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1 Research Center for Quantum Information
Slovak Academy of Sciences
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Abstract. Master equations in the Lindblad form describe evolution of open quantum systems
that are completely positive and simultaneously have a semigroup property. We analyze the
possibility to derive this type of master equations from an intrinsically discrete dynamics that is
modelled as a sequence of collisions between a given quantum system (a qubit) with particles that
form the environment. In order to illustrate our approach we analyze in detail how the process of
an exponential decay and the process of decoherence can be derived from a collision-like model in
which particular collisions are described by SWAP and controlled-NOT interactions, respectively.

1. Introduction

The central issue in the study of evolution of open systems is the observed irre-
versibility of both classical as well as quantum dynamics. Open systems interact-
ing with an environment gradually loose their information content and decohere,
which means that after some time their states are to some extent determined by
the initial parameters of the environment. Such behaviour cannot be described
by unitary transformations and has led to an introduction of a phenomenological
dynamical postulate for open systems [1 – 3] — the semigroup property of the time
evolution Et

Et+s = EtEs ∀ t, s ≥ 0 and lim
t→0+

Et = I , (1)

where Et : S(H) → S(H) is a transformation acting on the set of all possible states
S(H) of a given quantum system corresponding to the Hilbert space H. In this
case it is possible that pure quantum states evolve into mixtures, and vice versa.

The irreversibility is related to the non-existence of the inverse evolution E−1
t .

In particular, the inverse map can exist in the mathematical sense, but the resulting
map does not describe a valid quantum evolution. The physical maps Et must
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satisfy several constraints [4]: They have to be linear, trace-preserving and they
have to be completely positive for all t.

The state of the system �t is obtained by the application of the map on the
initial state �, i.e. �t = Et[�]. Equations of motion that describe this type of
dynamics has the so-called Lindblad form [1]:

�̇t = G[�t] = −i[H, �t] +
1

2

∑
α,β

cαβ ([Λα, �tΛβ] + [Λα�t,Λβ ]) , (2)

where Λα = Λ†
α, TrΛα = 0, TrΛαΛβ = δαβ for α, β = 1, . . . , d2 − 1 and the coef-

ficients cαβ form a positive matrix. The Hamiltonian H is traceless, i.e. H =∑
α hαΛα. This differential equation is supplemented by the initial condition

�t=0 = �.
Differentiating the time evolution �t = Et[�] we derive a formal expression for

the generator of the dynamics G

�̇t = Ėt[�] = ĖtE−1
t [�t] =⇒ G = ĖtE−1

t . (3)

This expression in a strict mathematical sense has a meaning only when inverse
transformations E−1

t do exist for any time t. For general one-parameter set of
completely positive maps Et the generator can be time-dependent, however, if
these maps possess the semigroup property, then the generator is independent of
time.

2. Discrete Dynamical Semigroup

The derivation of the particular master equation, which drives the evolution of an
open system, is usually based on the idea that the open system is a part of a larger
closed system with the underlying unitary dynamics described by Schrödinger
equation. However, after tracing out the environment, the induced set of maps Et

essentially never fulfills the semigroup property. In order to obtain this feature of
dynamics various approximations have to be applied [3, 5], for instance the Born-
Markov approximation, the weak-coupling limit, the mean-field limit, etc. Master
equations of the Lindblad form are valid only under specific physical conditions,
but still provide us with a very reasonable approximative picture of the exact
dynamics of open quantum systems.

In this paper we will present a novel method how to derive master equations.
We will consider that the interaction between the system and its environment
consists of bipartite collisions. For this we assume that the environment consists
of N particles (quantum systems) of the same physical origin as the system under
consideration. In our model we assume that the environment is initially “prepared”
in a factorized state ξ⊗N and the system interacts with each particle from the
environment at most once. Each collision is described by a unitary transformation
U , which induces a map E (see Fig. 1). As a result this collision-like model
determines a discrete evolution described by powers of the map E , i.e. En with
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Fig. 1: A schematic visualization of a sequence of collisions between the system
and particles from the environment. This interactions lead to a dynamics of the
system that is described by a specific sequence of maps En that in the continuous
limit can be described by a specific master equation.

n = 1, 2, . . . corresponding to the n-th collision. The set of maps En := En with
E0 = I obviously fulfills the semigroup property, i.e.

EnEm = En+m for all n,m = 0, 1, 2, . . . (4)

In other words the maps En form a one-parameter discrete semigroup.

