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Four basis vectors of the Hilbert space of two qubits have the property that if three of them are product
states, then the fourth one has to be a product state as well. We address the following situation: Consider a set
of orthogonal vectors, each exhibiting a certain degree of entanglement. What is the bound on entanglement of
the rest of the basis vectors to form a complete orthonormal basis? Specifically, we present an orthonormal
basis, theZ basis in the Hilbert space of two qubits, with one product state and three equally entangled states.
The maximum of the so available entanglement is quantified. A close-to-optimal protocol is presented for
entanglement purification via entanglement swapping of two-qubit states. It is based on a suitably chosen
nonmaximally entangled basis and carried out in a single step without any ancillas. A similar application of the
E basis is examined. In this latter case, all the involved entangled states have different and nonorthogonal
Schmidt decompositions and, except for some possibly resulting states, none of them are maximally entangled.
Entanglement of single pair purification is not conserved on average in this case.
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I. INTRODUCTION sion), this aspect has been studied in detail by Vourdds
] ] who has classified their unitary symplectic transforms into
Measurements with entangled eigenstates are clearly |acal and entangling ones.
standard part of most quantum information proces$Qip) There are certainly limitations on the entanglement of the
protocols. The Bell measurement is the key ingredient ofpasis vectors. This gives rise to the concept of unextendible
e.g., quantum teleportatiorl] and entanglement swapping product base$UPB’s) [6]: an incomplete orthonormal basis
[2]. Furthermoremaximally entangled basekemselves are formed by product state vectors, which cannot be supple-
essential for optimal quantum information distributfs. mented with additional product-state elements. For instance,
Though we frequently consider “a maximally entangledin the case of two qubits one can specify such a set of five
basis,” less attention has been paid to nonmaximally enorthogonal state vectors that it is impossible to find any ad-
tangled bases: a set of nonmaximally entangled states forndlitional product states orthogonal to these. UPB's became
ing an orthonormal basis spanning the Hilbert space of théhe subject of a considerable literature as they have remark-
multipartite system. able properties which have implication for the theory of
Measurements have been very frequently considered d°und entangled states and local distinguishability. ,
tools for concentrating entanglement to a subsystem of a N the case of two qubits, having three product states in a
multipartite system, giving rise to the concept of entangle- asis implies that the fourth one is also a product. The ques-

ment of assistance, which we will find useful in our presenttlon may arise what happens if we do not require all the basis

: : . : elements to be maximally entangled or product states. What
consuderatyon; too. However, we investigate a Complemenquantitative statements can be formed concerning entangle-
tary question: we are primarily interested in the entangle-

t of the basi tors th | thouah : ment of the basis elements? The problem is similar to the
ment of In€ DasIS vectors themseves, though some of O, astion of distributed entanglement in multipartite systems,

considerations relate to the entanglement of the complemerwhich cannot be arbitrarily entangled. In their case, inequali-

tary s;:jstgm too. led b b ded dvi ties limiting the pairwise entanglement of the parties can be
Studying entangled bases can be regarded as studying Ferived [7]. One of the main intentions of this paper is to

nonical térlanzformg_tlons aEd, Sthus, real ;ymplectlc r:ransforéhow an example of a similar quantitative limitation for en-
mations[4]. According to the Stone—von Neumann theorem,, e pases in the case of two qubits. A special partially

this means also studying joint unitary transformations, whichyyanq1ed basis will be also introduced as a part of this con-

indeed tre;]nsform. Easgli into each otr;er. _For Galois g.uantug]deration, which is of rater different nature from the usually
systems(those with Hilbert spaces of prime-power dimen- considered ones. This basis will find its actual application in

a protocol in the second part of this paper.
Besides the relevance of nonmaximally entangled bases
*On leave from Research Institute for Solid State Physics androm the kinematical point of view, the actual use of them in
Optics of the Hungarian Academy of Sciences, Budapest, Hungan@QIP protocols is of particular interest. Nonmaximally en-
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the resulting one. All the other states—the shared states and
ﬁ the eigenstates of the measurement—are nonmaximally en-
<> tangled. It is based upon the special nonmaximally entangled
p) 3 basis which we introduce in the framework of the the kine-
matical considerations in the first part of the paper.

