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We study possible realizations of generalized quantum measurements on measurement-assisted program-
mable quantum processors. We focus our attention on the realization of von Neumann measurements and
informationally complete positive-operator-valued measures. Nielsen and Chuang [Phys. Rev. Lett. 79, 321
(1997)] have shown that two unitary transformations implementable by the same programmable processor

require mutually orthogonal states. We show that two different von Neumann measurements can be encoded
into nonorthogonal program states. Nevertheless, given the dimension of a Hilbert space of the program
register the number of implementable von Neumann measurements is still limited. As an example of a pro-
grammable processor we use the so-called quantum-information distributor.
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I. INTRODUCTION

General quantum measurements are formalized as
positive-operator-valued measures (POVMs), i.e., sets of
positive operators {F}} that fulfill the resolution to the iden-
tity, 2.F,=1 (see, for instance, Refs. [1-4]). From the gen-
eral structure of quantum theory [1] it follows that each col-
lection of such operators corresponds to a specific quantum
measurement. However, the theory does not directly specify
a particular physical realization of a given POVM. The aim
of this paper is to exploit the so-called measurement-assisted
quantum processors to perform POVMs.

The Stinespring-Kraus theorem [5] relates quantum op-
erations (linear completely positive trace-preserving maps)
with unitary transformations. In particular, any quantum op-
eration & realized on the system A corresponds to a unitary
transformation U performed on a larger system A+B, i.e.,

Ele]=Try[Ge ® £G™], (1.1)

where & is a suitably chosen state of the ancillary system B
and Trp denotes a partial trace over the ancilla B. The as-
signment £— (G, &) is one to many, because the dilation of
the Hilbert space of a system A can be performed in many
different ways. However, if we fix the transformation G, the
states & of the ancillary system B control and determine
quantum operations that are going to be performed on system
A. In this way one obtains a concept of a programmable
quantum processor, i.e., a “piece of hardware” that takes as
an input a data register (system A) and a program register
(system B). Here the state of the program register ¢ encodes
the operation ¢ — @' =& @] that is going to be performed on
the data register.

In a similar way, any quantum generalized measurement
(POVM), that is represented by a set of positive operators
{F}, can be understood as a von Neumann measurement per-
formed on the larger system [4]. The von Neumann measure-
ments are those for which F;=E; are mutually orthogonal
projectors, i.e., E;E;= 6y Ey. The Neumark theorem (see, e.g.,
Ref. [6]) states that for each POVM {F} there exists a von
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Neumann measurement {E;} on a larger Hilbert space H 45
and TroF;=Tr[ (¢ ® §E,] for all @, where £ is some state of
the system B. Moreover, it is always possible to choose a von
Neumann measurement such that £ j:GT(I ®Q;)G where G
is a unitary transformation and Q; are projectors defined on
system B. Using the cyclic property of a trace operation, i.e.,
Ti{(e® §)G'(I© Q)GI=Ti[G(e ® HG'(I® Q))], we see that
the von Neumann measurement can be understood as a uni-
tary transformation G followed by a von Neumann measure-
ment M < {Q;} performed on the ancillary system only (see
Fig. 1).

As a result we obtain the couple (G, M) that determines a
programmable quantum processor assisted by a measurement
of the program register, i.e., measurement-assisted program-
mable quantum processor. Such device can be used to per-
form both generalized measurements as well as quantum op-
erations.

Programmable quantum processors (gate arrays of a finite
extent) have been studied by Nielsen and Chuang [7] who
have shown that no programmable quantum processor can
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FIG. 1. (Color online) With the help of a measurement-assisted
quantum processor (the right part of the figure) one can realize an
arbitrary POVM F (the left part of the figure) as a nondemolition
measurement. After measuring the outcome j on the program reg-
ister the system (i.e., the data register) is in the state @;. The corre-
spondence between both schemes is given by the probability rule

pj=Tr eF;=Ti{(I® Q)G(e® §G'].
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perform all unitary transformations of a data register. To be
specific, in order to encode N unitaries into a program regis-
ter one needs N mutually orthogonal program states. Conse-
quently, the required program register has to be described by
an inseparable Hilbert space, because the number of unitaries
is uncountable. However, if we work with a measurement-
assisted programmable quantum processor, then with a cer-
tain probability of success we can realize all unitary trans-
formations [8—11]. The probability of success can be
increased arbitrarily close to unity utilizing conditioned
loops with a specific set of error correcting program states
[8,12-14].

