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Four basis vectors of the Hilbert space of two qubits have the property that if three of them are product
states, then the fourth one has to be a product state as well. We address the following situation: Consider a set
of orthogonal vectors, each exhibiting a certain degree of entanglement. What is the bound on entanglement of
the rest of the basis vectors to form a complete orthonormal basis? Specifically, we present an orthonormal
basis, theJ basis in the Hilbert space of two qubits, with one product state and three equally entangled states.
The maximum of the so available entanglement is quantified. A close-to-optimal protocol is presented for
entanglement purification via entanglement swapping of two-qubit states. It is based on a suitably chosen
nonmaximally entangled basis and carried out in a single step without any ancillas. A similar application of the
J basis is examined. In this latter case, all the involved entangled states have different and nonorthogonal
Schmidt decompositions and, except for some possibly resulting states, none of them are maximally entangled.
Entanglement of single pair purification is not conserved on average in this case.
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I. INTRODUCTION

Measurements with entangled eigenstates are clearly a
standard part of most quantum information processingsQIPd
protocols. The Bell measurement is the key ingredient of,
e.g., quantum teleportationf1g and entanglement swapping
f2g. Furthermoremaximally entangled basesthemselves are
essential for optimal quantum information distributorsf3g.

Though we frequently consider “a maximally entangled
basis,” less attention has been paid to nonmaximally en-
tangled bases: a set of nonmaximally entangled states form-
ing an orthonormal basis spanning the Hilbert space of the
multipartite system.

Measurements have been very frequently considered as
tools for concentrating entanglement to a subsystem of a
multipartite system, giving rise to the concept of entangle-
ment of assistance, which we will find useful in our present
considerations too. However, we investigate a complemen-
tary question: we are primarily interested in the entangle-
ment of the basis vectors themselves, though some of our
considerations relate to the entanglement of the complemen-
tary system too.

Studying entangled bases can be regarded as studying ca-
nonical transformations and, thus, real symplectic transfor-
mationsf4g. According to the Stone–von Neumann theorem,
this means also studying joint unitary transformations, which
indeed transform bases into each other. For Galois quantum
systemssthose with Hilbert spaces of prime-power dimen-

siond, this aspect has been studied in detail by Vourdasf5g,
who has classified their unitary symplectic transforms into
local and entangling ones.

There are certainly limitations on the entanglement of the
basis vectors. This gives rise to the concept of unextendible
product basessUPB’sd f6g: an incomplete orthonormal basis
formed by product state vectors, which cannot be supple-
mented with additional product-state elements. For instance,
in the case of two qubits one can specify such a set of five
orthogonal state vectors that it is impossible to find any ad-
ditional product states orthogonal to these. UPB’s became
the subject of a considerable literature as they have remark-
able properties which have implication for the theory of
bound entangled states and local distinguishability.

In the case of two qubits, having three product states in a
basis implies that the fourth one is also a product. The ques-
tion may arise what happens if we do not require all the basis
elements to be maximally entangled or product states. What
quantitative statements can be formed concerning entangle-
ment of the basis elements? The problem is similar to the
question of distributed entanglement in multipartite systems,
which cannot be arbitrarily entangled. In their case, inequali-
ties limiting the pairwise entanglement of the parties can be
derived f7g. One of the main intentions of this paper is to
show an example of a similar quantitative limitation for en-
tangled bases in the case of two qubits. A special partially
entangled basis will be also introduced as a part of this con-
sideration, which is of rater different nature from the usually
considered ones. This basis will find its actual application in
a protocol in the second part of this paper.

Besides the relevance of nonmaximally entangled bases
from the kinematical point of view, the actual use of them in
QIP protocols is of particular interest. Nonmaximally en-
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tangledstateshave been extensively studied, e.g., from the
point of view of application for quantum teleportation
f8–13g, quantum key distributionf14g, and entanglement
swappingf9,12g. Considering the whole basis on the other
hand implies thatall outcomes of a von Neumann measure-
ment are taken into account.

A typical application in which the use of nonmaximally
entangled bases can be profitable is entanglement purifica-
tion via entanglement swapping, a way of concentrating en-
tanglement via local operationsf15g introduced by Boseet
al. f16g. In this procedure, Trent shares one partially en-
tangled pair with Alice and one with Bobssee Fig. 1d. Then,
as in the case of entanglement swapping, he carries out a Bell
measurement on his systems. With some probability, the sys-
tems at Alice and Bob are left in a maximally entangled
state, the identity of which is determined by the measure-
ment result. In Ref.f16g it is shown that the success prob-
ability depends on theentanglement of single pair purifica-
tion, which is a kind of entanglement measure: the maximum
probability of obtaining a Bell state by local operations and
classical communication from a single partially entangled
pair originally in a pure statef17g. This quantity is found to
be conserved on average by the protocol: its ensemble aver-
age over the resulting states is the same as its value for the
initial state. By applying local unitary transformations with
ancillary qubits, the procedure can be made optimal in the
sense that the possibly resulting nonmaximally entangled
states are transformed into maximally entangled ones with
the maximum available probabilityf18,19g.

