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Scattering model for quantum random walks on a hypercube
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Following a recent work by Hillergt al.[Phys. Rev. A68, 032314(2003], we introduce a scattering model
of a quantum random wallSQRW) on a hybercube. We show that this type of quantum random walk can be
reduced to the quantum random walk on the line and we derive the corresponding hitting amplitudes. We
investigate the scattering properties of the hypercube, connected to the semi-infinite tails. We prove that the
SQRW is a generalized version of the coined quantum random walk. We show how to implement the SQRW
efficiently using a quantum circuit with standard gates. We discuss one possible version of a quantum search
algorithm using the SQRW. Finally, we analyze symmetries that underlie the SQRW and may simplify its
solution considerably.
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I. INTRODUCTION Turing machine can be simulated using a cellular automaton.
The CQRW is usually defined on regular graplesach
Quantum random walk is a theoretical concept conceivedertex having the same number of outgoing egigéise defi-
to simulate certain algorithms using quantum-mechanical elnition on nonregular graphs is also possible, and some inter-
ements, i.e., unitary operators and measurenidiitén par-  esting algorithms are based on this vers|d8]. However,
ticular, it has been shown recently that it is possible to use &€ latter version does not possess the symmetries of the
quantum random walk to perform a search in a database witfP"Mmer one, nor its neat tensor product structiihe unitary
the topology of the hypercube faster than it can be doné&Vvolution operator CQRW on the regular Cayley graph com-
classically[2]. It is an oracle-based algorithm, which is op- Mutes with generators of the underlying groumstead, the
timal in its speed. Another successful application of quantunjV0l€ graph must be addressed, by means of an oracle which
random walks has been demonstrated by Chétisl. [3], ells us whether any two vertices are connected by an edge

4], which causes a considerable growth of the resources.
WF:O zak;/e also ctonstrluctﬁ?hr?]n )?r?cilt(ian problen;ttr:r?tr Cr?g e In this paper, we will focus our attention on a quantum-
SO Yke ya qut_arlllurfn atgoth N pol ga Iqula u’th a OrTl)ptical model of multiport§8,9] which describes a possible
walk exponentially faster than any classical algoritnm. hysical realization of specific quantum random walks. In
These two examples justify the general hope that quantu

. is scheme, we have an array of multipoiise, e.g.[15]
random walks might be able to solve some problems, basegh references thersirinterconnected with optical paths. A

on random process¢é] (e.g., Monte Carlo methods, 2-SAT, photon is launched into one path and is transformed by the
graph connectivity, etg.faster than corresponding classical action of the multiports. This action can be described as a
algorithms. scattering process, therefore we will refer to this scheme as

In general, there are essentially three types of quanturthe scattering quantum random wa&QRW).
random walks. First, let us mention the so-called coined The SQRW is more viable from the experimental point of
quantum random walKCQRW), which is a discrete time view, can be extended to nonregular graphs, and is equiva-
walk which makes use of an additional quantum system, théent to CQRW on the regular graphs.
coin [5]. The second type of quantum random walks is de- We will investigate a particular arrangement of the multi-
scribed by a continuou@Hamiltonian) dynamics of a quan- ports when are localized at the vertices of a hypercube. The
tum system[6]. Quantum random walks on regular graphsarray of multiports effectively acts as a scattering potential,
have been first discussed by Watrd$. The third type of  when connected to semi-infinite tails. It can be endowed with
quantum random walks based on physical model of opticaiwo characteristic values, namely the reflection and transmis-
multiports has recently been introduced by Hillegy al.  sion amplitude for photons. This was done in R¢&9] for
[8,9]. a special two-dimensional hypercube.

Before we proceed, we note that a quantum random walk Our paper is organized as follows. In Sec. Il we define the
as discussed by Aharon@t al. [10] is basically a mapping SQRW on the hypercube. In Sec. Ill, we show how the
:Gy—CY, which is updated at each step by a functionSQRW on the hypercube may be reduced to the cellular au-
Y(X)—FLy): (xy) e Gel, whereG=(Gy,G) is a graph with  tomaton on the line. In addition, we will compute the hitting
verticesG,, and edge%,. amplitude and we will make some other simulations. In Sec.

