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We show that the method of maximum likelihood �MML� provides us with an efficient scheme for the
reconstruction of quantum channels from incomplete measurement data. By construction this scheme always
results in estimations of channels that are completely positive. Using this property we use the MML for a
derivation of physical approximations of unphysical operations. In particular, we analyze the optimal approxi-
mation of the universal NOT gate as well as the physical approximation of a quantum nonlinear polarization
rotation.
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I. INTRODUCTION

Any quantum dynamics �1,2�—i.e., the process that is de-
scribed by a completely positive �CP� map of a quantum-
mechanical system—can be probed in two different ways.
Either we use a single entangled state of a bipartite system
�3�, or we use a collection of linearly independent single-
particle test states �4,5� �forming a basis of the vector space
of all Hermitian operators�. Given the fragility of entangled
states in this paper we will focus our attention on the process
reconstruction using only single-particle states.

The task of a process reconstruction is to determine an
unknown quantum channel �a “black box”� using correla-
tions between known input states and results of measure-
ments performed on these states that have been transformed
by the channel �see Fig. 1�.

The linearity of quantum dynamics implies that the chan-
nel E is exhaustively described by its action � j→� j�=E�� j�
on a set of basis states—i.e., a collection of linearly indepen-
dent states � j—that play the role of test states. Therefore, to
perform a reconstruction of the channel E we have to
perform a complete state tomography �1� of � j�. The number
of test states equals d2, where d=dim H is the dimension of
the Hilbert space associated with the system. Consequently,
in order to reconstruct a channel we have to determine
d2�d2−1� real parameters—i.e., 12 numbers in the case of
qubit �d=2�.

In what follows we will assume that test states can be
prepared on demand perfectly. Nevertheless, the reconstruc-
tion of the channel E can be affected by the lack of required
information due to the following reasons: �i� each test state is
represented by a finite ensemble of identically prepared test
particles �e.g., qubits�, and correspondingly, measurements
performed at the output can result in an approximate estima-
tion of transformed test states; �ii� the set of test states is not
complete; and �iii� incomplete measurements on transformed
test states are performed. In these cases some of the param-
eters that determine the map E cannot be deduced from the
measured data. In order to accomplish the channel recon-
struction additional criteria have to be considered.

In this paper we will pay attention to case �i�, which is
typical for experiments—one cannot prepare an infinite en-
semble of identically prepared particles, so the frequencies of
the measured outcomes are only approximations of probabil-
ity distributions. Consequently, the reconstruction of output
states � j� might lead us to unphysical conclusions about the
action of the quantum channel. As a result we can find a
negative operator � j�, or a channel E, which is not CP �1,2�.

In what follows we will introduce and compare two
schemes as to how to perform a single-qubit channel recon-
struction with insufficient measurement data. First, we will
consider a rather straightforward “regularization” of the re-
constructed unphysical map. Second, we will exploit the
method of maximum likelihood �MML� to perform an esti-
mation of the channel. We will use these methods to perform
a reconstruction of single-qubit maps based on numerical
simulation of the antiunitary universal NOT operation �UNOT�
�7,9�. This is a linear, but not a CP, map, and we will show
how our regularization methods will result in optimal physi-
cal approximations of the UNOT operation. We will conclude
that the MML is a tool that provides us with approximations
of nonphysical operations. In order to demonstrate the power
of this approach we will also apply it to obtain an approxi-
mation of a nonlinear quantum-mechanical map, the so-
called nonlinear polarization rotation �NPR� �10�.

Our paper is organized as follows: In Sec. II we briefly
describe basic properties of single-qubit channels. In Sec. III
we show how qubit channels can be estimated and approxi-
mated via a simple regularization procedure. We apply this
estimation procedure in Sec. IV to derive a physical approxi-
mation of the universal NOT gate. In Sec. V we show how the
method of maximum likelihood can be applied for an esti-
mation of quantum channels and we rederive the approxima-
tion of the universal NOT gate. In Sec. VI we use the MML to
approximate the nonlinear polarization rotation of a single
qubit. We conclude our paper with some comments on the
estimation of two-qubit quantum gates.