Though the possibility of using a nonmaximally entangled
measurement in this protocol was to some extent discussed
in Ref. f9g, some physically interesting details are still to be
revealed. We show here for the case of four qubits that, in
some cases, by choosing a suitable nonmaximally entangled
basis a close-to-optimal purification of entanglement via
swapping can be achieved in one step.

Recently it has been reported by Senet al. f20g that a
certain superadditivity of nonclassicality can be observed in
multipartite entanglement swapping when Werner states are
initially shared. In certain cases, even though initially none
of the shared states violate local realism, the resulting state
does so indeed. Somewhat in the same spirit, we will present
a scenario of purification of entanglement swapping for qu-
bits, where theonly maximally entangled state “involved” is

the resulting one. All the other states—the shared states and
the eigenstates of the measurement—are nonmaximally en-
tangled. It is based upon the special nonmaximally entangled
basis which we introduce in the framework of the the kine-
matical considerations in the first part of the paper.

Regarding the conservation of entanglement of single pair
purification described in Ref.f16g for the case of Bell mea-
surements, we find that in our schemes using nonmaximally
entangled states, it shows a somewhat different behavior.
Namely, for the nearly optimal case presented here, entangle-
ment of single-pair purification is conserved on average not
only for the resulting states, but also for the eigenstates of
the measurement. On the other hand, in the scheme where no
maximally entangled states are included, this quantity isnot
conserved.

This paper is organized as follows. In Sec. II we revise
some of the properties of the two-qubit Bell basis. In Sec. III
the search for a special nonmaximally entangled basis is per-
formed and an inequality for the entanglement of its ele-
ments is found. In Sec. IV the nearly optimal purification of
entanglement via swapping is introduced, involving four qu-
bits and a specially chosen nonmaximally entangled basis. In
Sec. V, the application of the special basis found in Sec. III
for purification via swapping is examined. It is shown that
this basis can be also used in a similar, though not optimal,
scenario. Moreover, there is a qualitative difference between
the optimal purification and this latter one. In Sec. VI results
are summarized and conclusions are drawn.

II. A CLOSER LOOK AT THE BELL BASIS

Consider a system of two qubits described byH=H1
^ H2, where the two-dimensional Hilbert spacesH1 andH2
describe the first and second qubits, respectively. If one were
to choose an arbitrary entangled state inH, one first may fix
an orthonormal basissONBd sual1, ubl1d on H1 and another
sual2, ubl2d on H2. Then the entangled state reads

uCentl = Îpaual1 ^ ual2 + Îpbubl1 ^ ubl2, s1d

wherepa,pbP g0,1f ,pa+pb=1. This is the Schmidt form of
an entangled state; any entangled state can be written so. The
state is maximally entangled ifpa=pb. It is important to note
that in the case of two qubits, the Schmidt decomposition of
a nonmaximally entangled state is unique up to a possible
redefinition ofual1 and ual2 sor ubl1 and ubl2d by multiplying
them with an opposite phase factorf21g. In what follows we
will omit the symbols “̂ ” from tensor products and use the
short notationual1 ^ ubl2= uabl.

In order to construct an ONB onH, consisting of maxi-
mally entangled states, one might choose first the computa-
tional basissu0l,u1ld on each subspace. Thus we obtain the
first basis element

uFs+dl =
1
Î2

su00l + u11ld. s2d

One may then chose −u1l instead ofu1l on one of the sub-
spaces to obtain the second basis vector

FIG. 1. The entanglement swapping protocol. Alice has qubit 1,
and Trent has qubits 2 and 3, while Bob has qubit 4. Initially 1-2
and 3-4 are entangled. Trent carries out a joint measurement on 2-3,
and as a result, 1-4 become entangled. Their state is known by Trent
from the measurement result.
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uFs−dl =
1
Î2

su00l − u11ld, s3d

and finally, interchangingu0l and u1l in H2 we complete the
basis by the vectors

uCs±dl =
1
Î2

su01l ± u10ld. s4d

Note, however, that the so-defined Bell basis dividesH into
two orthogonal subspaces, toHF spanned byu00l, u11l and
HC spanned byu01l, u10l. This separation is mainly due to
the fact that the Schmidt decomposition of theC states and
that of theF states are orthogonal in the sense that all the
constituting vectors of one of the decompositions are or-
thogonal to all those in the other.