We therefore can say that the quantum random walk is &, we will investigate scattering properties of the hypercube
special instance of the quantum cellular automdtbh12. connected to semi-infinite tails. Section VIl contains the
The classical cellular automaton is a concept general enougbroof that the SQRW is equivalent to a generalized version
to accommodate virtually any algorithm; more precisely, anyof the coined quantum random walk. In Sec. VI, we show
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Ir2+(d-2)t)*=1, (2.2

(d=2)[t2+r*t+rt* =0. (2.3

The operatotd, (for any x) has in the natural basis the ma-
trix of the form (U,);=ré;+t(1-4;). The relations(2.2)
may be satisfied by using the Grover coefficientg2/d)
-1, t=2/d (in what follows, we will call this setup the
Grover multiport; for more details, see R¢16]).

The pseudo-eigensystem of any sudh can be readily
computed(“pseudo” means that we set an isomorphism be-
tween H, and H, such thatlyx)=|xy)). Since U,=2|s)(s|
-1 (|s) is the complete superposition over the basis of the
domain ofU,, which we denotél), ... |d)), the eigenvectors
are|s) (with pseudo-eigenvalue) and linearly independent
(but not orthogonal set {|1)-|k):k=2,...d} [with
(d-1)-degenerate pseudo-eigenvalug.-Performing the di-

FIG. 1. Action of the multipor{U) on the ingoing photoiin) ~ "€Ct sum of these eigenvectors leads us to a pseudo-
on the dim 3 hypercube. Coherent superposition of three photonigigensystem ob, with pseudo-eigenvalues +1.
excitations is created. There are many other choices of the reflection and the
transmission coefficients. One set of them is the following
how to implement the SQRW efficiently on the quantum cir- (we will use it when necessary
cuit. In Sec. VIII, we discuss one possible version of a search

algorithm using the SQRW. Finally, in Sec. IX, we will ana- i 1

lyze symmetries that underlie the SQRW and which may 25’
considerably simplify the solution of the model.
d-1 .
Il. THE DEFINITION OF SQRW f=l1- o e,(,’ (2.4)
The SQRW was first presented in RE3]. The technique d

behind its impl_ementation is the_ muItipor[ﬂsﬂ: linear opti- where cos9:(1—d/2)/\s’(12”——(zl4-1 with p>1/2. If we set
cal elements, interconnected with optical paths. Each multi- . . . 1
port has in general a different numberioputs(which at the ~ P=1. then the reflection amplitude goes to dimr=-;
same time serve also as outpuscoherent superposition of *+1(Y3/2). Obviously, for large dimensions, almost all of the
photons entering the multiport is transformed into anothePhotons will be reflected. The multiports with these coeffi-
coherent superposition of photons outgoing from the multicients will be the so-calledymmetricmultiports. We will
port. The multiports are the vertices of a gragl and the later compare both sets of coefficients with respect to their
optical paths are its edges. mixing properties.

The photon traveling between the multipostsy is de- From now on, we will be dealing with the multiports ar-
noted|xy). The Hilbert space on which the state of the pho-ranged into the form of the-dimensional hypercube. The
ton is defined is spanned by vectdxy), (xy) e G and can  edges of the hypercube will form two-way optical paths.
be decomposed into a direct sum of Hilbert subspa¢es The d-dimensional hypercube is the Cayley grapgh
Dxcg, Hx WhereH,=sparyx): (yx) e G¢}. Thatis, the basis  =(73,[d]), where[d]={0, ... d} is the set of generators of
of H, is composed of the states of photons ingoing into thethe additive(mod 2 groupZ3 (the binary strings with only
multiport at x. For convenience, we introduce the Hilbert one 1. For any x,ye 75, we set the scalar producty

subspace spanned by the states of photons outgoing from thg v, + ... +x,y, (mod 2. The norm|x|=Vxx is the Ham-

vertex atx: H,=spag|xy): (xy) € G¢}. ming weight (the number of 1s ix). The setf,={x:|X|
The evolution operator of states H is U:@Xegv Uy, =w} is called thelayer of the hypercube.

where U, is isometry H,— M, (onto, hence linear, hence  For simplicity, we will denote the basis states}@ffor the

unitary). Since the subspaces are orthogohhals unitary. d-hypercubelxy) as |x;a), where x is the vertex anda
The concrete realization of the unitary operdigreflects =1, ... .d is the generator such that-a=y.

