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Following a recent work by Hilleryet al. [Phys. Rev. A68, 032314(2003)], we introduce a scattering model
of a quantum random walk(SQRW) on a hybercube. We show that this type of quantum random walk can be
reduced to the quantum random walk on the line and we derive the corresponding hitting amplitudes. We
investigate the scattering properties of the hypercube, connected to the semi-infinite tails. We prove that the
SQRW is a generalized version of the coined quantum random walk. We show how to implement the SQRW
efficiently using a quantum circuit with standard gates. We discuss one possible version of a quantum search
algorithm using the SQRW. Finally, we analyze symmetries that underlie the SQRW and may simplify its
solution considerably.
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I. INTRODUCTION

Quantum random walk is a theoretical concept conceived
to simulate certain algorithms using quantum-mechanical el-
ements, i.e., unitary operators and measurements[1]. In par-
ticular, it has been shown recently that it is possible to use a
quantum random walk to perform a search in a database with
the topology of the hypercube faster than it can be done
classically[2]. It is an oracle-based algorithm, which is op-
timal in its speed. Another successful application of quantum
random walks has been demonstrated by Childset al. [3],
who have also constructed an oracle problem that can be
solved by a quantum algorithm exploiting a quantum random
walk exponentially faster than any classical algorithm.

These two examples justify the general hope that quantum
random walks might be able to solve some problems, based
on random processes[4] (e.g., Monte Carlo methods, 2-SAT,
graph connectivity, etc.) faster than corresponding classical
algorithms.

In general, there are essentially three types of quantum
random walks. First, let us mention the so-called coined
quantum random walk(CQRW), which is a discrete time
walk which makes use of an additional quantum system, the
coin [5]. The second type of quantum random walks is de-
scribed by a continuous(Hamiltonian) dynamics of a quan-
tum system[6]. Quantum random walks on regular graphs
have been first discussed by Watrous[7]. The third type of
quantum random walks based on physical model of optical
multiports has recently been introduced by Hilleryet al.
[8,9].

Before we proceed, we note that a quantum random walk
as discussed by Aharonovet al. [10] is basically a mapping
c :GV→Cd, which is updated at each step by a function
csxd°Ffcsyd : sxydPGEg, whereG=sGV ,GEd is a graph with
verticesGV and edgesGE.

We therefore can say that the quantum random walk is a
special instance of the quantum cellular automaton[11,12].
The classical cellular automaton is a concept general enough
to accommodate virtually any algorithm; more precisely, any

Turing machine can be simulated using a cellular automaton.
The CQRW is usually defined on regular graphs(each

vertex having the same number of outgoing edges). The defi-
nition on nonregular graphs is also possible, and some inter-
esting algorithms are based on this version[13]. However,
the latter version does not possess the symmetries of the
former one, nor its neat tensor product structure(the unitary
evolution operator CQRW on the regular Cayley graph com-
mutes with generators of the underlying group). Instead, the
whole graph must be addressed, by means of an oracle which
tells us whether any two vertices are connected by an edge
[14], which causes a considerable growth of the resources.

In this paper, we will focus our attention on a quantum-
optical model of multiports[8,9] which describes a possible
physical realization of specific quantum random walks. In
this scheme, we have an array of multiports(see, e.g.,[15]
and references therein), interconnected with optical paths. A
photon is launched into one path and is transformed by the
action of the multiports. This action can be described as a
scattering process, therefore we will refer to this scheme as
the scattering quantum random walk(SQRW).

The SQRW is more viable from the experimental point of
view, can be extended to nonregular graphs, and is equiva-
lent to CQRW on the regular graphs.

We will investigate a particular arrangement of the multi-
ports when are localized at the vertices of a hypercube. The
array of multiports effectively acts as a scattering potential,
when connected to semi-infinite tails. It can be endowed with
two characteristic values, namely the reflection and transmis-
sion amplitude for photons. This was done in Refs.[8,9] for
a special two-dimensional hypercube.