Trent Regarding the conservation of entanglement of single pair
________________________ 4 purification described in Ref16] for the case of Bell mea-
Alice Bob surements, we find that in our schemes using nonmaximally

entangled states, it shows a somewhat different behavior.
Namely, for the nearly optimal case presented here, entangle-
FIG. 1. The entanglement swapping protocol. Alice has qubit Lent of single-pair purification is conserved on average not
and Trent has qubits 2 and 3, while Bob has qubit 4. Initially 1-25n1y for the resulting states, but also for the eigenstates of
and 3-4 are entangled. Trent carries out a joint measurement on 2'1?he measurement. On the other hand, in the scheme where no

and as a result, 1-4 become entangled. Their state is known by Trepﬁaximally entangled states are included, this quantityois
from the measurement result. conserved '

tangledstateshave been extensively studied, e.g., from the ThiS paper is organized as follows. In Sec. Il we revise

point of view of application for quantum teleportation SOMe of the properties of the twq—qub|t Bell basis. In _Sep. Il

[8-13, quantum key distributio14], and entanglement the search fora_spemal _nonmaX|maIIy entangled bas!s is per-

swapping[9,12]. Considering the whole basis on the otherformed. and an inequality for the entanglement_ Qf its ele-

hand implies thaall outcomes of a von Neumann measure-ments is found._ln Sec. Iy the _nearly optlmal purlflcatlon of

ment are taken into account. entanglement via swapping is introduced, involving four qu-
A typical application in which the use of nonmaximally bits and a speciglly _chosen nonma>_<ima|ly_entangle_d basis. In

entangled bases can be profitable is entanglement purific2eC- V: the application of the special basis found in Sec. Il

tion via entanglement swapping, a way of concentrating enfor purification via swapping is examined. It is shown that

tanglement via local operatiorfid5] introduced by Boset  this basis can be also used in a similar, though not optimal,

al. [16]. In this procedure, Trent shares one partially en-Scenario. More_o_ver,_ there is a qualitative difference between

tangled pair with Alice and one with Bolsee Fig. 1 Then, the optimal punﬂcatlon and th_ls latter one. In Sec. VI results

as in the case of entanglement swapping, he carries out a B&[€ Summarized and conclusions are drawn.

measurement on his systems. With some probability, the sys-

tems at Alice and Bob are left in a maximally entangled Il. A CLOSER LOOK AT THE BELL BASIS

state, the identity of which is determined by the measure-

ment result. In Ref[16] it is shown that the success prob- ~ Consider a system of two qubits described By,

ability depends on thentanglement of single pair purifica- © H2, Where the two-dimensional Hilbert spacks and

tion, which is a kind of entanglement measure: the maximunflescribe the first and second qubits, respectively. If one were

probability of obtaining a Bell state by local operations andto choose an arbitrary entangled staté4none first may fix

classical communication from a single partially entangled@n orthonormal basi$ONB) ([a);,[b);) on H; and another

pair originally in a pure statfl7]. This quantity is found to  (|&)2,|b),) on H,. Then the entangled state reads

be conserved on average by the protocol: its ensemble aver- - -

age over the resulting states is the same as its value for the [Wenp = Vpala): ® @), + Vppb)y @ D), (1)

initial state. By applying local unitary transformations with

ancillary qubits, the procedure can be made optimal in thavherep,,pp € 10,1, pa+p,=1. This is the Schmidt form of

sense that the possibly resulting nonmaximally entangle@n entangled state; any entangled state can be written so. The

states are transformed into maximally entangled ones witistate is maximally entangled fif,=p,. It is important to note

the maximum available probabilify18,19. that in the case of two qubits, the Schmidt decomposition of
Though the possibility of using a nonmaximally entangleda nonmaximally entangled state is unique up to a possible

measurement in this protocol was to some extent discussg@definition of|a); and|a), (or |b); and|b),) by multiplying

in Ref.[9], some physically interesting details are still to be them with an opposite phase facf@1]. In what follows we

revealed. We show here for the case of four qubits that, invill omit the symbols %" from tensor products and use the

some cases, by choosing a suitable nonmaximally entangleghort notatiorja); ® [b),=|ab).

basis a close-to-optimal purification of entanglement via In order to construct an ONB ofY, consisting of maxi-

swapping can be achieved in one step. mally entangled states, one might choose first the computa-
Recently it has been reported by Senal. [20] that a  tional basis(|0),/1)) on each subspace. Thus we obtain the

certain superadditivity of nonclassicality can be observed ifirst basis element

multipartite entanglement swapping when Werner states are

initially shared. In cert_ain cases, even though initial!y none |<I>(+)>: é(|00> +]12). )

of the shared states violate local realism, the resulting state V2

does so indeed. Somewhat in the same spirit, we will present

a scenario of purification of entanglement swapping for quOne may then chose|t) instead of|1) on one of the sub-

bits, where theonly maximally entangled state “involved” is spaces to obtain the second basis vector
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1 bits, the maybe most prevalently used measure of entangle-
|‘1’(_)>:T§(|00>—|11>)- (3 ment is theconcurrenceintroduced by Hill and Wootters
v [22]. Having the two-qubit system in the state described by
and finally, interchangingp) and|1) in H, we complete the the density matrix, the concurrence is calculated as
basis by the vectors