So far, the properties of quantum processors with respect
to realization of quantum operations has been studied by
several authors [7-11,15,16]. In the present paper we will
exploit measurement-assisted quantum processors to perform
POVMs. The problem of the implementation of a von Neu-
mann measurement by using programmable “quantum mul-
timeters” for a discrimination of quantum state has been first
formulated in Ref. [17] and subsequently it has been studied
in Refs. [18-20]. An analogous setting of a unitary transfor-
mation followed by a measurement has been used in Ref.
[21] to evaluate and measure the expectation value of any
operator. The quantum network based on a controlled-SWAP
gate can be used to estimate nonlinear functionals of quan-
tum states [22] without any recourse to quantum tomogra-
phy. Recently D‘Ariano and co-workers [23-25] have stud-
ied how programmable quantum measurements can be
efficiently realized with finite-dimensional ancillary systems.
In the present paper we will study how von Neumann mea-
surements and informationally complete POVMs can be re-
alized via programmable quantum measurement devices. In
particular, we will show that this goal can be achieved using
the so-called quantum-information distributor [26,27].

II. GENERAL CONSIDERATION

Let us start our investigation with an assumption that the
program register is always prepared in a pure state, i.e., &
=|E)E)|. In this case the action of the processor can be writ-
ten in the following form:

Gly) ® |E)= 2 AE)W) ® k), @1

k

where |k) is some basis in the Hilbert space of the program
register and the operator A,(Z)=(k|G|E) act on the data reg-
ister. In particular, we can use the basis in which the mea-
surement M is performed, i.e., Qa=2k51‘1|k><k , where J,, is a
subset of indices {k}. Note that J,NJ, =@, because 2,0,
=1

Measuring the outcome a the data evolve according to the
following rule (the projection postulate):

1
e— o= p—Trp[(I ® 0,)G(e ® [EXENG]

1 — —
=— X A(E)0A[(B),
a ke]a

probability  p,=Tr[(I® Q,)G(e ®|EXE|G']

(2.2)

with  the
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FIG. 2. (Color online) Measurement-assisted quantum proces-
sors can be exploited to perform state tomography. Based on the
measured probability distribution p; one can infer the original state

0.

=Tr[ 03, JaAi(E)Ak(E)]=Tr[QFa]. Consequently for the el-
ements of the POVM we obtain

F,= 2 Al(E)A(E).
keJa

(2.3)

If we consider a general program state with its spectral
decomposition in the form ¢=3,m,|Z,)(E,|, then the trans-
formation reads

, 1
0—0l=— 2 mALOAL, (2.4)

a nkel,
with Akn=<k|G|En> and pa=2n,kela’n-n Tr[QA]‘mAkn] There-
fore the operators

F,= 2 WllAZiAkl‘l (25)

nkeld,

constitute the realized POVM.

Given a processor G and some measurement M one can
easily determine which POVM can be performed. Note that
the same POVM can be realized in many physically different
ways. Two generalized measurements M, M, are equivalent,
if the resulting functionals ff:“)(g):Tr QFff) (x=1,2) coin-
cide for all k, i.e., they result in the same probability distri-
butions. For the purpose of the realization of POVMs, the
state transformation during the process is irrelevant. How-
ever, two equivalent realizations of POVM can be distin-
guished by the induced state transformations (for more on
quantum measurement see Ref. [4]).

Let us consider, for instance, the trivial POVM, which
consists of operators Fy=cl (c;=0,2;c,=1). In this case
the observed probability distribution is data independent and
some quantum operation is realized. In all other cases, the
state transformation depends on the initial state of the data
register, and is not linear [12]. In these cases the resulting
distribution is nontrivial and contains some information
about the state ©. In the specific case when the state @ can be
determined (reconstructed) perfectly, the measurement is in-
formationally complete. In this case we can perform the com-
plete state reconstruction (see Fig. 2). Any collection of d”
linearly independent positive operators F; determine such
informationally complete POVM. In particular, they form an
operator basis, i.e., any state @ can be written as a linear
combination ¢=2,;0,F;. Using this expression the probabili-
ties read
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pi=TileF]= > oTF,F]=2 oLy,  (2.6)
k k

where the coefficients L; =Tr[F;F] define a matrix L. In this
setting the (inverse) problem of the state reconstruction re-
duces to a solution of a system of linear equations p;
=2,L;10y, where 0, are unknown. The solution exists only if
the matrix L is invertible and then kaEjL,:j'pj.