In many studies concerning partially entangled pure
states, the maximal entanglement is “deteriorated” by keep-
ing the same Schmidt decomposition as that of the Bell basis
and altering the coefficients. Though in arguments related to
a singlenonmaximally entangled state one might perform all
calculations in the respective Schmidt basis, if a set of non-
maximally entangled states—e.g.,a whole ONB—is taken
into account, this cannot be done anymore. Thus an ONB of
the form

C0u00l + C3u11l, C08u00l + C38u11l,

C1u01l + C2u10l, C18u01l + C28u10l s5d

swhereC0
*C08+C3

*C38=0 andC1
*C18+C2

*C28=0d is not the most
general one. And though, as we shall see in Sec. IV, such a
basis can be useful in some cases, in Sec. V we will show
that more general bases may behave in a qualitatively differ-
ent way.

III. J BASIS

We now consider the problem of finding a basis with cer-
tain predefined entanglement properties. Particularly, let us
chose a product state—e.g.,u11l. sIt can be shown that
choosing another basis element yields essentially the same
results.d We require the remaining three basis vectors to be
equally entangled. They need not be product states, but they
obviously cannot be all maximally entangled. The question
arises then, what is the maximal entanglement of the remain-
ing three vectors? Notice that the presence of the product
vector and the requirement of equal entanglement of the re-
maining statesa priori exclude the choice of the Schmidt
decompositions similar to the Bell basis. This makes our
otherwisead hoc assumption of having three equally en-
tangled states physically interesting: the so-constructed basis
should be of significantly different character than that in Eq.
s5d.

A. Entanglement measures

After the above formulation of our problem, we briefly
describe two entanglement measures that we shall use in this
consideration. For arbitraryseven mixedd states of two qu-

bits, the maybe most prevalently used measure of entangle-
ment is theconcurrenceintroduced by Hill and Wootters
f22g. Having the two-qubit system in the state described by
the density matrix%, the concurrence is calculated as

C = maxs0,l1 − l2 − l3 − l4d, s6d

where thel’s are the eigenvalues of the matrix

F̂ = ÎÎrsŝy ^ ŝydr*sŝy ^ ŝydÎr s7d

in decreasing order. The asterisk stands for complex conju-
gation of the elements of the matrix in the computational
basis.

In case of pure bipartite statesuCl, the typical measure of
entanglement is theentropy of entanglement:

EsuCld = − trss log2 sd, s8d

wheres is the reduced density matrix describing one of the
subsystems. Considering qubits, this can be expressed with
either of the eigenvaluesk and 1−k of s:

EsuCld = hskd = − k log2 k − s1 − kdlog2s1 − kd, s9d

where we have introducedh, the binary entropy function.
Exploiting the fact that trs=1 we have, for one of the ei-
genvalues,

k =
1 +Î1 − 4 dets

2
. s10d

According to the result of Hill and Woottersf22g, however,
the entropy of entanglement can be expressed using the con-
currenceC as

EsuCld = hS1 +Î1 −C2

2
D . s11d

Comparing Eqs.s9d–s11d we find that

C2suCld = 4 dets, s12d

thesquare of the concurrencesor tangled, can be very easily
calculated with the help of Eq.s12d for pure two-qubit states,
as noted in Ref.f7g. We shall use this squared concurrence
and concurrence itself in our following considerations.

Consider now two qubits in a mixed stater again. This
state can be expressed as a convex combination of pure-state
ensembles in many ways: there exist many setshpi , ufilj such
that

r = o
i

piufilkfiu. s13d

One may define the quantityconcurrence of assistancef23g
as the maximum of average concurrence of such ensembles:

Cassistsrd = max
hpi,ufilj

o
i

piCsfid. s14d

This can be interpreted as the maximal average of the con-
currence of the states resulting after an optimal measurement
on an ancillary system, so that the state of the two original
qubits and the ancilla realize a purification ofr. The average
is understood as an ensemble average over the measurement
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outcomes.sA similar quantity defined using entropy of en-
tanglement isentanglement of assistancef24g.d Concurrence
of assistance is also a very informative quantity for mixed
two-qubit states. One of its advantages is that similarly to
concurrence, it can be calculated very simply: it is the trace

of the matrix F̂ in Eq. s7d; thus, with thel’s of Eqs. s6d it
reads

Cassistsrd = o
k=1

4

lk. s15d

Now we are in the position of finding an ONB in the
orthogonal complement space ofu11l, consisting of equally
entangled vectors. We will follow two routes. First, we will
provide the maximum value of the available concurrence
from a shorter consideration. Second, we shall give an ex-
plicit construction of the basis, which will confirm the con-
currence limit given before.