C=max0,\; =Xy =Az=\y), (6)
[ w®)y = %(|01}i |10)). (4)  where the\’s are the eigenvalues of the matrix
V2 N ~ A N
F=\\p(ay ® ay)p (ay ® ay)\p (7)

Note, however, that the so-defined Bell basis divitesmto
two orthogonal subspaces, 16, spanned by00), |11) and in decreasing order. The asterisk stands for complex conju-
Hy spanned by01), [10). This separation is mainly due to gatipn of the elements of the matrix in the computational
the fact that the Schmidt decomposition of tilestates and ~ basis.
that of thed states are orthogonal in the sense that all the In case of pure bipartite statg¥), the typical measure of
constituting vectors of one of the decompositions are orentanglement is thentropy of entanglement
tholgonal to all thqse in the otr_\er. . E([Y) = - tr(o logy ), (8)

n many studies concerning partially entangled pure
states, the maximal entanglement is “deteriorated” by keepwhereo is the reduced density matrix describing one of the
ing the same Schmidt decomposition as that of the Bell basisubsystems. Considering qubits, this can be expressed with
and altering the coefficients. Though in arguments related teither of the eigenvalues and 1« of o
asinglenonmaximally entangled state one might perform all _ _
calculations in the respective Schmidt basis, if a set of non- E(¥)) =h(x) = - klog; k= (1 = w)logy(1 = k), (9)
maximally entangled states—e.@,whole ONB—is taken where we have introduceld, the binary entropy function.
into account, this cannot be done anymore. Thus an ONB dfxploiting the fact that tr=1 we have, for one of the ei-
the form genvalues,

Col00) + C4l11), Cyl00) + CL11), _1+\1-4deto

K > (10

G0+ CJ10),  Cyjon) + C3l10) ® According to the result of Hill and Woottef®2], however,
(whereC,Cj+C;C;=0 andC,C;+C,C,=0) is not the most the entropy of entanglement can be expressed using the con-
general one. And though, as we shall see in Sec. IV, such eurrenceC as

basis can be useful in some cases, in Sec. V we will show

!,—2
that more general bases may behave in a qualitatively differ- E(lw)) = h( 1+y1-C ) (11)
ent way. 2 '
Comparing Egs(9)—(11) we find that
. E BASI
SIS C(|W)) = 4 deto, (12)

We now consider the problem of finding a basis with cer-

tain predefined entanglement properties. Particularly, let u ) .
chose a product state—e.d1L). (It can be shown that calculated with the help of Eq12) for pure two-qubit states,

choosing another basis element yields essentially the sarﬁéanted n Ref[?_]. VY]? shall lfjslf th|s squargdd concurrence
results) We require the remaining three basis vectors to béd concurrence itself in our following considerations.

equally entangled. They need not be product states, but they COnSider now two qubits in a mixed stateagain. This
obviously cannot be all maximally entangled. The questio tate can be expressed as a convex combination of pure-state

arises then, what is the maximal entanglement of the remairENSembles in many ways: there exist many fatss)} such

ing three vectors? Notice that the presence of the produé{“at
vector and the requirement of equal entanglement of the re-
maining statesa priori exclude the choice of the Schmidt
decompositions similar to the Bell basis. This makes our
otherwisead hoc assumption of having three equally en- One may define the quantigoncurrence of assistan¢@3]
tangled states physically interesting: the so-constructed bas&s the maximum of average concurrence of such ensembles:

should be of significantly different character than that in Eq.
(5). Cassistp) = {m‘%z PiC(h). (14
P& i

gwe square of the concurrender tangle), can be very easily

P=2 pil i)l (13

This can be interpreted as the maximal average of the con-
currence of the states resulting after an optimal measurement
After the above formulation of our problem, we briefly on an ancillary system, so that the state of the two original

describe two entanglement measures that we shall use in thigibits and the ancilla realize a purification@fThe average
consideration. For arbitrarieven mixedl states of two qu- is understood as an ensemble average over the measurement

A. Entanglement measures
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outcomes(A similar quantity defined using entropy of en-  We have to find an ONB in the orthogonal complement
tanglement intanglement of assistanf24].) Concurrence space of|11), consisting of states with equal concurrence.
of assistance is also a very informative quantity for mixedExpanding a general state on the computational basis,

two-qubit states. One of its advantages is that similarly to
concurrence, it can be calculated very simply: it is the trace [W) = Col00) + C,[02) + C[10) + C4[1D), (20)

of the matrixF in Eq. (7); thus, with theN’s of Egs.(6) it  the square of concurrence in H42) reads
reads x
. CA(W) = 4[|Cy|?|C4)? + |C4|?|CyJ* - 2 REC,C,C,Co)].
CassiP) = 2 M. (15) @D
k=1