The purpose of any measurement is to provide us with an
information about the state of the physical system based on
results of a measurement. Our scheme of the measurement-
assisted quantum processor represents a general model of a
physical realization of any POVM.

III. QID: COMPLETE STATE TOMOGRAPHY

In this section we will present a specific example of a
quantum processor, the so-called quantum-information dis-
tributor (QID) [26]. This device uses as an input a two-qubit
program register and a single-qubit data register. The proces-
sor consists of four controlled-NOT (CNOT) gates. Its name
reflects the property [26] that in special cases of program
states the QID acts as an optimal cloner and the optimal
universal NOT gate, i.e., it optimally distributes quantum in-
formation according to a specific prescription. Moreover, it
can be used to perform an arbitrary qubit rotation with the
probability p=1/4 [10]. The action of the QID can be written
in the form [12]

Gonl) ® |Ey= 2 cAE) oy @ [k,  (3.1)
k

where o) are Pauli sigma matrices, the operator A(Z)
=(k|Gqip|Z) acts on the data register, and |k) e {|0+),
[14),]0-),|1+)} is a two-qubit program-register basis in

which the measurement M is performed [|£)=(1/12)
X(loy=[1))].

In what follows we shall extend the list of applications of
the QID processor and show how to realize a complete
POVM, i.e., a complete state reconstruction. For a general
program state |E)=3,ay|E;) with |E)=(0,®1)|Z,) [here
|Z0y=(1/42)(]00)+|11))] the POVM consists of the follow-
ing four operators:

Fy= 0yFy.00= G A(E) A(E) o, (3.2)
. 1 1 e ™ S > i
with Fo,=37l+3[apa +qpa+ia” Xal-o and a

=(a), a5, 03), a=(a;, @y, a3).

Note that for the initial program state |Z) with «
=cos u, a=isin u(w/w) (u=||g|)) the probabilities p,
=Tr Fy,0=1/4 are ¢ independent, and a unitary operation
U,=exp(ig-0) is realized [10]. The question of interest is
whether an informationally complete POVM can be encoded
into a program state. In fact, the problem reduces to the
question of a linear independence of operators F for some
|Z). Using the vector representation of operators, F,=1/4(1

+7-0), one can show that the operators F are linearly in-
dependent only if none of the coefficients of ry,=aya’

* > L Tx - .
+aya+ia X a vanishes.

PHYSICAL REVIEW A 72, 022343 (2005)

FIG. 3. (Color online) The Bloch sphere can be used to illustrate
any POVM that can be realized on the QID processor. Each POVM
is given by four operators that determine four points in the Bloch
sphere. Using this picture one can see the structure and some prop-
erties of the realized POVM. The vertices of a tetrahedron corre-
spond to POVM elements of the symmetric informationally com-
plete POVM associated with the program state |Z)=(1/12)|Z)

The elements of a POVM can be represented in the
Bloch-sphere picture. This is due to the fact that operators
F k=%gk and @, represent quantum states. Choosing the pro-
gram state

| | 1 | | L
|Epovm) = =B+ =(ED+|E)+[E3)  (3.3)
V2 V6

we obtain the informationally complete POVM with a very
symmetric structure. In particular, the operators F are pro-
portional to pure states associated with vertices of a tetrahe-
dron drawn inside the Bloch sphere (see Fig. 3). These op-
erators read

1 1

F0+=—<I+ —lo + a'y+az]); (3.4)
4 \3
1 1

F0_=4_1 I+ V_E[—O'X—O'y+0'z] ; (3.5)
1 1

F1+=Z I+\T§[0'x_(7y_0'z] ; (3.6)
1 1

Fl_:Z I+NT§[_U"_U-"+O-Z] ) (3.7)

It is obvious that these operators are not mutually orthogo-
nal, but Tr F;'Fk=11—25jk+i(1—8jk). Using this identity one
can easily compute the relation (2.6) between the observed
probability distribution and the initial data state Q,
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2 9
0= % (‘ <Pt EE pj)|Qk><Qk

1
5 j#k

) (3.8)

where we used the notation F;=3|Q;)(Q;l. The last equation
completes the task of the state reconstruction.