the fact that the multiport partially reflects and partially
transmits the ingoing photofsee Fig. 1. Denoting the re-

- S —_ . IIl. THE TOPOLOGY OF THE HYPERCUBE
flection and transmission coefficientsand t, respectively,

we have The hypercube may be “broken up” in individual layers
3 £, i.e., sets of vertices with equal Hamming weight. There is
Udyx) =rixy) +t(xz)2g x2), (2.1 3 special class of vectors frof, which is closed with re-
€YE

spect toU and whose members may be described by a
where(xy) e G¢. For U to be unitary, these coefficients must smaller number of coefficients, thus simplifying the evolu-
satisfy the relation$8] tion equations. Namely, these are the vectgssuch that
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(x;a| ) is the same for allx|=w and for alla. Under this
assumption, the vectors are specified by coeffici¢s.}
where i, . =(X;a| ) with [x|=w, [x+a]=w=*1.

The reduced equations for evolution of the coefficients

Yy + are given from the assumptions that each vertex fégm

has a fixed number of edges which connect it to the previous 40

and next layetwith Hamming weight havingv+1). We note
that a verteXx|=w is connected wittw edges from the pre-

vious layer and withd—w edges with the next layer. Since

the coefficients assigned to the projectjgihto a given layer
are fixed, we obtain the recursive relations,

(U ¢)W,+ =twWiky g+ [td-w-1)+ r]’ﬁwﬂ,—v

(U ‘;b)w,— = t(d - W)¢w+1,— + [t(W - l) + r:l‘#w—1,+- (3-1)
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FIG. 2. The ratiopy/p. of hitting probability for classicalp,)
and quantum(p,) random walk on the hypercube, related to the
dimensiond.

unitary. But we need the unitarity only to conserve the inner

For w=0 andw=d, these equations still hold wherever it Product(a|a). Actually, the inner product

makes sense, i.e., fak ., ¥y . The coefficientsj; ., .1 .

are neglected as long as they are multiplied by zero in the

equation.

The evolution which is governed by these equations is

called the symmetric SQRW. _
If the initial state isyy ,=1/vd, then we immediately ob-
tain the expression for the hitting amplitude

td-1
g -(d) =[t(d=1) +r](d- D! —a (3.2
\J

Using the Grover parametefis=2/d—-1 andt=2/d), we find
for the quantum probabilitp, to get from the vertexx| =0 to
the vertex|x|=d in d steps the expression

d )24d—1

pq=|l/fd,—(d)|2:<_ d -

e (3.3

. 3 7g)\2
CEDS (w) (1 + | 1) (3.7)
w=0

is conserved.

Though we have simplified the problem by the assump-
tion of symmetric initial values, we are still far from its
explicit solution. The solution would rely on the path inte-
gration along different paths by which two sites can be con-
nected in a presupposed number of steps. Each path would
be assigned a complex amplitu@®sically some product of
r,t), and by adding all the relevant paths together, we would
get the amplitude distribution over the hypercube. This nor-
mally gives us enormous combinatorial expressions, which
are difficult to interpret.

Since the SQRW on the hypercube with symmetric initial

Classically, the probability that we are at a given vertexStates is equivalent to the nonunitary one-dimensicaan-

from €, is p,, for which holds(Wp),,=(1/d)wp,_1+(1/d)

tum) random walk on the finite sequence of layés we

X (d=W)pys1—1. From this we obtain the hitting probability May explore the probability distributiop,(w) over the lay-
(Wdpy)=(1/d%d!. The classical probability to get from the €rs for an initial state|yo)=2,(1/Vd)|0--- 0;a), where

vertex|x|=0 to vertex|x|=d in d steps reads

d!

= @ (3.9

Pc

Using the previous expression, we find that the classical and

quantum hitting probabilities are related like

p.(w) is the expectation value of the operator

> [xaxx:al,

xely,a

My = (3.8

.e., Pa(W) = (0| (UH"M,U" ). In Fig. 3, we present a result
of simulation of the evolution op,(w).