The orthogonal complement in argument is spanned by
Now we are in the position of finding an ONB in the {/00), [0D), [10)}. We will use the notation

orthogonal complement space [afl), consisting of equally C
entangled vectors. We will follow two routes. First, we will 0
provide the maximum value of the available concurrence |W) =Co|00) + C4[01) + C,[10) » W' =| C; (22
from a shorter consideration. Second, we shall give an ex- C,

plicit construction of the basis, which will confirm the con-

currence limit given before. for the C° representation of the vectors in this linear sub

space. A general vector of unit absolute value in this sub-
space reads, up to an arbitrary phase factor,
B. Upper bound for the concurrence

Consider the complete mixture of the basis vecto, V1-x

|01), and|10): x 1 :
\/ St X2 - (i
Vakene)=| V2727 T | (29
X_ 15—,
. (16) Vo T 5= Coe?

whereC3 € [0, 1] andx € [Cy, 1]. Note that the multiplication
f each elemenbf the basis with different arbitrary phase
actors affects neither the orthogonality nor the entanglement
of the basis. We have chosen the seemingly complicated pa-
@ 2 rametrization of Eq(23) as, in this case,
Cassis(P )= 5 (17) ) 5
CA(Wez(x) = CF; (24)

Consider now that we have three equally entangled basis . . .
vectors|=M), |=@), and|Z®) spanning the same subspace,Cf' Eq. (21). The signs in the second two coordinates can be
with the maximal possible concurrencg. Obviously the —cnosen atwill.

- We have to find three mutually orthogonal vectors of the
completeness relation . .

form in Eq. (23) with the same concurrence-square.

=
O O -
o O
o+ O O
o O O O

o

0

Direct calculation of concurrence of assistance according t
Eq. (15) gives

3
1
B =N 150y =z0 . .
p= 3k§—‘1 [EHED (18) 1. Conjugate cross product and its concurrence

We define a way to construct orthogonal complement of
€wo linearly independent vectors it similar to the real
three-dimensional case.

Consider two vectors in:

should hold. But according to the definition of concurrenc
of assistance in Eq14),

2 1
Cassisip®) = === X 3XC 19
assisfP") 373 0 (19 Ay B,
should hold, which gives, for the maximum available con- A=[A;|, B=|By]|. (25
currenceCy=2/3. A, B,

Thus we have found the upper bound for the concurrence, . o )
but the actual basis realizing this limit is still to be con- Ve define the “conjugate cross product” of these vectors to

structed. be a vectorC so that
2

C. Construction of the basis (C)=(A ;B)i => sijkA;B;, (26)

In the following we will adopt a constructive approach to b=

the problem. We will not exploit the result in Sec. Ill B, as it whereg;j, is the Levi-Civita symbol for indice¢0, 1, 2. A
will be found from this consideration too, though less el-straightforward calculation shows that the so-defii@ds
egantly. orthogonal to bottA andB. [To achieve this, both complex
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conjugations in Eq(26) are needed.Moreover, if the two (a) o
vectors are orthogonal unit vectopgre use the Euclidean N @
norm, |Al|=||B||=1 and (A,B)=0], then C is also of unit \
norm: ||C||=1. The conjugate cross product is conjugate bi- IEQEPING]
linear. C——
A useful lemma can be stated regarding the entanglement o 1B | Eo”|
of the conjugate cross product vector. a2
Lemma 1LetA, B e (3 andC=AXB. Concurrence and, BV [E)]
thus, entanglement & depend on the coordinates Afand
B only through their moduli and the expressiohsB,, AB;, (b) G2 TT@
andA,B; only. ! e
Direct calculation shows that \EMNEP|-._/ f',|E{1)||E{2)|
CA(C) = 4(Ao"[Bol? + [Aof?B,f* - 2 REAGBRAB, ) P
o
X (| Aof2B1[ +Af2Bol? ~ 2 REABLABLD), B0l o

(27) FIG. 2. Triangles on the complex plane, for the determination of
from which the statement of lemma 1 follows. the angles in Eq(32) so that(E®W,E®?)=0 holds.(a) shows the
) ) three complex numbers arising in the scalar product in argument,
2. Construction of the basis while (b) is equivalent tqa) but the three vectors are plotted so that