B. Upper bound for the concurrence

Consider the complete mixture of the basis vectorsu00l,
u01l, and u10l:

rs3d =
1

31
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
2 . s16d

Direct calculation of concurrence of assistance according to
Eq. s15d gives

Cassistsrs3dd =
2

3
. s17d

Consider now that we have three equally entangled basis
vectorsuJs1dl, uJs2dl, anduJs3dl spanning the same subspace,
with the maximal possible concurrenceC0. Obviously the
completeness relation

rs3d =
1

3o
k=1

3

uJskdlkJskdu s18d

should hold. But according to the definition of concurrence
of assistance in Eq.s14d,

Cassistsrs3dd =
2

3
=

1

3
3 3 3 C0 s19d

should hold, which gives, for the maximum available con-
currence,C0=2/3.

Thus we have found the upper bound for the concurrence,
but the actual basis realizing this limit is still to be con-
structed.

C. Construction of the basis

In the following we will adopt a constructive approach to
the problem. We will not exploit the result in Sec. III B, as it
will be found from this consideration too, though less el-
egantly.

We have to find an ONB in the orthogonal complement
space ofu11l, consisting of states with equal concurrence.
Expanding a general state on the computational basis,

uCl = C0u00l + C1u01l + C2u10l + C3u11l, s20d

the square of concurrence in Eq.s12d reads

C2sCd = 4fuC0u2uC3u2 + uC1u2uC2u2 − 2 ResC0C1
*C2

*C3dg.

s21d

The orthogonal complement in argument is spanned by
hu00l, u01l, u10lj. We will use the notation

uCl = C0u00l + C1u01l + C2u10l ↔ C = 1C0

C1

C2
2 s22d

for the C3 representation of the vectors in this linear sub-
space. A general vector of unit absolute value in this sub-
space reads, up to an arbitrary phase factor,

CC0
2sx,f1,f2d =1

Î1 − x

Îx

2
±

1

2
Îx2 − C0

2eif1

Îx

2
7

1

2
Îx2 − C0

2eif2
2 , s23d

whereC0
2P f0,1g andxP fC0,1g. Note that the multiplication

of each elementof the basis with different arbitrary phase
factors affects neither the orthogonality nor the entanglement
of the basis. We have chosen the seemingly complicated pa-
rametrization of Eq.s23d as, in this case,

C2
„CC0

2sxd… = C0
2; s24d

cf. Eq. s21d. The signs in the second two coordinates can be
chosen at will.

We have to find three mutually orthogonal vectors of the
form in Eq. s23d with the same concurrence-square.

1. Conjugate cross product and its concurrence

We define a way to construct orthogonal complement of
two linearly independent vectors inC3 similar to the real
three-dimensional case.

Consider two vectors inC3:

A = 1A0

A1

A2
2, B = 1B0

B1

B2
2 . s25d

We define the “conjugate cross product” of these vectors to
be a vectorC so that

sCdi = sA3̄Bdi = o
j ,k=0

2

«i jkAj
*Bk

* , s26d

where«i jk is the Levi-Cività symbol for indicess0, 1, 2d. A
straightforward calculation shows that the so-definedC is
orthogonal to bothA andB. fTo achieve this, both complex
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conjugations in Eq.s26d are needed.g Moreover, if the two
vectors are orthogonal unit vectorsfwe use the Euclidean
norm, iAi=iBi=1 and sA ,Bd=0g, then C is also of unit
norm: iCi=1. The conjugate cross product is conjugate bi-
linear.

A useful lemma can be stated regarding the entanglement
of the conjugate cross product vector.

Lemma 1. Let A, BPC3 andC=A3̄B. Concurrence and,
thus, entanglement ofC depend on the coordinates ofA and
B only through their moduli and the expressionsA0B0

* , A1B1
* ,

andA2B2
* only.

Direct calculation shows that

C2sCd = 4suA2u2uB0u2 + uA0u2uB2u2 − 2 RefA0B0
*A2

*B2gd

3 suA0u2uB1u2 + uA1u2uB0u2 − 2 RefA0B0
*A1

*B1gd,

s27d

from which the statement of lemma 1 follows.

2. Construction of the basis

We construct now the basis with three equally entangled
states. Suppose that the required concurrence isC0. We
choose two arbitrary vectors and consider them together with
their conjugate cross product as an ONB. Let us chosex
P fC0,1g. Let our first basis vector be a generic vector

Es1d =1
Î1 − x

Îx

2
±

1

2
Îx2 − C0

2eia1

Îx

2
7

1

2
Îx2 − C0

2eia2
2 s28d

fcf. Eq. s23dg. Let us choose ayP fC0,1g as well. One may
now intend to choose a second generic vector