24d—1
=pe—. 3.5

Pq=Pc (3.9 B
The ratiop,/p. as a function of the dimensios of the hy- 0.8
percube is given by the expression -, 7

. 10¢

Pq - QE (3.6) 0.4 I

po dd’ 0.2 0
and is plotted in Fig. 2. The whole model can be used to PaAVAANIR Y

simulate the coined quantum random walk on the line seg-

0 10 20 30 40 50

ment with the position-dependent coin. The state of the coin F|G. 3. The probability distribution of the SQRW,(w), for the

is described by a vectdt, +, ¥, -], w=0, ... d and is up-
dated at each step with the update rules given by(&d).

hypercube of the dimensiod=50, with a symmetric initial state
localized at the vertex 0- 0, and steps=1,---,100. We consider

We might be troubled by the fact that the update rule is noGrover multiports.
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FIG. 4. The probability distribution of the symmetric SQRW on FIG. 6. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsO to 250, with the initial state  the hypercube of dim 50, for stejpsO to 250, with the initial state
Yo += g -=1/V2d (other ¢’s=0) and symmetric multiports. Wo.+=thg -=1/v2d (othery’s=0) and Grover multiports.

We see that the SQRW on the hypercube is effectivelyweights 0 and 2 has been studied. Each tail has been sup-
isomorphic to a dynamics of a resonator: We start with ongosed to be a one-dimesional lattice with perfectly transmit-
excited site, and the excitation propagates as a Gaussidimg multiports. Along one tail, a photon enters the hyper-
packet along the resonator. As the packet hits the boundargube, and emerges on the other side. It is possible to
the corresponding site is excited, and the packet is reflectechlculate explicitly the transmission coefficient of the whole
in the opposite direction. structure. In the present section, we will study an analogous

From Fig. 3, we see that the hypercube acts as a resonatproblem for an arbitrary-dimensional hypercube. We will uti-
when it comes to the evolution of the probability distribution lize some symmetry assumptions, which allows us to per-
over the layers. form the calculatior{or at least the simulatigrfor arbitrary

We have performed detailed simulations for the symmetdimensions. The scheme we consider is shown in Fig. 8.
ric SQRW with initial conditions such that either only the Now everything is as before, except that the multiports at
coefficients Y .; 4y - are nonzero, orjy, .#0. There are he vertices with Hamming weight 0 ardihave reflection
two g:hmces of the multlporfcs: the_ Grover and the symmetric;ng transmission coefficients given by expressiori2/(d
multiports. We make the simulations for both of them, and+1)]_1 andi=2/(d+1), respectively. The multiports outside

for both initial conditions(see Figs. 47 We see the peri- - - .
odicity of the evolution, another feature akin to the resonan{he hypercube are perfectly transmitting. The initial state is a

behavior. Note that the Grover multiport has much bettelfhheoaon érr?:\ljiléngr;rggl;tl eo\flet}rztee)\jvr:jletos tgteer\:weirstbg(e:s?:r?ge db
mixing properties than the symmetric multiport, owing to theCom 3;2)( numberm which represent ¥he amplitude that y
fact that it is more distant from unity. P W P P

the photon travels from a vertéx{=w and is directed to the

IV. HYPERCUBE AS A SCATTERING POTENTIAL next or previous layer,,.,. Now we letw run throughZ.

. . .., The resulting relations ar
In Ref. [8], a model of a two-dimensional hypercube with € resulting refations are

semi-infinite tails attached to the vertices with the Hamming (U)o =Tpg o+ [(d = 1T+T]ep -,
250 250
200 200
150 150
n n
100 100
50 50

0 10 20 30 40 50

FIG. 5. The probability distribution of the symmetric SQRW on FIG. 7. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsO to 250, with the initial state the hypercube of dim 50, for stepsO to 250, with the initial state
Yap+1,+=11 \/'Z(d,§+1) (other ¢’s=0) and symmetric multiports. ¢d/2+1,¢=1/\'2(d/§+1) (other ¢’s=0) and Grover multiports.