We construct now the basis with three equally entangledhe desired triangle is visible.
states. Suppose that the required concurrencé€yisWe
choose two arbitrary vectors and consider them together witkp lemma 1, setting nonzero arguments for the second two
their conjugate cross product as an ONB. Let us chose coordinates would alter neither the concurrence of the chosen
e[Co,1]. Let our first basis vector be a generic vector E®@ nor that of

—_—

1-x E@=EDXE®?, (31)
/X s . ) _

E® = Ei VX2 = Ceeln (28) In this way we have four free parametepsy,a;, a,) in-
X

stead of six, which is a relevant simplification.
Ll 5= The remaining requirement is that the first two vectors
Vo + oW ~Coe ™ should be orthogonalE™,E@)=0. This can be assured by
appropriately choosing; and as.
[cf. Eq. (23)]. Let us choose g [Co,l]. as well. One may To have (E?,E@)=0, the complex numberE((Jl)*Eff),
now intend to choose a second generic vector E(11>*E(12>, andE(zl)*E(zz) should form a triangle on the complex
1-y plane(see Fig. 2 An appropriate choice is

, D12|E@)2 4 |EDW12|EQ@)2 — |EW|2|E@)]2
2 Xi y/yz—C(z)e'Bl a’1:7T—aI’CCO<|EO | |E0 | 1|El |2‘E11| |2E2 | |E2 | >,
E@=| V2 . (29 25" EPIEPIED)

\l% x \,'yZ—CSeiﬁl

However, from lemma 1 it follows that the concurrence of
the conjugate cross product of the two vectors depends only (32

or(11)the dlﬁ?Zr)gnce of the complex phaseg of the Coorqmates 0Ithis follows from elementary geometry: application of the
E'"Y andE'Y . The same holds for their orthogonality and ysine |aw to the triangle in Fig.(B). [Note that -, and

NI NI

P

= N

N

|E81)|2|E82)|2 _ |E(11)|2\E(12)|2+ |E(21)|2|E(22)|2)

a, =T+ arcco{
l=yl=Rl=lli=

concurrence as well. Thus we may choose insteal ®f, —a, would be also an appropriate choice for the complex
without the loss of generality our second basis vector to bghases. However, according to H&7), only the cosine of
real: the alphas is relevant; thus, we do not lose generality here.
1y Equations (32) are of course valid only if|ES||EY),
EPE?], and [EY|EY)| satisfy the triangle equations
NN EVIER |+ EV|ED = [EX|EP( #] #K. Otherwise no
E@= 22 ° 1 (30)  solution exists.
\/3,_17m Thus, given the required concurrenggand two numbers
5T oW -Co x,y € [Co, 1], we can construct vectos, E@ using Egs.

(28), (30), and(32), if they exist. From these we can calcu-
(This corresponds to the mere redefinition@f—a;—B; in  late E®® according to Eq(31) and evaluate its concurrence
the first basis vectde?, yielding an equivalent choiceDue  according to Eq(27). We are looking for the casé(E®)
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FIG. 3. Concurrence dE® plotted againsk andy, for certain representative values of concurrefigef the first two vectorgg%2).
All of the displayed quantities are dimensionless. The left column of figures corresponds to the choice of the same siga8naag$30),
while the right column is for the case of different signs. Rows of figures correspo@g=tb/3,2/3,3/4 respectively. In the first row,
surfaces are opaque, while in the second two they are transparent. The horizontal planes in the figures regts&hittiglimit: we are
searching for the point of their intersection with the function graph; here, all the three vectors are equally entandglgd.Z#8rthis is a
curve turning into a single point &=2/3. ForCy>2/3, the intersection is empty. Zero concurrence is assigned to those points where there
is no solution. This is the reason of the abrupt change to zero for smaller valuesarmd y in the first row. We have verified the
above-described behavior of these functions by making a computer animatioGgyéththe “time variable.”

=Cp. Unfortunately, the equations are trigonometrical, and itsigns, the behavior of the functions is similar. One may ob-
is hard to draw further analytical consequences. We magerve that the figures are symmetricalxirandy and that
however numerically evaluate and pt&tE®)(x,y). Thisis  concurrence is a decreasing function of batandy. From
done in Fig. 3. this it follows that the maximal concurrencdE®)=¢, is

A distinction should be made according to the selection ofchieved ax=y.
signs in Egs(28) and (30). There are four possibilities of  For small values of, there is a nonzero set of points

choosing the signs, but the value 66E®)(x,y) depends whereC(E®)=C,, IncreasingCo, at Co=2 we have just one

only on whether we choose the same or different sign in Egs.; :
(28) and (30). That is, if we use the upper signs in both single point where the three concurrences are eq@al@nd

vectors, we obtain the sandéE®)(x,y) values as in the case th's_ IS x:y::%_. This is truezfor b?st)h of the meq_uwalent s
of using the lower sign in both vectors. If we use the upper if€ctions of signs. FoCo>3, C(E™)<Co holds in case of
one of them and the lower in the other, we obtain anothePOth sign selections. The result is in accordance with the
value. Thus we have to consider two inequivalent possibiliimaximum value of the concurrence expected according to
ties: equal signs and different signs. Sec. llI B.