Es2d8 =1
Î1 − y

Îy

2
±

1

2
Îy2 − C0

2eib1

Îy

2
7

1

2
Îy2 − C0

2eib1
2 . s29d

However, from lemma 1 it follows that the concurrence of
the conjugate cross product of the two vectors depends only
on the difference of the complex phases of the coordinates of
Es1d and Es2d8. The same holds for their orthogonality and
concurrence as well. Thus we may choose instead ofEs2d8,
without the loss of generality our second basis vector to be
real:

Es2d =1
Î1 − y

Îy

2
±

1

2
Îy2 − C0

2

Îy

2
7

1

2
Îy2 − C0

22 . s30d

sThis corresponds to the mere redefinition ofai →ai −bi in
the first basis vectorEs1d, yielding an equivalent choice.d Due

to lemma 1, setting nonzero arguments for the second two
coordinates would alter neither the concurrence of the chosen
Es2d nor that of

Es3d = Es1d3̄Es2d. s31d

In this way we have four free parameterssx,y,a1,a2d in-
stead of six, which is a relevant simplification.

The remaining requirement is that the first two vectors
should be orthogonal:sEs1d ,Es2dd=0. This can be assured by
appropriately choosinga1 anda2.

To have sEs1d ,Es2dd=0, the complex numbersE0
s1d*E0

s2d,
E1

s1d*E1
s2d, andE2

s1d*E2
s2d should form a triangle on the complex

planessee Fig. 2d. An appropriate choice is

a1 = p − arccosS uE0
s1du2uE0

s2du2 + uE1
s1du2uE1

s2du2 − uE2
s1du2uE2

s2du2

2uE0
s1duuE0

s2duuE1
s1duuE1

s2du
D ,

a2 = p + arccosS uE0
s1du2uE0

s2du2 − uE1
s1du2uE1

s2du2 + uE2
s1du2uE2

s2du2

2uE0
s1duuE0

s2duuE2
s1duuE2

s2du
D .

s32d

This follows from elementary geometry: application of the
cosine law to the triangle in Fig. 2sbd. fNote that −a1 and
−a2 would be also an appropriate choice for the complex
phases. However, according to Eq.s27d, only the cosine of
the alphas is relevant; thus, we do not lose generality here.g
Equations s32d are of course valid only if uE0

s1duuE0
s2du,

uE1
s1duuE1

s2du, and uE2
s1duuE2

s2du satisfy the triangle equations
uEi

s1duuEi
s2du+ uEj

s1duuEj
s2duù uEk

s1duuEk
s2dusi Þ j Þkd. Otherwise no

solution exists.
Thus, given the required concurrenceC0 and two numbers

x,yP fC0,1g, we can construct vectorsEs1d, Es2d using Eqs.
s28d, s30d, ands32d, if they exist. From these we can calcu-
late Es3d according to Eq.s31d and evaluate its concurrence
according to Eq.s27d. We are looking for the caseCsEs3dd

FIG. 2. Triangles on the complex plane, for the determination of
the angles in Eq.s32d so thatsEs1d ,Es2dd=0 holds.sad shows the
three complex numbers arising in the scalar product in argument,
while sbd is equivalent tosad but the three vectors are plotted so that
the desired triangle is visible.
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=C0. Unfortunately, the equations are trigonometrical, and it
is hard to draw further analytical consequences. We may
however numerically evaluate and plotCsEs3ddsx,yd. This is
done in Fig. 3.

A distinction should be made according to the selection of
signs in Eqs.s28d and s30d. There are four possibilities of
choosing the signs, but the value ofCsEs3ddsx,yd depends
only on whether we choose the same or different sign in Eqs.
s28d and s30d. That is, if we use the upper signs in both
vectors, we obtain the sameCsEs3ddsx,yd values as in the case
of using the lower sign in both vectors. If we use the upper in
one of them and the lower in the other, we obtain another
value. Thus we have to consider two inequivalent possibili-
ties: equal signs and different signs.

To facilitate the comparison between the figures we have
used the same scaling of the axes for allC0 values. In the
fC0,1g3 fC0,1g domain where the function can be defined at
all, concurrence of value 0 is assigned to the points where
Eqs.s32d cannot be satisfied due to the violation of triangle
inequality.

Though the numerical values are different for the case
choosing the same signs than those when we choose different

signs, the behavior of the functions is similar. One may ob-
serve that the figures are symmetrical inx and y and that
concurrence is a decreasing function of bothx and y. From
this it follows that the maximal concurrenceCsEs3dd=C0 is
achieved atx=y.

For small values ofC0, there is a nonzero set of points
whereCsEs3dd=C0. IncreasingC0, at C0= 2

3 we have just one
single point where the three concurrences are equally2

3, and
this is x=y= 2

3. This is true for both of the inequivalent se-
lections of signs. ForC0.

2
3, CsEs3dd,C0 holds in case of

both sign selections. The result is in accordance with the
maximum value of the concurrence expected according to
Sec. III B.