The question is whether we may replace the discrete dynamics En with a con-
tinuous one Et such that Etn = En for times tn = nτ (τ is some fixed time interval
between subsequent collisions), and the maps Et satisfy the semigroup property.
In other words the task is to interpolate a discrete set of points with a line in the
abstract space of quantum maps. Obviously, on the time scale less than τ the
continuous evolution is different from the discrete one. However, our interest is
to describe the overall evolution rather than a sequence of isolated collision. In
this sense, the continuous dynamics is a good approximation of the discrete one.
Our aim is to describe the intrinsically discrete collision model in the language of
quantum dynamical semigroups, i.e. continuous master equations.

We derive the master equation in the following way. Firstly, we will express the
powers of the map E in a specific form. The discrete parameter n numbering the
order of interaction of the system with environment particles will be replaced by a
continuous parameter t = nτ , i.e. n→ t/τ . Correspondingly, we have a continuous
set of maps Et. The question is, whether these maps are completely positive, and
whether they form a semigroup. If, moreover, the inverse maps E−1

t exist, then we
can derive the master equation by using the expression for the generator in (3).

In what follows we will present two specific examples, for which the derived
master equations correspond to an exponential decay, and to a decoherence process.
It is important to understand which bipartite interactions underly these type of
processes. We will be interested only in two-dimensional systems, i.e. qubits.
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3. Qubit Formalism

In what follows we will use the so-called left-right formalism, or real matrix rep-
resentation of quantum maps, and real vector representation of quantum states of
a qubit. The state space of a qubit is a subset of four-dimensional linear space
of hermitian operators. It follows that any density operator can be written as
� = 1

2I + �r · �σ, where �σ = (σx, σy, σz) are the Pauli operators. The positivity of �
restricts the choices of vector �r such that |�r| ≤ 1/2, i.e. the states of qubit form a
three-dimensional sphere — the Bloch sphere.

The quantum evolution maps E as well as the generators G of quantum dy-
namics E then correspond to 4x4 real matrices acting on the vectors (1/2, �r). In
particular, the evolution E has the affine form

E =

(
1 �0
�t T

)
,

where T is some 3x3 matrix and �t is the translation vector. Under the action of
E the Bloch sphere vectors �r transform in the following way �r → �r′ = T�r+�t. The
generator G of the dynamics has very similar form, only the first row of the matrix
vanishes, i.e.

G =

(
0 �0
�g G

)
.

The matrix elements are given by the relation [G]jk = 1
2Tr(σjG[σk]) for j, k =

0, 1, 2, 3 and σ0 = I .
For our purposes it will be useful to know how to rewrite this matrix form of

the generator into the operator form

�̇t = −i[H, �t] +
1

2

3∑
j,k=1

cjk ([σj , �tσk] + [σj�t, σk]) , (5)

i.e. how to rewrite the coefficients [G]jk into the parameters hj and cjk. The
hermitian matrix cjk can be rewritten as cjk = djk − iejk, where djk = 1

2(cjk + ckj)

is the real symmetric matrix and ejk = i12(cjk − ckj) is the real antisymmetric
matrix. Using the operator expression of the generator (5), one can easily find the
matrix

G =

 0 0 0 0
4e23 −2d22 − 2d33 2d12 − 2h3 2d13 + 2h2

4e31 2d12 + 2h3 −2d11 − 2d33 2d23 − 2h1

4e12 2d31 − 2h2 2d32 + 2h1 −2d11 − 2d22

 . (6)

The inverse relations then read

h1 =
[G]32 − [G]23

4
, h2 =

[G]13 − [G]31

4
, h3 =

[G]21 − [G]12

4
,

e23 =
[G]10

4
, e31 =

[G]20

4
, e12 =

[G]30

4
,

(7)
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and

d11 =
−[G]22 − [G]33 + [G]11

4
,

d22 =
−[G]11 − [G]33 + [G]22

4
,

d33 =
−[G]11 − [G]22 + [G]33

4
,

d12 =
[G]12 + [G]21

4
,

d23 =
[G]23 + [G]32

4
,

d13 =
[G]13 + [G]31

4
.

(8)

It is important to note that these relations enable us to represent not only dynam-
ical semigroups, but any time evolution of a qubit in the Lindbland-like form. In
this general case the coefficients cjk will not be constant, but will explicitly de-
pend on time. In this way we can derive more general master equations describing
dynamics beyond Markovian approximation.