012306-4



SCATTERING MODEL FOR QUANTUM RANDOM WALKS..

d+l d+2

FIG. 8. The scattering potentié@hree-dimensional hypercupe
The vertices outside the hypercube are denoted.-. ,—2 andd
+1,... for the hypercube of dimensiah

(Ueh)o-=Tepy o+ diyy _,

(Uih)g+= Cﬁ‘ﬁd—l,ﬂ

(U)g-=[(d= T+T]g-1.4,

(U ‘ﬂ)w,+ = tW‘//w—1,+ + [r + (d -—W- 1)t]¢w+1,—v

(U l/l)w,— = t(d - W) lr/fw+1,— + [t(W - 1) + Iﬁ]lf/fw—l,+- (4-1)
We begin with the particle in the statel,0), i.e., a par-
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d
|¢0>:2171|0"'0;j>- (5.

i=
Now the amplitude ofUY4,) to project onto the state
|1--- 1;+) is given by the sum of amplitudes to traverse from
-0 to 1--- 1 in d steps, which ig@%. In particular, for the
initial state|0- ;j) we have(d—1)! such paths. The situation
is analogous for al], with each initial directionj contribut-
ing the factory, of the amplitude. The overall amplitude is

d

(L1 + U o) = X yj(d = DIEE,
j=1

(5.2)

The probability of detecting the particle at the state
|1---1;+) depends only orE}’zlyj. In this sense, the hyper-
cube with tails attached behaves like a Mach-Zehnder inter-
ferometer.

VI. IMPLEMENTING THE SQRW

Until now, we have not discussed the question whether it
is feasible to implement the SQRW. To build a whole net-
work of multiports, we need exponentially growing re-
sourcegthe number of vertices grows exponentilliAow-
ever, to encode the states under consideration, we need only

ticle localized at the vertex just left of the hypercube on thedlog dl qubits. So we can ask a question: Is it possible to

tail, and pointing to the righ¢see Fig. 8.

build a network of quantum gates operating on the qubit

We have simulated the probability that a particle incom-register of this size? This is most easily done only on the

ing from the left will be absorbed by the detector after
steps(see Fig. 9. This means that the system evolves for
steps, and then a projection on the vedebrd+1) is per-

hypercube without the semi-infinite tails attached; however,
it is also possible to implement this scheme by adding some
overhead of gates to the network. We nekdubits for the

formed. The result shows periodic beats of the probability of20sition registerx) and at leasflog d] qubits for the direc-

the absorption of the photon by the detector.

V. NONSYMMETRIC INITIAL STATE
When we impose a symmetry condition on initial states

hypercubgnormally its complexity is exponential id). But

the whole problem becomes linear in the dimension of the

tion register|¢). The first part of one application of the uni-
tary operatorU is controlled negation of each bit of de-
pending onl¢). The second part is the transformation of the
state|¢), so that the action of the multiports is accounted.
More precisely, the first part is

we also may be interested in the behavior that appears asahd the second part reads

result of phase differences between the components of the

initial state. Given thal-dimensional hypercube with semi-
infinite tails attached to the verticess 00 and 1--- 1, we
consider the initial state

p(d+1)
.x107°

x1073

.x1073
.x1073
.x1073 ]
- 100 200 300

FIG. 9. The scattering probability of a 10-dimensional hyper-
cube, for a photon incoming from the souK& (n is the number of
step$. The multiports are symmetric.

A

400

ad
500 600

n

X)|@) — X [x+axale)a), (6.1
x)/a) — |x>[r|a>+ = t|b>], 6.2
#a

for eacha=1, ... d. The first part described by E(.1) can

be implemented using a variant of the controllealr (CNOT)
gate. TheCcNOT gate operates on two qubits such that it ne-
gates the firsttarge) qubit, iff the secondcontrol) qubit is
nonzero. The action of theNoT gate is described by the
two-qubit operatorCeynor=0,®|1)(1|+1®|0)(0]. We em-
ploy the ¢cnot gate, which differs from thenoT gate in that

it has ad-dimensional control state, unlike a single qubit. If
the control state i) (the accepting control stagtethen the
target qubit is negated, otherwise it is kept in the original
state. The operational form of thé-\or gate is

benor=0x @ [Nl + 1@ (1 =X

Obviously, thegcnor iS unitary.