Our paper is organized as follows. In Sec. II we define the
SQRW on the hypercube. In Sec. III, we show how the
SQRW on the hypercube may be reduced to the cellular au-
tomaton on the line. In addition, we will compute the hitting
amplitude and we will make some other simulations. In Sec.
IV, we will investigate scattering properties of the hypercube
connected to semi-infinite tails. Section VII contains the
proof that the SQRW is equivalent to a generalized version
of the coined quantum random walk. In Sec. VI, we show
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how to implement the SQRW efficiently on the quantum cir-
cuit. In Sec. VIII, we discuss one possible version of a search
algorithm using the SQRW. Finally, in Sec. IX, we will ana-
lyze symmetries that underlie the SQRW and which may
considerably simplify the solution of the model.

II. THE DEFINITION OF SQRW

The SQRW was first presented in Ref.[8]. The technique
behind its implementation is the multiports[15]: linear opti-
cal elements, interconnected with optical paths. Each multi-
port has in general a different number ofinputs(which at the
same time serve also as outputs). A coherent superposition of
photons entering the multiport is transformed into another
coherent superposition of photons outgoing from the multi-
port. The multiports are the vertices of a graphGV, and the
optical paths are its edges.

The photon traveling between the multiportsx,y is de-
noteduxyl. The Hilbert space on which the state of the pho-
ton is defined is spanned by vectorsuxyl, sxydPGE and can
be decomposed into a direct sum of Hilbert subspacesH=
%xPGV Hx, whereHx=spanhuyxl : syxdPGEj. That is, the basis
of Hx is composed of the states of photons ingoing into the
multiport at x. For convenience, we introduce the Hilbert
subspace spanned by the states of photons outgoing from the
vertex atx: Ĥx=spanhuxyl : sxydPGEj.

The evolution operator of states inH is U= %xPGV Ux,

where Ux is isometryHx→Ĥx (onto, hence linear, hence
unitary). Since the subspaces are orthogonal,U is unitary.

The concrete realization of the unitary operatorUx reflects
the fact that the multiport partially reflects and partially
transmits the ingoing photon(see Fig. 1). Denoting the re-
flection and transmission coefficientsr and t, respectively,
we have

Uxuyxl = r uxyl + t o
sxzdPGE

uxzl, s2.1d

wheresxydPGE. For U to be unitary, these coefficients must
satisfy the relations[8]

ur u2 + sd − 1dutu2 = 1, s2.2d

sd − 2dutu2 + r * t + rt * = 0. s2.3d

The operatorUx (for any x) has in the natural basis the ma-
trix of the form sUxdi j =rdi j + ts1−di jd. The relations(2.2)
may be satisfied by using the Grover coefficientsr =s2/dd
−1, t=2/d (in what follows, we will call this setup the
Grover multiport; for more details, see Ref.[16]).

The pseudo-eigensystem of any suchUx can be readily
computed(“pseudo” means that we set an isomorphism be-

tween Hx and Ĥx such thatuyxl;uxyl). Since Ux=2uslksu
−1 (usl is the complete superposition over the basis of the
domain ofUx, which we denoteu1l , . . . ,udl), the eigenvectors
are usl (with pseudo-eigenvalue 1) and linearly independent
(but not orthogonal) set hu1l− ukl :k=2, . . . ,dj [with
sd−1d-degenerate pseudo-eigenvalue −1]. Performing the di-
rect sum of these eigenvectors leads us to a pseudo-
eigensystem ofU, with pseudo-eigenvalues ±1.

There are many other choices of the reflection and the
transmission coefficients. One set of them is the following
(we will use it when necessary):

t =
1

dp ,

r =Î1 −
d − 1

d2p eiu, s2.4d

where cosu=s1−d/2d /Îd2p−d+1 with p.1/2. If we set
p=1, then the reflection amplitude goes to limd→`r =−1

2
+ isÎ3/2d. Obviously, for large dimensions, almost all of the
photons will be reflected. The multiports with these coeffi-
cients will be the so-calledsymmetricmultiports. We will
later compare both sets of coefficients with respect to their
mixing properties.

From now on, we will be dealing with the multiports ar-
ranged into the form of thed-dimensional hypercube. The
edges of the hypercube will form two-way optical paths.

The d-dimensional hypercube is the Cayley graphG
=sZ2

d,fdgd, where fdg=h0, . . . ,dj is the set of generators of
the additive(mod 2) groupZ2

d (the binary strings with only
one 1). For any x,yPZ2

d, we set the scalar productxy
=x1y1+ . . . +xdyd (mod 2). The norm uxu=Îxx is the Ham-
ming weight (the number of 1s inx). The set,w=hx: uxu
=wj is called thelayer of the hypercube.