The basis with the maximal achievable entanglement is

uJs1dl =
1
Î3

su00l + u01l + u10ld,

uJs2dl =
1
Î3

su00l + eis2p/3du01l + e−is2p/3du10ld,

FIG. 3. Concurrence ofEs3d plotted againstx andy, for certain representative values of concurrenceC0 of the first two vectorssEs1,2dd.
All of the displayed quantities are dimensionless. The left column of figures corresponds to the choice of the same sign in Eqs.s28d ands30d,
while the right column is for the case of different signs. Rows of figures correspond toC0=1/3,2/3,3/4,respectively. In the first row,
surfaces are opaque, while in the second two they are transparent. The horizontal planes in the figures represent theCsEs3dd=C0 limit: we are
searching for the point of their intersection with the function graph; here, all the three vectors are equally entangled. ForC0,2/3 this is a
curve turning into a single point atC0=2/3. ForC0.2/3, the intersection is empty. Zero concurrence is assigned to those points where there
is no solution. This is the reason of the abrupt change to zero for smaller values ofx and y in the first row. We have verified the
above-described behavior of these functions by making a computer animation withC0 as the “time variable.”
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uJs3dl =
1
Î3

si u00l + e−isp/6du01l + e−is5p/6du10ld,

uJs4dl = u11l. s33d

sHere, for simplicity we have reordered the vectors so that
the real one is the first.d

We can conclude that the maximal concurrence achiev-
able by supplementing a product state to a basis by equally
entangled vectors is23, which has been shown in two inde-
pendent ways. This is realized by the basis in Eq.s33d, which
will be referred to as theJ basisin what follows. Note that
the entangled elements of theJ basis are “equal-weight su-
perpositions” of the three product states.

IV. NEARLY OPTIMAL ENTANGLEMENT PURIFICATION
VIA SWAPPING IN ONE STEP

After the purely kinematical considerations of the previ-
ous section, we continue with a seemingly different problem.
Consider the usual entanglement swapping scenario, de-
picted in Fig. 1. Suppose that qubits 1-2 and 3-4, which are
initially entangled and shared by Alice and Trent and by Bob
and Trent, respectively, are in the nonmaximally entangled
state

uC12optl = uC34optl = cosfu00l + sinfu11l, s34d

wheref is real. We investigate only this “symmetric” sce-
nario, where the shared pairs are in the same pure state
throughout this paper.

Trent, aware of the value off, has a measuring apparatus
realizing a nondegenerate measurement, with eigenstates
constituting the followingnonmaximally entangled basis:

uQs1dl = uCs+dl, uQs2dl = uCs−dl,

uQs3dl =
1

Îcossfd4 + sinsfd4
fsinsfd2u00l + cossfd2u11lg,

uQs4dl =
1

Îcossfd4 + sinsfd4
fcossfd2u00l − sinsfd2u11lg.

s35d

sNote that the third and fourth states are similar to those
obtained in the case of a Bell measurementfcf. Eqs.s2cd and
s2dd of Ref. f16gg, except that their coordinates are inter-
changed.d

After Trent carries out the measurement on qubits 2 and 3,
in case of three of the possible measurement outcomes, qu-
bits 1 and 4 are left in maximally entangled states. In the
fourth case, a nonmaximally entangled state is obtained. The
resulting states with the respective probabilities are

uC14opt
s1d l = uCs+dl, popt

s1d =
1

4
sins2fd2,

uC14opt
s2d l = uCs−dl, popt

s2d =
1

4
sin s2fd2,

uC14opt
s3d l = uFs+dl, popt

s3d =
− 4coss4fd + coss8fd + 3

16 coss4fd + 48
,

uC14opt
s4d l =

1
Îcosf8 + sinf8

fcossfd4u00l − sinsfd4u11lg,

popt
s4d =

coss8fd + 28 coss4fd + 35

16 coss4fd + 48
. s36d

In the case of the first three measurement outcomes, a Bell
state, thus a maximally entangled state is obtained. The in-
formation on which of the possible states is obtained is
known by Trent from the measurement result.

The probability of obtaining such a state—i.e., the success
probability of the entanglement purification—is

Ps = popt
s1d + popt

s2d + popt
s3d = 1 − popt

s4d , s37d

which is plotted in Fig. 4. In order to see whether it is an
optimal probability, one has to calculate theentanglement of
single-pair purification, an entanglement measure which is
equal to the square of the modulus of the Schmidt coefficient
of smaller magnitudef17g, using the notation used in Eq.s1d:

Es = 2 minspa,pbd. s38d

This is the maximum probability of obtaining a Bell state by
purifying a single entangled pair originally in the given pure
state. SinceuC14opt

s4d l is in the Schmidt form in Eq.s36d and so
is the initial stateuC12optl in Eq. s34d, this can be easily
calculated. The quantitiesEssuC12optld and EssuC14opt

s4d ld are
also plotted in Fig. 4, accompanied by the concurrence of the
latter.