To facilitate the comparison between the figures we have The basis with the maximal achievable entanglement is
used the same scaling of the axes for@lvalues. In the
[Co, 1] X[Cy,1] domain where the function can be defined at ‘:(1)> _
all, concurrence of value 0 is assigned to the points where -
Egs.(32) cannot be satisfied due to the violation of triangle
inequality.

Though the numerical values are different for the case |:(2)>:
choosing the same signs than those when we choose different -

|-

(100) +[01) +[10)),

\

w

7\"‘

(|00> + ei(2'n'/3)|01> + e—i(277/3)|10>),

\

w
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= 1. i - P.=P,+PytPy
[E®) =-=(i[00) + &™"¥|01) +&7>7|10)), E,, original st -
V3 08+ \ Egdthstate — 1
| C, 4th state
2@y =12). (33 06 ‘
(Here, for simplicity we have reordered the vectors so that 0.4t
the real one is the first.
We can conclude that the maximal concurrence achiev- 02t

able by supplementing a product state to a basis by equally ~
entangled vectors |§ which has been shown in two inde- 05 062 04 06 08 1 12 2
pendent ways. This is realized by the basis in B8), which o
will be referred to as th& basisin what follows. Note that
the entangled elements of t&e basis are “equal-weight su- FIG. 4. Probabilities and entanglement measures relevant in the
perpositions” of the three product states. nearly optimal swapping: the joint probabiliBg of obtaining either

of the first three measurement resufthat is, a maximally en-

tangled swapped stateentanglement of single pair purificatid

of the original state and the possibly resulting nonmaximally en-

tangled state, and the concurrence of the latter, as a function of
After the purely kinematical considerations of the previ- parameteig of the original state in E¢(34). Note that atp=m/4,

ous section, we continue with a seemingly different problemthe effective success probability is 1 as the swapped state corre-

Consider the usual entanglement swapping scenario, déponding to the fourth measurement outcome is maximally en-

picted in Fig. 1. Suppose that qubits 1-2 and 3-4, which ardangled. All of the plotted quantities are dimensionless.

initially entangled and shared by Alice and Trent and by Bob

and Trent, respectively, are in the nonmaximally entangled

IV. NEARLY OPTIMAL ENTANGLEMENT PURIFICATION
VIA SWAPPING IN ONE STEP

@_" 4co%4¢) + cog8¢) + 3

B y—|p™ =
state |\P14op> |(I) ) Popt 16 cog4d) + 48 )
|\P120pt> = |\I’34opt> = COS¢|00> +sin ¢|11>, (34) 1
where ¢ is real. We investigate only this “symmetric” sce- |\If(1‘20pp = ﬁ[cos{@ﬂow - sin(¢)41D)],
nario, where the shared pairs are in the same pure state VCOS¢® + sin ¢
throughout this paper. (4 _ Cod8¢h) + 28 cog4¢p) + 35
Trent, aware of the value @b, has a measuring apparatus Popt= 16 cosad) + 48 (36
realizing a nondegenerate measurement, with eigenstates ¢
constituting the followingnonmaximally entangled basis In the case of the first three measurement outcomes, a Bell

state, thus a maximally entangled state is obtained. The in-
formation on which of the possible states is obtained is
known by Trent from the measurement result.

|@(1)> - |\p(+)>, |@(2)> - |\p(—)>,

QM) = ; 200) + 2117, The probability of obtaining such a state—i.e., the success
107 Vcod ¢)* + si aLsin¢) 100) + cos#)11)] probability of the entanglement purification—is
)" + sin(¢)
w 1 , o Ps= p&p)t"' pgzp)t"' DE,?E,)F 1- Dﬁfgp (37)
|0%) = \,f'CO5(¢)4+SM¢)4[C°S(¢) |00) - sin(¢)*|11)]. which is plotted in Fig. 4. In order to see whether it is an

optimal probability, one has to calculate thetanglement of
(35) single-pair purification an entanglement measure which is

(Note that the third and fourth states are similar to thoseequal to the square of the modulus of the Schmidt coefficient
obtained in the case of a Bell measurenfeftEqgs.(2c) and  ©f smaller magnitudgl7], using the notation used in E€L):
(2d) of Ref. [16]], except that their coordinates are inter- _ ;