(6.3
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1 ( ) it is translationally invariant. We search for the eigenvectors
2 a in the form g == -, 4€™*¥%e,, which yields
\V
: M= S (r Qmkald S ezmk@@b)ﬁ:) e,
d D a=1,d b=1,d-1
. _ (r > e—zmkb/d) > ikaldy
b=1,d-1 a=1,d
P ——e M A (6.7)
1 2 d

where\, =r—t if k#0, and\, =r-t+td.
FIG. 10. The gate which implements the SQRW on the
d-dimensional hypercube. The input state is the position regidter
qubits labeled as 1, ..d) and the direction registég). There ared VII. SQRW IS SUPERSET OF COINED QUANTUM
denor Jates stacked together, with accepting stas. .. |d), RANDOM WALK
which change the position register, and the gdtevhich changes

L ) In this section, we will discuss the connection between the
the direction register.

scattering and the coined quantum random walks. The

) _ ) SQRW reduces to the coined quantum random walk on a
The operatior(6.1) can be implemented by usitécnor  regular graphthaving all vertices with the same degyeand

gates(see Fig. 10 Each gate operates on a different qubitconyersely, the SQRW is the generalization of the coined

from the position register. If the gate operates on &tle  guantum random walk on general graphs.

qubit, the accepting control state is chosen tdebdsee Fig. There is an isomorphism between the coined quantum

10). _ _ _ random walk(CQRW) and the SQRW on the same Cayley
The operation6.1) and(6.2) are implemented by using a graph over the Abelian groug, We recall that the CQRW is

single unitary operatiot operating on the direction regis- defined by a unitary operatdE on the Hilbert spaceé-g

ter. It corresponds to the transformation of the state due te, @ 7,, whereH, is spanned by vectolg), X € Gy, and

the multiports. It reads H, is spanned by the generators@fthe basis vectork).
_ One step of the CQRW is given By=SC whereS=X,T,
M= % rlaal + tga [b)XB |- 6.4 4 m, andC=1® M. HereT,x)=|x+a) is the translations,
is the projection tda), andM is any unitary operator. The
The d X d matrix form of M is isometry is given by one-to-one mapping of basis vectors of

both 7 and Hg like |x(x+&)), = |x)|a), . The correspon-

rt t dence between operatdgsandE is U,|Jyx), wherey+a=x is
M = tor - 6.5 the same as applying the translati®mon |[x—a)|a) and then
: : ' ' applying the coinM on |a) such that matrix representations
t .- tor of U, in the natural basis of{,,H, and M in the natural
) ) basis ofH, are the same.
Consequently, the unitary evolution operatbof the SQRW For regular graphs, we can decomp@sgeinto the direct

on the hypercube may be decomposed sG,G1=(1  product of Hg, such thatHe,=spad|x-a)a):a is geng}.
@M)C,---Cq, where Cy=0y@a)(a+1®(1-|a)xal) is the The scheme for generalizing the coined quantum random
denor Operator with the target qubit being thth qubitfrom  walk on general graphs was proposed in R&#], but this

the position register, and accepting the staig=|a), with  has required an oracle which operates on the set of all edges
a=1,...d. The operators, are mutually commuting, and of the graph. Our scheme is based on local operations done
have common eigenvectors. To find them, we decompose thg, multiports, so it is more reasonable and easier to imple-
eigenvectors into the product @2 X d)-dimensional vectors ment physically. This was actually proposed in REf7].

| ®[x). Applying C, on [)[x), we obtain(providing that  Algorithms based on coined quantum random walks were

o) =\p) proposed in Ref[13].
Callx) = ol laxalx) + ) @ (1x) - [axalx)
=g ® [(\ - Diapla) + )] VIIIl. SEARCHING WITH SQRW
[ x), A=1, In this section, we will address a question whether it is
“Iw e v - 2@l r=-1 (6.6)  possible to use the SQRW for a database search or a similar

task. To answer this question, we need to formulate what a
The case withh=-1 has to be dealt with separately.| guantum database is and how we can move around its entries
=|a), then we getC,|y)|a)=—|#)|a), and if [y)=|b),b#a,  using the SQRW.