The figure shows that for moderate values of entangle-
ment ssmall and high values offd, the joint success prob-
ability mainly coincides with its largest possible value, and
the fourth state contains nearly zero entanglement. Thus in

FIG. 4. Probabilities and entanglement measures relevant in the
nearly optimal swapping: the joint probabilityPs of obtaining either
of the first three measurement resultssthat is, a maximally en-
tangled swapped stated, entanglement of single pair purificationEs

of the original state and the possibly resulting nonmaximally en-
tangled state, and the concurrence of the latter, as a function of
parameterf of the original state in Eq.s34d. Note that atf=p /4,
the effective success probability is 1 as the swapped state corre-
sponding to the fourth measurement outcome is maximally en-
tangled. All of the plotted quantities are dimensionless.
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such cases, mainly optimal entanglement distillation is
achieved in one step. For more entangled initial statessthe
middle of the figured, the success probability is below the
optimal value, but the possibly obtained nonmaximally en-
tangled state is more entangled, as reflected by the value of
the two plotted entanglement measures. Therefore this
scheme can be regarded as optimal especially in the case of
moderately entangled initial states. Note that for a maximally
entangled initial statef=p /4 the probability of the first
three events is 3/4, but the success probability is 1 since the
fourth resulting state is maximally entangled.

An observation can be made regarding the average of en-
tanglement of single pair purification. As is shown in Ref.
f16g the average ofEs of the resulting states for all possible
events is preserved in the original entanglement purification
via a swapping protocol. It can be verified that it is true in
our protocol too:

EssuC12optld = o
k=1

4

popt
skdEssuC14opt

skd ld. s39d

Moreover,

EssuC12optld = o
k=1

4

popt
skdEssuQskdld s40d

also holds; that is, the average is preserved for the eigen-
states of the measurement—that is,at Trent’s side too. This is
not the case when we use the Bell basis.

Note that the following fact may be also inferred from the
results presented in this section. In purification via entangle-
ment swapping, a nonmaximally entangled pure state is
turned into a maximally entangled state if the corresponding
eigenstate of the measurement that was carried out has a
Schmidt decomposition orthogonal to that of the initial state.
Orthogonality of the Schmidt decompositions is meant as in
the case of the Bell states; cf. Sec. II.

V. ENTANGLEMENT PURIFICATION VIA THE J BASIS

Consider now the same scenario as in the previous section
sFig. 1d, but where qubits 1-2 and 3-4 are assumed to be both
in the state

uCsindl =
1
Î3

su01l + u10l + u11ld. s41d

The nondegenerate measurement carried out by Trent will
now project onto theJ basis in Eq.s33d.

The resulting states of qubits 1-4 and the corresponding
probabilities are

uC14J
s1d l =

1
Î11

su01l + u10l + 3u11ld, pJ
s1d =

11

27
,

uC14J
s2d l =

1
Î2

se−isp/3du01l + eisp/3du10ld, pJ
s2d =

2

27
,

uC14J
s3d l =

1
Î2

seisp/3du01l + e−isp/3du10ld, pJ
s3d =

2

27
,

uC14J
s4d l =

1

2
su00l + u01l + u10l + u11ld, pJ

s4d =
4

9
. s42d

Here uC14J
s2d l and uC14J

s3d l are two maximally entangled states,
which are not orthogonal.uC14J

s1d l is a state which is equally
entangled as the initial stateuCsindl, and uC14J

s4d l is obviously
a product state. Thus using theJ basis, stateuCsindl can be
distilled with probability 4/27<0.1481. This is done when
measurement outcomes 2 and 3 are obtained. If the first out-
come is obtained, we are left with a state less entangled than
the original one, which can be regarded as a entanglement
swapping. The probability for this event is 11/27<0.4074.
If the fourth measurement outcome occurs, entanglement is
completely destroyed; the probability for this is 4/9
<0.4444. Except for the possibly resulting maximally en-
tangled states, all states occurring in this protocol are par-
tially entangled.