II. STRUCTURE OF QUBIT CHANNELS

Quantum channels are described by linear trace-
preserving CP maps E defined on a set of density operators
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�1,2,11�. The complete positivity is guaranteed if the operator
�E=E � I�P+� is a valid quantum state �P+ is the projection
onto a maximally entangled state�. Any qubit channel E can
be imagined as an affine transformation of the three-
dimensional Bloch vector r� �representing a qubit state�—i.e.,
r�→r��=Tr�+ t�, where T is a real 3�3 matrix and t� is a trans-
lation �11�. This form guarantees that the transformation E is
Hermitian and trace preserving. The CP condition defines
�nontrivial� constraints on possible values of involved pa-
rameters. In fact, the set of all CP trace-preserving maps
forms a specific convex subset of all affine transformations.
Representing the qubit states by four-dimensional vectors
v��= �1,r��, where the first element corresponds to normaliza-
tion of the state Tr �=1, one can express the action of the
channel E in more compact matrix form

E��� = �1 0�

t� T
��1

r�
� = � 1

t� + Tr�
� . �1�

In other words the qubit channels form 4�4 matrices of the
affine form.

The matrix T can be written in the so-called singular-
value decomposition—i.e., T=RUDRV with RU ,RV corre-
sponding to orthogonal rotations and D=diag��1 ,�2 ,�3� be-
ing diagonal where �k are the singular values of T. This
means that any map E is a member of a less-parametric
family of maps of the “diagonal form” �E—i.e., E���
=U�E�V�V†�U† where U ,V are unitary operators. The re-
duction of parameters is very helpful, and most of the prop-
erties �including complete positivity� of E are reflected by the
properties of �E. The map E is CP only if �E is. Let us note
that �E is determined not only by the matrix D, but also by
a new translation vector �� =RUt�; i.e., under the action of the
map �E the Bloch sphere transforms as rj→rj�=� jrj +� j.

A special class of CP maps is composed of the unital
maps, which transform the total mixture into itself. In this

case t�=�� =0� , and the corresponding map �E is uniquely
specified by just three real parameters. The positivity of the
transformation �E results in conditions 	�k	�1, while to ful-
fill the CP condition we need that to have the four inequali-

ties 	�1±�2	� 	1±�3	 be satisfied. These conditions specify a
tetrahedron lying inside a cube of all positive unital maps. In
this case the extreme points represent four unitary transfor-
mations I, �x, �y, and �z �see Fig. 2�.

III. QUBIT CHANNEL ESTIMATION AND ITS
REGULARIZATION

Reconstructions of states and processes share many com-
mon features. Therefore we briefly recall basic concepts of
the state reconstruction using finite ensembles of identically
prepared states. In this case one can obtain from estimated
mean values of the observable a negative density operator of
a qubit, �= 1

2 �I+r� ·�� �, with 	r�		1. The reconstructed opera-
tor has always unit trace, but the associated vector r� can
point out of the Bloch sphere. One can argue that the proper
physical state is the closest one to the reconstructed
operator—i.e., a pure state with r�c pointing into the same
direction. Formally it corresponds to a multiplication r� by
some constant k—i.e., r�c=kr� �see, e.g., Ref. �12��. The cor-
rection by k can be expressed as

�c = k� + �1 − k�
1

2
I =

1

2
�I + kr� · �� � , �2�

and it can be understood as a convex addition of the total
mixture 1

2 I represented by the center of the Bloch sphere—

i.e., 0� = �0,0 ,0�. In other words, the correction consists of the
addition of completely random and equally distributed events
�clicks� to outcome statistics—i.e., an addition of random
noise.

As we have seen from above, an important role in the
state reconstruction is played by the total mixture 1

2 I, which

FIG. 1. �Color online� A schematic representation of a recon-
struction of a single-qubit channel. Input �test� states of the single-
qubit channels are represented by the Bloch sphere �the state space
of a single qubit�. At the output of the single-qubit channel �mod-
eled as an ellipsoid—i.e., the Bloch sphere that is “deformed” by
the action of the channel� a complete measurement of test states is
performed. The complete measurement is performed via the projec-
tive measurement of � operators. Based on correlations between
input and output states of the test qubits the action of the quantum
channel �a CP map� is determined �estimated�.