then C,|y)|b)y=|¢)|b). We arrive at the conclusion that the  The database we are searching in is the so-called quantum
eigensystem o€, is the set of vectorgs)|x), where|) is  dictionary. The classical dictionary is a set of pajkey,

the eigenvector ofr, andy=|a), a=1, ... d. What about the value. The set of all keys is given by the topology of a
eigensystem o6,? The matrixM can be diagonalized, since graph, yielding the adjacency relations among all the keys.
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Random walk(classical in the dictionary is bound to the r(-D% t-1nke - (-1
edges of this graph. _ _ 1K o 1k 10— 1)Ks
The searching problem in the dictionary is given as fol- V= =1%o .l) t( .1) (9.9
lows: given a value, find a key, such thiey,valug is in the : :
dictionary. ForN keys, this is arO(N) problem. To obtain a t(- Dk r(- 1)k

quantum version of this scheme, we have to “quantineh- N | d to find the ei ¢  thi
canonically the problem. Due to the fact that the graph is _OW Wwe only need to Tind the eigensystem of this compara-

not regular, we cannot factorize the complete Hilbert spacelively small matrix. It is obvious thaV, is translationally
but we need to label the states in the most general fashiogymmetric. The eigensystem of E(.4) can be found in
Ixy), where(xy) is an edge. The searching procedure consist&ef. [16]. o _

of applying one step of the SQRW, and then by querying the |n what follows, we will find another symmetry. Unlike
database. The query corresponds to an application of a unfi?€ previous case, now we will be changing both the ele-
tary operator(the oraclg [18], which flips some auxiliary ments of the position and the direction Hilbert spaces. This
qubit, depending on whether the value assigned to the key fansformationR will change the vectofx,a) such that the
the one we are searching for. That is, the oracle is the trandlinary stringx is cyclically shifted right by one place are
formationO|xy)|q)— |xy)|q® f(x,y)), wheref(x,y) gives the IS Set toa® 1 modulod. Sincea is unambiguously defined
value 1 if any of the vertices,y satisfy the query, and 0 by the position in the_ blnary string at wh|o_hd|ffers fro_m
otherwise. It is clear that the oraci® is unitary. Now the X*& this transformation is a symmetry. This can be viewed
searching algorithm is based on the sequence of operatio®$ @ rotation along the line segment connecting two opposite
(OU)", whereU makes one step of the SQRW aéiis the vert!ces 0--0 and 1---1. We can choose any other two
oracle queryequivalent to the action of the multipoytOne ~ Verticesx.y such tha{x-y|=d, and get a symmetry operator
such algorithm has been presented in R2f. In our terms it y=BxRB. whereB, changes the role of 0 tmTand ltol

is the SQRW on the hypercube, where the multiport assigned*- More precisely,B,jz,a)=|z+x,a) (henceB'=B). Two

to one marked key has trivial coefficientst (they only transformatlonsR)S,Ry generally do not commute, but they
change the phagewhile the other multiports have coeffi- POth commute withU.

cients corresponding to the action of the Grover operator to

the direction states. In Ref2], it has been shown that the X. CONCLUSION

marked key can be found i®(VN) steps with probability

O(1), whereN is the number of vertices of the hypercube. We have proved that the SQRW is in fact a version of the

coined quantum random walk. We can use this observation to
IX. SYMMETRIES OF THE EVOLUTION extend the coined quantum random walk to the cases of non-
OPERATOR U regular graphs. While it is in principle easy to construct the
_ ) _ SQRW on any graph, it is still a question whether we also
The basic relatiorJy=\y, where y=2,,%{xa) yields  can simulate it efficientlye.g., like in Sec. V. This point is

the following recurrence relation: crucial for further development of quantum algorithms based
S = on the SQRW in higher dimensio&here the speedup may
va-aﬂbm Yo = AMraa: (9. become noticeabje The class of algorithms based on the

SQRW is the database searching, using the oracle queries
Finding the symmetries of this operator helps us to find itsalong with the “random” steps. We already know at least one
eigensystem. We can Fourier transform the state${db  such algorithm(see Ref[2]) and we know that it is optimal.
another basis, in which solutions can be found more easilywe cannot expect that the complexity drops be@(wN) for
The operatolU has many symmetries, one of which is the N database keys, but the new algorithms may be more gen-
translationTy,:x—x+b. The eigenvectors of,, are (for de-  eral in their inputs, and may be easier to implement.
tails, see Ref[16]) We have found the connection between mixing properties
~ of the multiport(or the coirn and the distance of the respec-
ka) = > (- 1){x;a), (9.2 tive operator from unity. It might be interesting to find an
x exact function of this distance, which yields the measure of

with eigenvalueg—1)%, k e zg The action ofU on \k~a> is mixing for the SQRW.

Ulka) = (- 1)ka(r|k~a> + |k~b>), (9.3 ACKNOWLEDGMENT
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