, of achieving the rotation
Usud from the starting stateuJul^7 by preprocessing and
then input of the preprocessed state into the VMC or HZB
processors, is

p = S7

8
3

1

16
D + S3

4
3

13

16
D + S1

2
3

1

8
D =

93

128
,

s3.17d

which is the same as the iterative or single-shot procedures
outlined in Secs. III A and III B, as can be confirmed with
the use of Eq.s3.1d. It should be noted that the permutation
outlined above is not unique, and that other permutations
could be devised to achieve the same overall success prob-
ability.

3. Preprocessing with N copies of the program statezJu‹

The equivalence of the iterative, single-shot, and prepro-
cessing schemes can be shown to be true in general for states
of N=2X−1, X=1,2, . . . copies ofuJul, as described in the
Appendix, so that the overall success probability from a pre-
processing of the stateuJul^N as described above, followed
by input of the result of the preprocessing into a VMC or
HZB processor, is the same as that in Eq.s3.1d, i.e.,

p = 1 −
1

2NS N

sN − 1d/2
D , s3.18d

and thus we see that the use of the VMC or HZB schemes
holds no advantage in terms of overall success probability
when we are constrained to start withuJul^N. This is the
main result of our paper.

IV. CONCLUSION

If we have no reason to assume that previous operations
have produced a program stateuJu

sNdlpW, then it is reasonable
to assume that we only have access to copies of the basic
program stateuJul; in this case there is no advantage, in
terms of probability of success, in using the more sophisti-
cated VMC and HZB schemes to execute the desired Us1d
operation because what we gain from those schemes we lose
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in producing the correct input program state. It appears that
all strategies, in practice, give the same probability of suc-
cess in executing the desired Us1d rotation on a qubit. There
may, however, be contextual advantages to the preprocessing
scheme, for example, if the program state is to be teleported
to a remote location before execution of the program; in this
case, preprocessing means that the number of qubits to be
transported is significantly lessened, which would be helpful
if teleportation resources are scarce. On the other hand, if
teleportation is unreliable but teleportation resources are not
scarce, it might be better to teleport the copies of the basic
program state as is, because the effect of losing a program
qubit is not so great as in the case of sending the prepro-
cessed states.

It is an open question as to whether a similar situation
holds for the execution of the most general unitary opera-
tions on a qubit, the SUs2d operationsssee, for example,
Refs.f1,7gd.
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APPENDIX: PREPROCESSING SUCCESS PROBABILITY

We have seen how the preprocessing scheme works for
uJul^3 and uJul^7, and that it produces the same probability
for success as the one-shot and iterative schemes with the
same starting states. The general scheme for preprocessing
2X−1 copies of the basic program state, whereX is an inte-
ger, is an extension of the method used in Sec. III C. Given
uJul^2X−1, the best VMC and/or HZB program state that can
be produced isuJu

sXdl, because the phases start at 0, rise in
increments of −iu, and the largest phase inuJul^2X−1 is
−is2X−1du, which is also the biggest phase inuJu

sXdl, where
the phases also rise in increments of −iu from a phase of 0.
The strategy will be to permute the phases on the 22X−1 terms
in uJul^2X−1, where the number of terms with each phase is
binomially distributed, in a useful way and then measure the
left-most M =2X−1−X qubits to project into a remainder
X-qubit state which will beuJu

sXdl or some other state which,
upon further measurements of left-most remaining qubits,
will be projected intouJu

srdl, wherer P h1,2, . . . ,X−1j, up to
a global phase, as was the case in the examples in Sec. III C
for X=2 andX=3, i.e., the permutation achieves

1

Î22X−1
o
j=0

22X−1

ei u j uuu jl → 1
Î2M o

k=0

2M−1

ukl ^ ukJl. sA1d

The X-qubit statesukJl are given by

ukJl = o
l=1

X

o
t=0

2X−l−1

alt
ksutl ^ uJu

sldld, sA2d

where theutl aresX− ld-qubit computational basis states, nor-
malization requires that

o
l=1

X

o
t=0

2X−l−1

ualt
k u2 = 1, sA3d

and we note that not all of theal
k need be nonzero. In addi-

tion, these coefficients have to be such that the measurement
outcomes subsequent to the initialM-qubit measurement are
entangled with a particular eventual outcome, i.e., one of the
uJll, so that if we measure the initialM qubits, then carry out
some more measurements, the final measurement outcomeutl
tells us what VMC and/or HZB program state we have.