There is another important difference between the appli-
cation of theJ basis and the optimal purification described
in the previous section. This can be understood by observing
the Schmidt decomposition of theJ basis anduCsindl, which
is to be found in Table I. Namely, all the entangled states in
the basis and the state to be purified possess different
Schmidt decompositions. Though the coefficients are the
same, the vectors are different. The orthogonality present in
the case of the optimal purification or the Bell basis is also
missing here. This clearly shows that theJ basis is essen-
tially different from those of form in Eq.s5d

Knowledge of the Schmidt decompositions also enables
us to evaluate entanglement of single-pair purification. In the
case of the three nonmaximally entangled basis states, its
value is <0.2546. Thus our protocol, providing a success
probability of 0.1481, is definitely not optimal. In spite of
this fact, as it is conceptionally different from the optimal

TABLE I. Vectors of the Schmidt decompositionfcf Eq. s1dg of
the entangled elementsJ basis and that of the state which can be
distilled with them. Vectors are represented in the computational
basis. A=s1+Î5d / sÎ2Î5+Î5d<0.8507, B=2/sÎ2Î5+Î5d
<0.5257.

State

Vector for coeff.

Îp0=
1

3sÎ6Î5+2Î5

Î5+Î5 d
<0.9342

Vector for coeff.

Îp1=
1

3sÎ6Î5−2Î5

Î5−Î5 d
<0.3568

uJ1l sAB d ^ sAB d s B

−A d ^ s−B

A d
uJ2l s A

Be−is2p/3d d ^ s A

Beis2p/3d d s B

Aeisp/3d d ^ s −B

Aeis2p/3d d
uJ3l sAe−is2p/3d

B d ^ siAeis2p/3d

iB d sBeisp/3d

A d ^ siBeis2p/3d

−iA d
uCsindl sBA d ^ sBA d s−A

B d ^ s A

−B d
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one described in the previous section, it is indeed physically
interesting.

Regarding conservation of entanglement of single-pair
purification on average in the sense as in Eqs.s39d ands40d,
direct calculation giveskEsl=0.1549 for the resulting states
and kEsl=0.1415 for the states of the basis. Both values are
smaller than the value 0.2546 of the initial state: entangle-
ment of single-pair purification is decreased on average, in
contrast with the other schemes of entanglement purification
via swapping where this quantity is preserved. This illus-
trates the different nature of theJ basis.

VI. SUMMARY AND CONCLUSIONS

We have studied nonmaximally entangled bases of two
qubits and their application in purification of entanglement in
entanglement swapping. As illustrated by the known consid-
erations of unextendible product bases, an orthonormal basis
with arbitrary predefined entanglement of its elements does
not exist. We have searched for certain limitations on the
entanglement of the basis elements.

We have searched for bases in which one of the states is a
product and the other three are equally entangled.sAll the
similarly formulated questions, with different number of
product versus equally entangled states are trivial.d We have
found that the maximal concurrencesentanglementd of the
three equally entangled basis elements can be 2/3. This is a
quantitative inequality limiting the entanglement of the non-
maximally entangled basis under the assumption set. An ac-
tual basis satisfying it is theJ basis is that in Eq.s33d.

The construction of the basis in one of the presented deri-
vations of this inequality relies on the “conjugate cross prod-
uct,” whose advantageous properties enabled us to reduce the
number of relevant parameters. It seems to be rather difficult
to formulate similar statements for different cases in the
same constructive way. If one were to solve the complemen-
tary problem of searching a basis with one maximally and
three equally entangled states, for instance, the number of
relevant parameters cannot be so apparently reduced. Thus
the formulation of other, possibly more general inequalities
seems to be feasible using the other, nonconstructive ap-
proach: namely, the application of concurrence of assistance

sor entanglement of formationd. This can be a subject of
further research.

We have shown that the protocol of entanglement purifi-
cation via entanglement swapping can be carried out with a
rather good efficiency in one step, without any ancillas, with
a measurement projecting onto a suitable chosen basis. The
protocol has been found very close to optimal for moderately
entangled initial states and close to optimal otherwise. The
entanglement of single-pair purification is preserved on av-
erage both on the measurement’s side and for the resulting
state.

It has been shown that theJ basis can be used for a
similar purpose, though with less than the optimal efficiency.
However, this case is found to be qualitatively inequivalent
to the optimal protocol, and it is pointed out by the exami-
nation of the Schmidt decomposition of theJ basis that it is
of different nature than the usually considered ones. Namely,
all the involved states have different and not orthogonal
Schmidt decompositions. Another interesting physical fea-
ture of the scenario is that maximally entangled states arise
from nonmaximally entangled ones only, after a single mea-
surement. In contrast with the other known purification via
entanglement swapping schemes, here entanglement of
single-pair purification is not preserved on average on either
side; it is decreased instead.

It is surprising indeed that even in the “world” of two
qubits, new enigmas can be disclosed. In spite of the exis-
tence of the mathematical classification of entangling sym-
plectic transformations on Galois quantum systems, the gen-
eral properties and possible applications of nonmaximally
entangled states are not fully exhausted. We believe that the
results here illustrate this statement appropriately and might
motivate further studies of the topic.
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