FIG. 2. �Color online� Unital CP maps are embedded in the set
of all positive unital maps �cube�. The CP maps form a tetrahedron
with four unitary transformations in its corners �extremal points�, I,
x, y, and z, corresponding to the Pauli � matrices. The unphysical
UNOT operation ��1=�2=�3=−1� and its optimal completely posi-
tive approximation quantum universal NOT gate ��1=�2=�3=
−1/3� are shown.
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is an average over all possible states. An average over all CP
maps is the map A, which transforms the whole state space
into the total mixture—i.e., A���= 1

2 I �13�.
The reconstruction of qubit channels consists of the

known preparation of �at least� four linearly independent test
states � j and a state reconstruction of the corresponding four
output states � j�. The process estimation based on the corre-
lations � j→� j� is certainly trace preserving and positive �if
all � j� are positive�, though complete positivity might be
problematic. The average channel A can be used to correct
�“regularize”� improper estimations E to obtain a CP qubit
channel Ec:

Ec = kE + �1 − k�A = � 1 0�

kt� kT
� . �3�

This method of channel regularization uses the same prin-
ciple as the method for states; i.e., it is associated with the
addition of random noise to the data.

Let us try to estimate what is the critical value of k—i.e.,
the amount of noise that surely corrects any positive map.
Trivially, it is enough to set k=0. In this case we completely
ignore the measured data and the corrected map is A. How-
ever, we are interested in some nontrivial lower bound—i.e.,
in the largest possible value of k that guarantees complete
positivity. Let us consider, for simplicity, that the map under
consideration is unital. Then the worst case of a positive map
that is not CP is represented by the universal NOT operation.

IV. UNIVERSAL NOT GATE

The logical NOT operation can be generalized into the
quantum domain as a unitary transformation 	0
→ 	1
, 	1

→ 	0
. However, this map is basis dependent and does not
transform all qubit states 	

 into their �unique� orthogonal
complements 	
�
. Such universal NOT �ENOT: 	

→ 	
�
� is
associated with inversion of the Bloch sphere—i.e., r�→−r�,
which is not a CP map. It represents an unphysical transfor-
mation specified by �1=�2=�3=−1. The distance �see Fig.
2� between this map and the tetrahedron of completely posi-
tive maps is extremal; i.e., it is the most unphysical map
among linear transformations of a single qubit and can be
performed only approximatively. A quantum “machine” that
optimally implements an approximation of the universal NOT

has been introduced in Refs. �6–8� and experimentally real-
ized by de Martini et al. �9�. The machine is represented by

a map ẼNOT=diag�1,−1/3 ,−1/3 ,−1/3�. The distance �13�
between the UNOT and its optimal physical approximation
reads

d�ẼNOT, ẼNOT� = �
states

d�Tr	�ẼNOT − ẼNOT����	 = 1/3.

�4�

The CP conditions imply that the minimal amount of
noise necessary for a regularization of the universal NOT gate
corresponds to the value of k=1/3—i.e., �1=�2=�3=−1/3
�see Fig. 2�. The channel representing this point corresponds
to the best CP approximation of the universal NOT

operation—i.e., to the optimal universal NOT machine origi-
nally introduced in Refs. �6–8�.

One way how to interpret the “regularization” noise is to
assume that the qubit channel is influenced by other quantum
systems �the physics behind the dilation theorem �7��.

The reason why we have to consider the noise in a recon-
struction of quantum maps is that we deal with incomplete
measurement statistics �e.g., test states are represented by
finite ensembles�. As a result, the reconstructed assignment
� j→� j�=E�� j� is determined not only by the properties of
the map E but also by the character of the estimation proce-
dure. In this situation, the map itself can be unphysical, but if
we require that the estimation procedure be such that the
complete positivity of the estimated map is guaranteed, then
the result of the estimation is a physical approximation of an
unphysical operation. In order to proceed we assume the
method of maximum likelihood.

V. METHOD OF MAXIMUM LIKELIHOOD

The MML is a general estimation scheme �14,15� that has
already been considered for the reconstruction of quantum
operations from incomplete data. It has been studied by Fi-
urášek and Hradil �16� and by Sachci �17� �criticized in Ref.
�18��. The task of the maximum likelihood in the process
reconstruction is to find a map E for which the likelihood is
maximal. By definition we assume that the estimated map
has to be CP. Let us now briefly describe the principal idea in
more detail.