Because of the identity Tr F;F;=const for j# k the real-
ized POVM {F,} is of a special form. It belongs to a family
of the so-called symmetric informationally complete mea-
surements (SIC POVM) [28]. These measurements are of
interest in several tasks of quantum information processing
and possess many interesting properties. It is known (see,
e.g., Ref. [28]) that for qubits there essentially exist only two
(up to unitaries) such measurements. Above we have shown
how one of them can be performed using the QID processor.

IV. VON NEUMANN MEASUREMENTS

An important class of measurements is described by the
projector valued measures (PVM), which under specific cir-
cumstances enable us to distinguish between orthogonal
states in a single shot, i.e., no measurement statistics is re-
quired. A set of operators {E;} form a PVM, if E ]:EJT and
EE=E;Sy, i.e., it contains mutually orthogonal projectors.
The total number of (nonzero) operators {E,} cannot be
larger than the dimension of the Hilbert space d.

Usually the von Neumann measurements are understood
as those that are compatible with the projection postulate,
i.e., the result j associated with the operator E;=|e;)(¢;| in-
duces the state transformation

/_ E,0F; _ |ej><ej|Q|ej><ej|
! TreE; (ejlelep

= |ej)<ej| =E;.
(4.1)

That is, the state after the measurement is described by the
corresponding projector Ej.

However, each PVM can be realized in many different
ways and a particular von Neumann measurement is only a
specific case. In our settings the realized POVM {F,} is re-
lated to the state transformation via the identity F k=A}L'Ak,
where 0 — @, :AkQAZ. The set of operators A,=U,E;, where
E; are projectors and U, are unitary transformations, define
the same PVM given by {EJ. In particular, AJA,
=EkUZ U.E,=E.E,=E, but the state transformation results in

0 — 0, =UKEU, #E,. (4.2)

Thus the final state is described by a projector, but not in
accordance with the projection postulate. We refer to the
PVMs that are compatible with the projection postulate as
the von Neumann measurements. Moreover, for simplicity
we shall assume that the projectors are always one dimen-
sional, i.e., the PVM is associated with nondegenerate Her-
mitian operators.

The action of the processor G implementing two von
Neumann measurements {E;} and {G;} can be written as

Gl ® |20 =2 El) @ |)); (4.3)
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Glyy ® |2 =2 Gl 1j). (4.4)
j

It is well known [11] that when two sets of Kraus operators

are realizable by the same processor G, then the following

necessary relation holds 2 ,E,G,=(Ez|Eg)I. Using this rela-

tion for the projections E;=le;)e;|, G;=|g;)(g;| we obtain the

identity

> ujle)g;| = ki,

J

4.5)

where ujj=<gj|e ). For general measurements, the operator
on the left-hand side of the previous equation contains off-
diagonal elements. In this case the corresponding program
states must be orthogonal, i.e., k=0. This result is similar to
the one obtained by Nielsen and Chuang [7] who have stud-
ied the possibility of the realization of unitary transforma-
tions via programmable gate arrays. Nielsen and Chuang
have shown that in order to perform (with certainty) two
unitary transformations on a given quantum processor one
needs two orthogonal program states. However, in our case
we cannot be sure that given the same resources the
measurement-assisted processor realizing two von Neumann
measurements does exist. Moreover, we also have to con-
sider an option that the condition holds also for nonorthogo-
nal program states (see the case study below). From the
above it follows that the realization of von Neumann mea-
surements on programmable processors is different from
implementation unitary operations on programmable proces-
sors. The reason is that for implementation of von Neumann
measurements program states might not satisfy the criterion
in Eq. (4.5).

A. Orthogonal program states

In order to realize a measurement described by PVM (ei-
ther a von Neumann measurement or a general PVM mea-
surement) on a d-dimensional data register the program
space must be at least d dimensional. Let us start with the
assumption that the Hilbert space of the program register is d
dimensional and the program states are orthogonal. Our task
is to analyze the possibility to perform d different (nonde-
generate) von Neumann measurements M, determined by a
set of operators Ej'=|a)Xey| (EFE]=6,E; and Z4E{=1 for
all @). Let |@) denote the associated program states and
(a] B)=08,p. It is easy to see that for general measurements
the resulting operator

G=2 E @ |k)Xa] (4.6)

k,a

is not unitary. In particular, G'G=SEPE®|B)(a| #I. The
equality would require that the identity EkE,‘fE,f = 8ol holds.
Therefore we conclude that neither orthogonal state guaran-
tees the existence of a programmable processor that performs
the desired set of von Neumann measurements. This result
makes the programming of unitaries and programming of
von Neumann measurements different.