For simplicity, we will denote the basis states ofH for the
d-hypercubeuxyl as ux;al, where x is the vertex anda
=1, . . . ,d is the generator such thatx+a=y.

III. THE TOPOLOGY OF THE HYPERCUBE

The hypercube may be “broken up” in individual layers
,w, i.e., sets of vertices with equal Hamming weight. There is
a special class of vectors fromH, which is closed with re-
spect to U and whose members may be described by a
smaller number of coefficients, thus simplifying the evolu-
tion equations. Namely, these are the vectorsucl such that

FIG. 1. Action of the multiportsUd on the ingoing photon(in)
on the dim 3 hypercube. Coherent superposition of three photonic
excitations is created.

J. KOŠÍK AND V. BUŽEK PHYSICAL REVIEW A 71, 012306(2005)

012306-2



kx;aucl is the same for alluxu=w and for all a. Under this
assumption, the vectors are specified by coefficientshcw,±j
wherecw,±=kx;aucl with uxu=w, ux+au=w±1.

The reduced equations for evolution of the coefficients
cw,± are given from the assumptions that each vertex from,w
has a fixed number of edges which connect it to the previous
and next layer(with Hamming weight havingw±1). We note
that a vertexuxu=w is connected withw edges from the pre-
vious layer and withd−w edges with the next layer. Since
the coefficients assigned to the projectionucl to a given layer
are fixed, we obtain the recursive relations,

sUcdw,+ = twcw−1,+ + ftsd − w − 1d + rgcw+1,−,

sUcdw,− = tsd − wdcw+1,− + ftsw − 1d + rgcw−1,+. s3.1d

For w=0 and w=d, these equations still hold wherever it
makes sense, i.e., forc0,+,cd,−. The coefficientsc−1,·,cd+1,·
are neglected as long as they are multiplied by zero in the
equation.

The evolution which is governed by these equations is
called the symmetric SQRW.

If the initial state isc0,+=1/Îd, then we immediately ob-
tain the expression for the hitting amplitude

cd,−sdd = ftsd − 1d + rgsd − 1d!
td−1

Îd
. s3.2d

Using the Grover parameters(r =2/d−1 andt=2/d), we find
for the quantum probabilitypq to get from the vertexuxu=0 to
the vertexuxu=d in d steps the expression

pq = ucd,−sddu2 = Sd!

ddD24d−1

d
. s3.3d

Classically, the probability that we are at a given vertex
from ,w is pw, for which holdssWpdw=s1/ddwpw−1+s1/dd
3sd−wdpw+1−1. From this we obtain the hitting probability
sWdp0d=s1/dddd!. The classical probability to get from the
vertex uxu=0 to vertexuxu=d in d steps reads

pc =
d!

dd . s3.4d

Using the previous expression, we find that the classical and
quantum hitting probabilities are related like

pq = pc
24d−1

d
. s3.5d

The ratiopq/pc as a function of the dimensiond of the hy-
percube is given by the expression

pq

pc
=

d!

dd

4d−1

d
, s3.6d

and is plotted in Fig. 2. The whole model can be used to
simulate the coined quantum random walk on the line seg-
ment with the position-dependent coin. The state of the coin
is described by a vectorfcw,+,cw,−g, w=0, . . . ,d and is up-
dated at each step with the update rules given by Eq.(3.1).
We might be troubled by the fact that the update rule is not

unitary. But we need the unitarity only to conserve the inner
productkaW uaW l. Actually, the inner product

kcW ucW l = o
w=0

d Sd

w
D2

sucw,+u2 + ucw,−u2d s3.7d

is conserved.
Though we have simplified the problem by the assump-

tion of symmetric initial values, we are still far from its
explicit solution. The solution would rely on the path inte-
gration along different paths by which two sites can be con-
nected in a presupposed number of steps. Each path would
be assigned a complex amplitude(basically some product of
r ,t), and by adding all the relevant paths together, we would
get the amplitude distribution over the hypercube. This nor-
mally gives us enormous combinatorial expressions, which
are difficult to interpret.