Given the measured data represented by the couples �k
and Fk ��k is one of the test states and Fk is a positive
operator corresponding to the outcome of the measurement
used in the kth run of the experiment� the likelihood func-
tional is defined by the formula

L�E� = − ln �
k=1

N

p�k	k� = − 

k=1

N

ln TrE��k�Fk, �5�

where N is the total number of “clicks” and we used p�j 	k�
=TrE��k�Fj for the conditional probability of using the test
state �k and observe the outcome Fj. The aim is to find a
physical map Eest that maximizes this function—i.e., L�Eest�
=maxEL�E�. This variational task is usually performed nu-
merically.

Numerical results

Our approach is different from those described in Refs.
�16–18� in the way we find the maximum of the functional
defined in Eq. �5�. The parametrization of E itself, as defined
in Eq. �3�, guarantees the trace-preserving condition. Hence
only the CP condition must be checked separately during the
numerical maximalization. Instead of using the Lagrange
multipliers �and increasing thereby the number of parameters
for the numerical procedure�, we introduce the CP condition
as an external boundary for a Nelder-Mead simplex algo-
rithm. The maximalization itself is performed by the Math-
ematica 5.0 built-in function with the following parameters.

�i� Method=Nelder Mead. We chose the simplex algo-
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rithm because it gives the most stable results with the small-
est memory requirements.

�ii� Shrink ratio and contract ratio=0.95. These param-
eters are normally taken somewhere around 0.5. Their values
close to unity induce a rather slow “cooling” of the process
and prevents it from falling into a local maximum. So the
global minimum can be determined reliably. The price to pay
is usually a longer time of the numerical search.

�iii� Reflect ratio=1.5. This parameter is bigger than the
standard choice but it helps us to enhance the probability of
finding the global maximum.

As an input we use the eigenstates of �x, �y, and �z as the
collection of six test states. The data are generated as �ran-
dom� results of three projective measurements �x, �y, and �z
applied in order to perform the output-state reconstruction. In
order to analyze the convergence of the method we have
performed the reconstruction for a different number of de-
tected events �“clicks”� and compare the distance between
the original map ENOT and the estimated map Eest. The result
is plotted in Fig. 3, where we can see that the distance con-
verges to 1/3 as calculated in Eq. �4�. For N=100�18
clicks—i.e., each measurement is performed 100 times per
particular input state—the algorithm leads us to the map

Eest =�
1 0 0 0

− 0.0002 − 0.3316 − 0.0074 0.0203

0.0138 − 0.0031 − 0.3334 0.0488

− 0.0137 0.0298 − 0.0117 − 0.3336
� , �6�

which is very close �d�Eest ,Eapp�=0.0065� to the best ap-
proximation of the NOT operation—i.e., Eapp=diag�1,−1/3 ,
−1/3 ,−1/3�.

We conclude that for large N the MML reconstruction
gives us the same result as a theoretical prediction derived in
Ref. �7�. From here it follows that the MML helps us not
only to estimate the map when just incomplete data are avail-
able, but also serves as a tool to derive physical approxima-
tions of unphysical maps. The reconstruction procedure guar-
antees that the estimation and approximation is physical. In
order to illustrate the power of this approach we will find an
approximation of the nonlinear quantum mechanical trans-
formation that is even “more” unphysical than the linear
though antiunitary UNOT operation.

VI. NONLINEAR POLARIZATION ROTATION

Let us consider the nonlinear transformation of a qubit
defined by the relation �10�

E���� = ei��/2���z
��z�e−i��/2���z
��z. �7�

Unlike the universal NOT this map is nonlinear. Four
test states are not sufficient to allow us to determine the
action of nonlinear maps. Consequently, the fabricated data
must use all possible input states �covering the whole Bloch
sphere� as test states, but still we use only three different
measurements performed on outcomes that are sufficient for
the state reconstruction. We note that a straightforward regu-
larization via the addition of noise cannot result in a CP map
unless the original map is not completely suppressed by the
noise; i.e., the regularization leads to a trivial result E=A.
However, as we shall see, the maximum likelihood approach
gives us a reasonable and nontrivial approximation of the
transformation �7�.