For instance, let us consider a two-dimensional program
register and let us denote Eg’leo,, and E(l)J:GO,,. Then the
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TABLE 1. The measurements M;,M,,...,M) are realizable by
a d-dimensional program register only if all vectors in the rows are
mutually orthogonal. Moreover, no two columns can be related by a
permutation. The orthogonality of the vectors in columns is ensured
by the fact that they form a PVM. It turns out that the number of
realizable measurements equals to at most N—2, i.e., even with
qutrit one cannot encode more than a single von Neumann measure-
ment. Moreover, the measurements that can be performed are not
arbitrary.

Measurement M, M, - My
Result 1 lay) 1B ;)
Result 2 |a) |82 - |ws)
Result d |ag) 1B o |wq)

above condition reads E,Gy=FE;G;=0. Using the definition
E=ley){e;] and G,=|g,){g)| we obtain the orthogonality con-
ditions (ey|go)={(e;|g;)=0. Consequently, because in the
two-dimensional case the orthogonal state is unique, we ob-
tain |go)=le,) and |g,)=|e(), i.e., the measurements are the
same. Similarly one can show that even for qutrit (d,=d
=3) one can perform only one von Neumann measurement,
too. In particular, (ey|go)=0 implies |go)=aole,)+byle,),
lgy=aileq)+b|e,) and |g,)=as|ep)+b,le;). Orthogonality of
|gj> results in a set of equations ayb,=0, byb;=0, a,a,=0
with the solution that set of vectors {|g;)} is just a permuta-
tion of the set {|e j>}. However, this solution does not corre-
spond to a realization of two noncommutative measure-
ments. To perform two such measurements one needs an
extra dimension, i.e., for dp=d=4 we can realize two von
Neumann measurements. An addition of new dimension en-
ables us to perform one more noncommuting measurement
[29], i.e., with d orthogonal states one can implement at most
N=d-2 noncommuting von Neumann measurements. See
Table I for the properties that the corresponding eigenvectors
have to satisfy.

In order to implement a set of von Neumann measure-
ments on a qudit (with d-dimensional Hilbert space) one has
to utilize a program register with the dimension of the Hil-
bert space such that dim H,=d,>d. In general, in this case
we work with d, outcomes and d, projective operators Qy
that define the realized measurement. However, each PVM
consists of maximally d projectors. Therefore d,—d of the
induced operators Ej should represent the zero operator. It
means that we are realizing the von Neumann measurement
such that some of the outcomes do not occur, i.e., the prob-
ability of these outcomes is equal to zero for all data states.
However, there is one more option, that the set of operators
{E,} (corresponding to the outcomes k=1,...,d,) contains
exactly only d different operators (projectors). This means
that more outcomes specify the same projection and define a
single result of the realized von Neumann measurement.

We can utilize the so-called “zero” operators to formulate
a general approach to implement any set of arbitrary von
Neumann measurements. Let us consider N von Neumann
measurements M, (a=1---N) given by nonzero operators
{E;} (number of k equal to d). We can define new sets of d,
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operators {E¢} by adding to {E{} zero operators so that the

condition E,ﬁ,ﬁ“ﬁf: Oqpl holds. Using this approach we find
that any collection of N von Neumann measurements can be
realized on a single quantum processor given by Eq. (4.6)
with (maximally) N-d-dimensional program space.

Let us summarize our results in the following proposi-
tions:

Proposition 1. Using d,=d-dimensional program space
and orthogonal program states allows us to encode maxi-
mally N=d-2 specific (noncommuting) von Neumann mea-
surements on a qudit (see Table I).

Proposition 2. Let M|, ... ,My be N (noncommuting) von
Neumann measurements on a qudit. Then it is sufficient to
use N-d-dimensional program space to encode these mea-
surements into orthogonal program states.