After Trent carries out the measurement on qubits 2 and 3This is the maximum probability of obtaining a Bell state by
in case of three of the possible measurement outcomes, gpurifying a single entangled pair originally in the given pure

bits 1 and 4 are left in maximally entangled states. In thestate. sinc¢q/(l‘20m> is in the Schmidt form in Eq(36) and so

fourth case, a nonmaximally entangled state is obtained. Thig the initial state|qf120pt> in Eq. (34), this can be easily

resulting states with the respective probabilities are calculated. The quantitieBy(|W;,0,) and Es(|‘l’(1‘20p ) are
1 also plotted in Fig. 4, accompanied by the concurrence of the
|q}(l%l?op> =[w™), p&fﬁ 2 sin(2¢)?, latter.

The figure shows that for moderate values of entangle-
ment (small and high values o), the joint success prob-
|‘I'(2) )= o) p@ = Esin(2¢)2 ability mainly coincides with its largest possible value, and
140p ToToPt g ’ the fourth state contains nearly zero entanglement. Thus in
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such cases, mainly optimal entanglement distillation is TABLE I. Vectors of the Schmidt decompositi¢of Eq. (1)] of
achieved in one step. For more entangled initial stétiles  the entangled element basis and that of the state which can be
middle of the figurg the success probability is below the distilled with them. Vectors are represented in the computational
optimal value, but the possibly obtained nonmaximally en-basis.  A=(1+V5)/(y2V5+y5)~0.8507,  B=2/(V2V5+5)
tangled state is more entangled, as reflected by the value 6f0-5257.

the two plotted entanglement measures. Therefore this

scheme can be regarded as optimal especially in the case of Vector for coeff. Vector for coeff.
moderately entangled initial states. Note that for a maximally V‘Jp—:g V6Y5+2\5 Ep—:} V6Y5-2V5
entangled initial statep=m/4 the probability of the first 73| \5+5 173l 55
three events is 3/4, but the success probability is 1 since thetate ~0.9342 ~0.3568

fourth resulting state is maximally entangled.

An observation can be made regarding the average of en=.) Al (A B\ [-B
. . . h . " —~1
tanglement of single pair purification. As is shown in Ref. B ® B A ® A)
[16] the average OE of the resulting states for all possible
events is preserved in the original entanglement p_urificati_or‘lE» A A B -B
via a swapping protocol. It can be verified that it is true in Bei(2ld) ® Bd@3) A3 ® Ad2m3)

our protocol too:

4 ‘EB> Ae—i(2ﬂ'/3) iAei(Z?T/S) Bé(‘n’/S) iBei(Zﬂ'/S)
Ed[15000) = S pRE(WX 39 (B®'B)(A)(—'A)
X( 120p9)— Popt X 140p>)- (39 I !
k=1
Moreover ) B ® B (_A)®(A)
' Al T\A B -B
4
Eo[W120p) = 2 PIOELOY)) (40)
k=1
. . . 1 4
also holds; that is, the average is preserved for the eigen- |\If(1‘25):5(|00>+ 01) +|10) +|1), p¥ = 5 (42
states of the measurement—thaitasTrent’s side tooThis is
not the case when we use the Bell basis. Here|W{%.) and|¥7_) are two maximally entangled states,

Note that the following fact may be also inferred from theWhiCh are not orthogonal.\lf(lﬂ)E) is a state which is equally

results presented in this section. In purification via entangle- ntangled as the initial staf@ ™), aﬂd|\1’(1‘2:> is obviously

ment swapping, a nonmaximally entangled pure state i X . = o(in)
. ; . . a product state. Thus using t& basis, staté¥!") can be
turned into a maximally entangled state if the correspondin (J;lstilled with probability 4/27=0.1481. This is done when

eigenstate of the measurement that was carried out hasmeasurement outcomes 2 and 3 are obtained. If the first out-
Schmidt decomposition orthogonal to that of the initial state. '

. - o . -‘come is obtained, we are left with a state less entangled than
Orthogonality of the Schmidt decompositions is meant as e original one, which can be regarded as a enta?mglement
the case of the Bell states; cf. Sec. Il. '

swapping. The probability for this event is 11/2D.4074.
V. ENTANGLEMENT PURIFICATION VIATHE = BASIS If the fourth measurement outcome occurs, entanglement is
) ) ] ) _completely destroyed; the probability for this is 4/9
_Con5|der now the same scenario as in the previous sectiod g 4444 Except for the possibly resulting maximally en-
(Fig. 1), but where qubits 1-2 and 3-4 are assumed to be botfyngled states, all states occurring in this protocol are par-
in the state tially entangled.
_ 1 There is another important difference between the appli-
[wm) = —=(|01) +]10) +[11)). (41)  cation of theE basis and the optimal purification described
V3 in the previous section. This can be understood by observing