First, we present an analytic derivation of a physical ap-
proximation of E�. This approximation is the closest physical

map Ẽ�—i.e., d�Ẽ� ,E��=min. The map E� exhibits two sym-
metries: the continuous U�1� symmetry �rotations around the
z axis� and the discrete �x symmetry �rotation around the x

axis by ��. The physical approximation Ẽ� should possess
these properties as well. Exploiting these symmetries the
possible transformations of the Bloch vector are restricted as
follows: x→�x, y→�y, and z→pz. In the process of mini-
malization the parameter p behaves trivially and equals

unity. It means that Ẽ� is of the form E�=diag�1,� ,� ,1�. Our
task is to minimize the distance d�E� ,E��=�d�	E����
−E����	 in order to find the physical approximation Ẽ�—i.e.,
the functional dependence of � on �.

We plot the parameter � that specifies the best physical
approximation of the NPR map in Fig. 4. In the same figure
we also present the result of a maximum likelihood estima-

FIG. 3. �Color online� The distance d�ENOT,Eest� as a function
of the number of measured outcomes, N, in logarithmic scale. We
used six input states �eigenvectors of �x, �y, and �z� and measured
�x, �y, and �z. The distance converges to the theoretical value 1/3,
which corresponds to the optimal universal NOT.

FIG. 4. �Color online� We present analytical as well as numeri-
cal results of an approximation of a nonlinear map E� for different
values of the parameter � �measured in radians�. The numerical
�“experimental”� results shown in the graph in terms of a set of
discrete points with error bars are obtained via the MML. The the-

oretical approximation Ẽ� of the nonlinear NPR map is character-
ized by the parameter �, which is plotted �solid line� in the figure as
a function of the parameter �. In the inset �a� is the Bloch sphere
transformation for �=3 obtained by MML and in �b� the same trans-
formation obtained analytically.
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tion of the NPR map based on a finite number of “measure-
ments.” Here, for every point ���, the nonlinear operation
was applied to 1800 input states that have been chosen
randomly �via a Monte Carlo method�. These input states
have been transformed according to the nonlinear transfor-
mation �7�. Subsequently simulations of random projective
measurements have been performed. With these “experimen-
tal” data a maximization procedure was performed as de-
scribed in the previous section. The resulting approximation
specified by a value of � �error bars shown in the graph
represent the variance in outcomes for subsequent runs with
different test states, but the same procedure parameters�
transforms the original Bloch sphere as is shown in the inset
for particular value �=3. Figure 4�a� corresponds to the re-
sult obtained by MML, and Fig. 4�b� has been obtained via
analytic calculations. We see that the original Bloch sphere is
transformed into an ellipsoid, one axis of which is signifi-
cantly longer than the remaining two axes, which are of a
comparable length. The mean of these two lengths corre-
sponds to the parameter �, which specifies the map. We con-
clude that the MML is in excellent agreement with our ana-
lytical calculations.

VII. CONCLUSIONS

In this paper we have shown that the method of maximum
likelihood can be efficiently used for derivation of physical
approximations of unphysical maps �both non-CP linear
maps as well as nonlinear quantum-mechanical transforma-
tions�. We have applied this method for approximating qubit

transformations �the universal NOT gate and the nonlinear
polarization rotation�. It would be desirable to apply this
method for the estimation and approximation of quantum-
mechanical maps of higher-dimensional systems �qudits� or
multiqubit systems �quantum registers�. This would allow us
to estimate, approximate, and quantify the performance of
multiqubit gates. Unfortunately, quantum channels of
d-dimensional systems are parametrized by d2�d2−1� param-
eters and even in the case of a general two-qubit gate the
number of parameters that have to be determined is equal to
240, which makes the problem numerically untractable when
a totally unknown two-qubit gate is estimated. On the other
hand, the number of parameters can be dramatically reduced
when some a priori information about the action of the gate
is available. We will address this problem elsewhere.

In our paper we have considered that the input states of
test particles are prepared perfectly; i.e., the action of the
initial-state preparator is totally known. Certainly, this is an
approximation of a real situation, when test states are pre-
pared with finite precision. This additional source of uncer-
tainty has to be taken into account in realistic estimation
procedures of quantum channels.
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