B. Case study: Projective measurements on a qubit

Let us consider two von Neumann measurements M
={E,,E,} and N={G,,G,} on a qubit. First we will assume a
three-dimensional Hilbert space of a program register. We
define measurements M,={E,,E,;,0} and M,={0,G,,G,},
respectively. It is easy to see that neither of these two sets of
operators satisfy the condition 0=2,E,G,=0E,+E;G,;+0G,
=E,G,. The equality holds only if E,G,=0, i.e., E;=|¢)y]
and G,=|i )4, |, but this implies that the two measure-
ments are the same. Consequently, the dimension of the pro-
gram space has to be increased in order to encode into a
program register two projective measurements on a qubit.
Therefore let us consider a four-dimensional Hilbert space
of the program register. In this case we have
M,={E,,E,,0,0}, M,={0,0,G,,G,}, and the condition
holds for all possible measurements M;,M,. We conclude
that in order to implement N von Neumann measurements
(by encoding into orthogonal states) on a qubit a
2N-dimensional program space is required. Let us note that
for qudits this is only the sufficient condition and for specific
collections of measurements we can do better.

In what follows we shall show a way to realize three
different von Neumann measurements on a qubit by using
only four-dimensional program space. To achieve this goal
we will use nonorthogonal program states. We will show that
in special cases the condition of orthogonality [given by Eq.
(4.5)] can be relaxed. The program space of the QID proces-
sor given by Eq. (3.1) consists of two qubits. Using the con-
clusion of the previous paragraph we see that QID allows us
to perform two von Neumann measurements. It is easy to see
that the operators A= A(E) oy, with A(2)= %EjajO'j are not
projectors. Consequently, the projective measurement cannot
be realized in the same way as described above. However,
the QID processor can still be exploited to perform a von
Neumann measurement.

Using the program state |=Z)=(1/+2)(|E¢)+|=,)) the op-
erator A=(1/2\2)[I+0,] (e, Fy=A'A=1P,, where P,
=%[[+0’x]) is a projection onto the vector |+)=(1/42)]0)
+|1). 1t is obvious that Fi=0,Foo,=F, and F,=F;=3P_,
where P_=%[I —0o,]. It turns out that we have realized the
PVM described by P,, i.e., the eigenvectors of the o, mea-
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surement. The state transformation reads ¢ — @, =P, (if p;
#0), respectively. It follows that the realization of the mea-
surement of o, is in accordance with the projection postulate.
In the same way we can realize o, and o, measurement (in
these cases different results must be paired). Basically, this
corresponds to a choice of different two-valued measure-
ments, but in reality we perform only a single four-valued
measurement. As a result we find that on the QID we can
realize three different von Neumann measurements. Note
that we have used only two qubits as the program register.
Moreover, the associated program states |E(,j):(1 IN2[|E
+|E,)] are not mutually orthogonal, but (on|Egk)=% (for
j#k) and Eq. (4.5) holds. Namely, for the measurements of
o.—{P.} and o,<{P;=]|0)0],P,=|1){1]} the condition
(4.5) reads 3[P,Py+P,P\+P_P+P_Py]=1I.

V. PROJECTION-VALUED MEASURES

If we relax the projection postulate more PVMs can be
realized on a single processor. Let us consider that the di-
mension of the program space equals d and |a) is the state
that encodes the PVM given by a set {E[}. The action of G
can be written as

Glu) ® a) = 2 UFE{1W) © k) (5.1)
and the condition 3, EfU URER=8,5l must hold. Let us
consider two PVMs on a qubit {E,=[0)0|,E,=|1)(1]} and
{Go=|pXd|,G,=|¢ ) p,|}. Define a unitary map U such
that |)—|1) and |¢, ) — |0). Using this map we can define a
processor by the following equations:

Gl ® |Ep) = Eolt) ® [0y + E|4h) © |1);

Gl ®|Egy=Golpy @ |0)+ Gl @ 1),  (5.2)

where Gy=UGy=[1){(¢|, G,=UG,=[0X¢,|, and (E¢|E)
=0. Direct calculation shows that E,Go+E,G;=|0)(0]1){|
+|1)(1]0){¢,|=0, i.e., G is unitary. From here it follows that
if one does not require the validity of the projection postu-
late, then any two PVMs can be performed on a processor
with two-dimensional program space.

This result holds in general. Let us consider a set of d
PVMs {E}} on a qudit. There always exist unitary transfor-

mations U? such that operators Ef'= U°E{ satisfy the condi-

tion Ekﬁ,ﬁﬁﬁf =6,pl. Without the loss of generality we can
consider that the measurement M, is given by projectors
0X0[, ....,,|d—1)Xd~1| and M, by [$5)(¢y B X bl
(see Table II).