4. Case Study I: Quantum Homogenization

The quantum homogenization [6 – 8] is a process motivated by the thermodynamical
process of thermalization. It describes a system-reservoir interaction in which the
initial state of the system � is transformed into the state ξ determined by the state
of the reservoir that is composed of N systems of the same physical origin as the
system. The interaction between the system and the reservoir consists of bipartite
collisions. Each collision is described by some unitary map U . In order to obtain a
discrete semigroup describing the dynamics of the system, we assume that initially
the reservoir is in a factorized state ξ⊗N and that the system interacts with each
system from the reservoir at most once (see Fig. 1).

The homogenization approximates the evolution � ⊗ ξ⊗N → ξ⊗(N+1), which
is forbidden by the no-cloning theorem (see [9] and references therein). Let δ
be the parameter describing the quality of the homogenization in the following
sense. After the homogenization process is complete, all systems are described by
states, which belong to a δ-vicinity of the state ξ. Moreover, the homogenization
requires the validity of the following relations corresponding to trivial homogeniza-
tion Tr1(Uξ⊗ξU †) = Tr2(Uξ⊗ξU †) = ξ. If we assume that the homogenization is
independent on the initial state of the system qubit (�) as well as on initial states
of reservoir qubits (ξ) then for qubits U must posses the form of the partial swap
operation (for more details see [6])

Pη = cos ηI + i sin ηS , (9)

where S is the swap operation defined by the relation S|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 for
all |ψ〉, |φ〉. In what follows we will use the notation c = cos η and s = sin η.

Let us define the Bloch-sphere vectors for density operators, i.e. � ↔ �r and
ξ ↔ �t. In terms of these vectors the partial-swap induces the map �r → �r ′ =
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c2�r + s2�t− 2cs�t× �r, i.e. the superoperator Eξ is represented by the matrix

Eξ =


1 0 0 0

2s2tx c2 2cstz −2csty
2s2ty −2cstz c2 2cstx
2s2tz 2csty −2cstx c2

 . (10)

Now we turn our attention on the derivation of the master equation that corre-
sponds to a dynamics induced by a sequence of partial-swap interactions. By a suit-
able (unitary) substitution of the operator basis {I, σx, σy, σz} → {I , Sx, Sy, Sz},
such that Sk = UσkU

† (UU † = U †U = I ), the matrix Eξ can be rewritten into the
form

Eξ =

 1 0 0 0
0
0

cA
0
0

2s2w 0 0 c2

 with A =

(
c 2sw

−2sw c

)
, (11)

where w is determined by the initial state of the reservoir, i.e. ξ = 1
2I +wSz. This

change of the operator basis corresponds to a different choice of the x, y, z axes in
the Bloch sphere. In what follows we will describe the process in this new basis,
in which the powers of Eξ can be easily find

En
ξ =

 1 0 0 0
0
0

cnAn 0
0

2w(1 − c2n) 0 0 c2n

 . (12)

The powers of the matrix A can be found as follows: Using the identity
cos arctanx = (1 + x2)−1/2 and defining the parameter ω = arctan(2ws/c) we
find

A =

(
c 2sw

−2sw c

)
=
√
c2 + 4w2s2

(
cosω sinω
− sinω cosω

)
(13)

and its powers are equal to

An = (c2 + 4s2w2)n/2

(
cos(nω) sin(nω)
− sin(nω) cos(nω)

)
. (14)

The introduction of the continuous time is now straightforward. One has to
replace n with t/τ . The dynamics of open systems is usually characterized by two
parameters: the decay rate Γ1 and the decoherence rate Γ2. In our case we can
introduce these parameters as follows

c2t/τ = e−Γ1t =⇒ Γ1 =
1

T1
= −2

τ
ln c ,[

c(c2 + 4s2w2)1/2
]t/τ

= e−Γ2t =⇒ Γ2 =
1

T2
= −1

τ

[
ln c
√
c2 + 4s2w2

]
,

(15)
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Fig. 2: Visualization of the evolution of a system qubit due to its interaction with
reservoir qubit in the process of quantum homogenization. The system is supposed
to be initially prepared in a pure state (|0〉 + |1〉)/

√
2. The qubits in reservoir are

prepared in the total mixture characterized by the values w = 0 (left figure) and
and in the state |0〉 characterized by w = 1/2 (right figure).

and the continuous version of the homogenization process can be described by a
one-parameter set of maps