The nondegenerate measurement carried out by Trent wilhe Schmidt decomposition of te basis and¥™), which
now project onto théZ basis in Eq(33). is to be found in Table I. Namely, all the entangled states in

The resulting states of qubits 1-4 and the correspondin%‘e basis and the state to be purified possess different
probabilities are chmidt decompositions. Though the coefficients are the
same, the vectors are different. The orthogonality present in
11 the case of the optimal purification or the Bell basis is also
27’ missing here. This clearly shows that tEebasis is essen-
tially different from those of form in Eq(5)
1 . . 2 Knowledge of the Schmidt decompositions also enables
=01 + €™10)), p&=_—, us to evaluate entanglement of single-pair purification. In the
V2 27 case of the three nonmaximally entangled basis states, its
L ) value is =0.2546. Thus our protocol, providing a success
@)\ _ i3 (/3 3 _ & probability of 0.1481, is definitely not optimal. In spite of
Wiez) = \;’E(e< 01 +e™710), == 27’ this fact, as it is conceptionally different from the optimal

1
il :T1(|01>+|10>+3|11>)’ pd =
\J

2
\%7=
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one described in the previous section, it is indeed physicallyor entanglement of formatign This can be a subject of
interesting. further research.

Regarding conservation of entanglement of single-pair We have shown that the protocol of entanglement purifi-
purification on average in the sense as in E89) and(40), cation via entanglement swapping can be carried out with a
direct calculation give$Ey=0.1549 for the resulting states rather good efficiency in one step, without any ancillas, with
and(E¢=0.1415 for the states of the basis. Both values aré Measurement projecting onto a suitable chosen basis. The
smaller than the value 0.2546 of the initial state: entanglepmtOCOI hgs _b_een found very close to op_tlmal for moderately
ment of single-pair purification is decreased on average, jgntangled initial states anq clos_;e_ to_opt_lmal otherwise. The
contrast with the other schemes of entanglement purificatioﬁ\ntanglement of single-pair pur|f|7cat|_on is preserved on av-
via swapping where this quantity is preserved. This iIIus-gtr{‘;’:t(‘gee both on the measurement's side and for the resulting

trates the different nature of the basis. .
e It has been shown that th€ basis can be used for a

similar purpose, though with less than the optimal efficiency.
However, this case is found to be qualitatively inequivalent
to the optimal protocol, and it is pointed out by the exami-
We have studied nonmaximally entangled bases of twmation of the Schmidt decomposition of tRebasis that it is
qubits and their application in purification of entanglement inof different nature than the usually considered ones. Namely,
entanglement swapping. As illustrated by the known considall the involved states have different and not orthogonal
erations of unextendible product bases, an orthonormal bas&chmidt decompositions. Another interesting physical fea-
with arbitrary predefined entanglement of its elements doeture of the scenario is that maximally entangled states arise
not exist. We have searched for certain limitations on thérom nonmaximally entangled ones only, after a single mea-
entanglement of the basis elements. surement. In contrast with the other known purification via
We have searched for bases in which one of the states isemtanglement swapping schemes, here entanglement of
product and the other three are equally entanglétl.the  single-pair purification is not preserved on average on either
similarly formulated questions, with different number of side; it is decreased instead.
product versus equally entangled states are trjwae have It is surprising indeed that even in the “world” of two
found that the maximal concurren¢entanglementof the  qubits, new enigmas can be disclosed. In spite of the exis-
three equally entangled basis elements can be 2/3. This istance of the mathematical classification of entangling sym-
quantitative inequality limiting the entanglement of the non-plectic transformations on Galois quantum systems, the gen-
maximally entangled basis under the assumption set. An a@ral properties and possible applications of nonmaximally
tual basis satisfying it is th& basis is that in Eq(33). entangled states are not fully exhausted. We believe that the
The construction of the basis in one of the presented deriresults here illustrate this statement appropriately and might
vations of this inequality relies on the “conjugate cross prod-motivate further studies of the topic.
uct,” whose advantageous properties enabled us to reduce the
number of relevant parameters. It seems to be rather difficult ACKNOWLEDGMENTS
to formulate similar statements for different cases in the This work was supported by the European Union projects
same constructive way. If one were to solve the complemenQGATES and CONQUEST and by the Slovak Academy of
tary problem of searching a basis with one maximally andSciences via the project CE-PI. M.K. acknowledges the sup-
three equally entangled states, for instance, the number gort of National Scientific Research Fund of Hungary
relevant parameters cannot be so apparently reduced. ThUSTKA) under Contract Nos. T043287 and T034484. The
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