Proposition 3. A collection of arbitrary (noncommuting)
N projection-valued measures can be realized on quantum
processor with N-dimensional program space.

g eeey

Programming unitaries vs PVMs

As an alternative to the scenario presented in the previous
section one can consider the following strategy for how to
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TABLE II. The realization of an arbitrary collection of d PVMs

M;,...,M,on a qudit. The operators Ef correspond to an example
of the choice of unitary transformations U®. In particular, each U“
transforms the basis {|¢J‘7‘>} into some permutation of the basis {|;)}.
The permutation is different for each a.

M1<—>1§,,|C MZHE,% MdHEz
00| 1) |d—1)(¢]
[11] 2] 0X
|d—1){d~1| 0X 7| |ld-2)(¢_|

realize a measurement on the programmable quantum pro-
cessor. Programmable processors are designed to perform
unitary operations. Since different projection-valued mea-
sures are always related by some fixed unitary transforma-
tion, it is possible to exploit the existing processor to rotate
the input data state by a suitable transformation. After this
transformation is implemented the fixed von Neumann mea-
surement of the data register is performed. In particular, let
us consider that the processor G implements the transforma-
tion |¢)— U|4) and the fixed measurement of the data reg-
ister is described by set of projectors {E,}. Using such a
processor the measured probabilities read p,=( U EU|)
=(y|F,|4), where operators F;,=U'E,U describe the realized
PVM. However, the output state |¢;) is described by the
corresponding projection E;. To obtain the state transforma-
tion that is in accordance with the projection postulate one
has to apply the same unitary transformation U once more,
i.e., we use the same processor twice.

From here it follows that the implementation of a von
Neumann measurement is related to a repeated usage of the
processor realizing the given unitary operation. In particular,
to realize N von Neumann measurements we have to use
twice the processor realizing N unitary transformations, i.e.,
the program space is composed of two N-dimensional sys-
tems (unitary operators are encoded in orthogonal states). As
a result we find that the dimension of the program space
equals N, In the limit of large number of measurements this
N? is larger than Nd that quantifies the number of orthogonal
program states from Proposition 2. In fact, whenever the
number of measurements is larger than the dimension of the
object, the usage of a quantum processor realizing unitary
transformations is less efficient.

Let us note that with this realization of measurements we
do not have to consider the compatibility with the projection
postulate, providing that the measurement is not performed
in a nondemolition way. However, nondemolition measure-
ments require additional systems and therefore the model
would correspond again to some measurement-assisted quan-
tum processor. If one does not care about a particular real-
ization of the PVM, then the number of realizable PVMs N
equals to the dimension of the number program states encod-
ing the corresponding unitary transformations. This is ex-
actly the content of Proposition 3.

VI. CONCLUSION

We have studied how POVMs can be physically realized
using the so-called measurement-assisted quantum proces-
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sors. In particular, we have analyzed how to perform a com-
plete state reconstruction and von Neumann measurements.
As a result we have found that an arbitrary collection of von
Neumann measurements cannot be realized on a single pro-
grammable quantum processor of finite dimension. We have
shown how to use the QID processor to perform the state
reconstruction.

The number of implementable von Neumann measure-
ments is limited by the dimension of the program register.
Our main result is that with a program register containing Nd
orthogonal states one can certainly find a processor which
performs arbitrary N von Neumann measurements. In prin-
ciple, one can do much better than this. We have shown that
nonorthogonal program states can be used very efficiently.
This makes the programmability of unitary transformations
and von Neumann measurements different. In particular, the
QID processor can be exploited to perform three von Neu-
mann measurements by using three nonorthogonal states of
only two qubits of the program register. Using
d,=d-dimensional program space one can encode maximally
N=d-2 von Neumann qudit measurements into orthogonal
program states (for a qubit we have N=1).

Relaxing the condition of compatibility with the projec-
tion postulate the processor allows us to realize any collec-
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tion of N PVMs by using only d,=N-dimensional program
space. An open question is whether we can perform more
PVMs or not. The two tasks that can be performed by pro-
grammable processors are the realization of von Neumann
measurements and the application of unitary transformations
on the data register. These two applications are different.
According to Nielsen and Chuang [7], any collection of N
unitary transformations requires N-dimensional program
space. For N von Neumann measurements the upper bound
reads d,=Nd and any improvement strongly depends on the
specific set of these measurements. The characterization of
these classes of measurements is an interesting topic that will
be studied elsewhere.
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