Et =


1 0 0 0
0 e−Γ2t cos Ωt e−Γ2t sin Ωt 0
0 −e−Γ2t sin Ωt e−Γ2t cos Ωt 0

2w(1 − e−Γ1t) 0 0 e−Γ1t

 (16)

with frequency Ω = ω/τ describing the “rotating” part of the evolution (see Fig. 2).
The general rule is that before deriving the master equation itself one has to check
that the maps are valid quantum maps and that they fulfill the semigroup property.
However, here we will directly derive the generator, and from its properties the
character of transformation will become obvious. Using the method described in
previous sections we find out that the derived generator is time independent and
it takes the form

G =

 0 0 0 0
0 −Γ2 −Ω 0
0 −Ω −Γ2 0

2wΓ1 0 0 −Γ1

 . (17)

Consequently, the master equation is of the Lindblad form with time-independent
coefficients cjk and hj . In particular, the non-vanishing parameters read h3 = Ω/2,
c11 = c22 = Γ1/4, c33 = (2Γ2 − Γ1)/4, and c12 = −i2wΓ1 and the matrix of cjk
is positive whenever Γ2 ≥ 1/2Γ1, and |w| ≤ 1/2. The latter condition is trivially
satisfied, because of the positivity of ξ, i.e. |w| ≤ 1/2. The first condition is
related to a more general result (for details see [10]), according to which the decay
is at most two times faster than the decoherence, i.e. Γ1 ≤ 2Γ2, or equivalently
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T2 ≤ 2T1. Its validity in the case of homogenization can be checked by direct
calculation.

The positivity of the matrix cjk guarantees the complete positivity of the whole
evolution. The master equation of the homogenization process reads

�̇t = −iΩ
2

[S3, �t] +
Γ1

4
(S1�S1 + S2�S2 − 2�) +

2Γ2 − Γ1

4
(S3�S3 − �)

−iwΓ1(S1�S2 − S2�S1 + i�S3 + iS3�) ,
(18)

where the operators S are given by (10). Let us note that the parameter Ω de-
scribes only the Hamiltonian part of evolution, which is in accordance with our
expectations. The Hamiltonian part causes the rotation, whereas the other part
of the generator induces a contraction into the fixed point ξ. Only in the case
when the homogenization is completed the map cannot be inverted, but strictly
speaking this happens in the limit when time goes to infinity.

Let us make the following choice of parameters: w = −1/2, Γ1 = 2Γ2 = 2γ. In
this case the master equation takes a simple form

�̇t = i
Ω

2
[S3, �] + γ[2S−�S+ − S−S+�− �S−S+] , (19)

where S± = 1
2(S1 ±S2). This is the well known equation describing the process of

exponential decay with the Hamiltonian H = −Ω/2S3 [4].

5. Case Study II: Decoherence from Collisions

In this section, we will analyze a collision-like dynamics which models a deco-
herence of a qubit. A more general treatment of decoherence will be presented
elsewhere [11], while here we will concentrate on the derivation of the master
equation. The task will be the same as before, except that instead of the partial-
swap operation we will consider a partial CNOT (controlled-NOT operation),
i.e. Uη = cos ηI + i sin η CNOT. The CNOT gate performs the σx rotation on the
target qubit, when the control qubit is in the state |1〉. If the control is in the state
|0〉, then the state of the target qubit is not changed. Unlike the swap operation,
the controlled NOT is asymmetric under the exchange of qubits. Therefore, we
have two different evolutions determined by the role of the system qubit: it can
be either the target qubit, or the control qubit.

Let us assume the system qubit acts as the target. In this case the interaction
induces the map on the target qubit that reads

Eξ =

 1 0 0 0
0 1 0 0
0 0 1 − 2s2ξ11 2csξ11

0 0 −2csξ11 1 − 2s2ξ11

 , (20)

where we used again the notation c = cos η, s = sin η and ξ11 stands for 〈1|ξ|1〉,
i.e. it is the parameter that characterizes the initial state of reservoir qubits. For
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the calculation of the powers of this map we will use the same approach as before,
because again we need to calculate the powers of 2 × 2 matrix A of the specific
form

A =

(
a b
−b a

)
=
√
a2 + b2

(
cosω sinω
− sinω cosω

)
=
√
a2 + b2X(ω) . (21)