The allocation of phases in the construction of the permu-
tation is done in the same way as was shown in some detail
for uJul^7, which is to say, first one of each phase is allo-
cated to the 2X terms that will produceuJu

sXdl upon one out-
come of the measurement of theM left-most qubits. Follow-
ing that, phases −iu¯−2X−1iu and −is2X−1−1du¯−is2X

−2du sthat was −iu to −4iu and −3iu to −6iu in the X=3,
N=7 exampled are allocated to sets of 2X−1 terms until the
phases −iu and −is2X−2du are exhausted, and then phases
−2iu¯−s2X−1+1diu and −s2X−1−2diu¯−is2X−3d are allo-
cated, etc., until there are only 2X−1−2 different phases left
availablesthe “middle” 2X−1−2 phases if laid out as in the
tables of Sec. III Cd. These groups of terms will be those that
realizeuJu

sX−1dl postmeasurement. Following this, the proce-
dure is to allocate groups of 2X−2 phases so as to create
groups of terms that will realizeuJu

sX−2dl postmeasurement,
and so on, until the last remaining phases, −is2X−1−1du and
−2X−1iu, are allocated to the terms that will produceuJu

s1dl
postmeasurement.

The key facts here are that all of the phases can be allo-
cated in this way to a group of terms associated, postmea-
surement, with the realization of a stateuJsudslp where s
øX, as a little thought will show. Furthermore, with the
phases allocated in this way, every group of phases allocated
contains the middle two phases, −is2X−1−1du and −2X−1iu.
Thus, the number of groups of phases,W, is equal to the
number of terms inuJul^2X−1 that have phase −is2X−1−1du or
−2X−1iu, i.e.,

W= S 2X − 1

s2X − 2d/2
D . sA4d

If the number of groups corresponding touJsudslp is Ws,
then, because each individual phase from the terms in
uJul^2X−1 is allocated to one of these groups

o
s=1

X

Ws = W= S 2X − 1

s2X − 2d/2
D . sA5d

Additionally, because all of the 22X−1 terms inuJul^2X−1 end
up permuted into one of these sets, and because each set of
form uJu

ssdl contains 2s terms, withWs sets of formuJu
ssdl and

s different types of set, then
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o
s=1

X

2sWs = 2s2X−1d. sA6d

The probability,qs, that the final result isuJu
ssdl following

measurementssd, can be expressed in terms ofWs. It is equal
to the number of terms that belong in sets of formuJu

ssdl
divided by the total number of terms, i.e.,

qs =
2sWs

2s2X−1d
. sA7d

Each stateuJu
ssdl will, if it is the outcome of the calcula-

tion, succeed in the VMC and/or HZB scheme with a prob-
ability ps given by

ps = 1 −
1

2s , sA8d

from Eq. s2.7d.
The total success probability,pX, from preprocessing

uJul^2X−1 followed by the input of the resulting state as the
program state into the VMC and/or HZB scheme, is

pX = o
s

X

psqs =
1

2s2X−1dSo
s=1

X

2sWs − o
s=1

X

WsD
= 1 −

1

2s2X−1d
S 2X − 1

s2X − 2d/2
D , sA9d

where the last step was achieved using Eqs.sA5d and sA6d.
The total number of basic program qubits,N, is given by

N = 2X − 1, sA10d

and substituting this into Eq.sA9d, the overall probability of
success,p, is given by

p = 1 −
1

2NS N

sN − 1d/2
D . sA11d

This is the same result as for the single-shot and iterative
procedures onuJul^N, and so preprocessing gives the same
overall probability of success as in those cases and the result
is proved. Although this calculation is based on a specific
method of allocation of the states, it will be true for any
permutation allocation that places all of the phases in the
stateuJul^2X−1 into a grouping that produces a stateuJsudslp,
søX and in which each grouping contains the two middle
phases, i.e., the phases −is2X−1−1du and −2X−1iu.
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