In the last equality we exploited the identity cos arctanx = (1 + x2)−1/2 and we
set ω = arctan(b/a) to obtain the form suitable for evaluating the powers. Note
that X(ω)n = X(nω). In our particular case a = 1 − 2s2ξ11 and b = 2csξ11. That
is,

En
ξ =

 1 0 0 0
0 1 0 0
0
0

0
0

(1 + 4s2ξ11ξ00)n/2X(nω)

 . (22)

Following the same methods as in the previous section we can derive the generator
of the process G in a very simple form

G =

 0 0 0 0
0 0 0 0
0 0 −Γ Ω
0 0 −Ω −Γ

 =⇒ �̇t = −iΩ
2

[σx, �t] +
Γ

2
(σx�tσx − �t) . (23)

As seen from its structure this generator describes “pure” decoherence, i.e. the
process of diagonalization of the state in the basis associated with the eigenvectors
of the operator σx. The parameters of the dynamics are defined in a similar way
as before, i.e.

Ω = ω/τ = arctan
2csξ11

1 − 2s2ξ11
and Γ = −1

τ
ln
√

1 − 4s2ξ11ξ00 .

If we consider the system qubit to play the role of the control, then the dy-
namical map Eξ is very similar to the previous case, i.e.

E =

 1 0 0 0
0 c2 + s2〈σx〉ξ cs(1 − 〈σx〉ξ) 0
0 −cs(1 − 〈σx〉ξ) c2 + s2〈σx〉ξ 0
0 0 0 1

 , (24)

where 〈σx〉ξ = Trξσx. Defining the parameters

Γ = −1

τ
ln
√
c2 + s2〈σx〉ξ ,

Ω =
1

τ
arctan

cs(1 − 〈σx〉ξ)

c2 + s2〈σx〉
we can directly write down the master equation

�̇t = −iΩ
2

[σz, �t] +
Γ

2
(σz�tσz − �t) . (25)
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Like in the previous case we obtain the dynamics describing the decoherence.
Nevertheless, there is a difference, if the system qubit plays the role of the control,
then the decoherence is observed in the basis associated with the eigenvectors of
the σz operator, rather then in the basis of eigenvectors σx that was the case when
the system qubit played the role of the target. We see that irrespective of the
fact whether the system qubit is the control or the target the sequence of partial
CNOT collisions leads to decoherence processes. There are two differences though.
The first one is the basis in which the decoherence takes place and the second is
the decoherence time. In particular, the decoherence rates depend on the initial
state of the reservoir ξ in different ways.

6. Conclusion

We have shown that using a simple collision-like model one can derive master
equations for a qubit interacting with an environment. In our approach the dis-
crete dynamics is described by a sequence of unitary transformations representing
bi-partite interactions (“collisions”). As a result of the collision-like evolution the
induced one-qubit dynamics is discrete, too. However, we have shown that in spe-
cific cases (partial SWAP operation and partial CNOT operation) this essentially
discrete evolution can be substituted by a continuous one. The resulting time
evolution fulfills the semigroup property. Using the state-space description of the
dynamics of a qubit we can say that the evolution of a qubit state that undergoes
a sequence of collisions can be illustrated as an ordered sequence of points in the
Bloch sphere. We have shown how to connect these points with a smooth line
representing the continuous time evolution driven by a Lindblad master equation.

The presented approach can be generalized to higher-dimensional quantum sys-
tems (qudits), as well as to collisions described by more general bi-partite unitary
transformations U . The method essentially works for any interaction which induce
an invertible map E (i.e. det E �= 0). It turns out that semigroups Et = e−Gt always
contain only invertible maps, because for the (usually unphysical) map E−t the
following identity holds EtE−t = e−Gte+Gt = e0 = I.

Another (open) problem concerning the derivation of the master equation from
a discrete collision-like dynamics is whether for all invertible mappings E , the semi-
group generated by its powers can be always interpolated with a continuous semi-
group of completely positive maps. This problem leads to the question about the
structure of the set of quantum semigroups. It is worth studying which bi-partite
interactions in the collision-like models could stand behind the known quantum
processes described approximatively by quantum master equations. We believe
that this approach of derivation of the master equations provides us with a new
insight into the dynamics of open systems.
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[10] S. Daffer, K. Wódkiewicz, J. K. McIver, Bloch equations and completely positive maps, J.
Mod. Opt. 51, 1843 (2004), LANL preprint archive quant-ph/04011177.

[11] M. Ziman et al., in preparation.