Since the SQRW on the hypercube with symmetric initial
states is equivalent to the nonunitary one-dimensional(quan-
tum) random walk on the finite sequence of layers,w, we
may explore the probability distributionpnswd over the lay-
ers for an initial stateuc0l=oas1/Îddu0 ¯ 0;al, where
pnswd is the expectation value of the operator

Mw ª o
xP,w,a

ux;alkx;au, s3.8d

i.e., pnswd=kc0usU†dnMwUnuc0l. In Fig. 3, we present a result
of simulation of the evolution ofpnswd.

FIG. 2. The ratiopq/pc of hitting probability for classicalspcd
and quantumspqd random walk on the hypercube, related to the
dimensiond.

FIG. 3. The probability distribution of the SQRW,pnswd, for the
hypercube of the dimensiond=50, with a symmetric initial state
localized at the vertex 0̄ 0, and stepsn=1,¯ ,100. We consider
Grover multiports.
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We see that the SQRW on the hypercube is effectively
isomorphic to a dynamics of a resonator: We start with one
excited site, and the excitation propagates as a Gaussian
packet along the resonator. As the packet hits the boundary,
the corresponding site is excited, and the packet is reflected
in the opposite direction.

From Fig. 3, we see that the hypercube acts as a resonator
when it comes to the evolution of the probability distribution
over the layers.

We have performed detailed simulations for the symmet-
ric SQRW with initial conditions such that either only the
coefficientsc0,+;cd,− are nonzero, orcd/2,±Þ0. There are
two choices of the multiports: the Grover and the symmetric
multiports. We make the simulations for both of them, and
for both initial conditions(see Figs. 4–7). We see the peri-
odicity of the evolution, another feature akin to the resonant
behavior. Note that the Grover multiport has much better
mixing properties than the symmetric multiport, owing to the
fact that it is more distant from unity.

IV. HYPERCUBE AS A SCATTERING POTENTIAL

In Ref. [8], a model of a two-dimensional hypercube with
semi-infinite tails attached to the vertices with the Hamming

weights 0 and 2 has been studied. Each tail has been sup-
posed to be a one-dimesional lattice with perfectly transmit-
ting multiports. Along one tail, a photon enters the hyper-
cube, and emerges on the other side. It is possible to
calculate explicitly the transmission coefficient of the whole
structure. In the present section, we will study an analogous
problem for an arbitrary-dimensional hypercube. We will uti-
lize some symmetry assumptions, which allows us to per-
form the calculation(or at least the simulation) for arbitrary
dimensions. The scheme we consider is shown in Fig. 8.

Now everything is as before, except that the multiports at
the vertices with Hamming weight 0 andd have reflection
and transmission coefficients given by expressionsr̃ =f2/sd
+1dg−1 andt̃=2/sd+1d, respectively. The multiports outside
the hypercube are perfectly transmitting. The initial state is a
photon traveling from the vertex −1 to the vertexuxu=0 of
the hypercube. The state of the whole system is described by
complex numbersaw,± which represent the amplitude that
the photon travels from a vertexuxu=w and is directed to the
next or previous layer,w±1. Now we let w run throughZ.
The resulting relations are

sUcd0,+ = t̃c−1,+ + fsd − 1dt̃ + r̃gc1,−,

FIG. 4. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsn 0 to 250, with the initial state
c0,+=cd,−=1/Î2d (otherc ’ s=0) and symmetric multiports.

FIG. 5. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsn 0 to 250, with the initial state
cd/2+1,±=1/Î2s d

d/2+1
d (otherc ’ s=0) and symmetric multiports.

FIG. 6. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsn 0 to 250, with the initial state
c0,+=cd,−=1/Î2d (otherc ’ s=0) and Grover multiports.

FIG. 7. The probability distribution of the symmetric SQRW on
the hypercube of dim 50, for stepsn 0 to 250, with the initial state
cd/2+1,±=1/Î2s d

d/2+1
d (otherc ’ s=0) and Grover multiports.
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sUcd0,− = r̃c−1,+ + dt̃c1,−,

sUcdd,+ = dt̃cd−1,+,

sUcdd,− = fsd − 1dt̃ + r̃gcd−1,+,

sUcdw,+ = twcw−1,+ + fr + sd − w − 1dtgcw+1,−,

sUcdw,− = tsd − wdcw+1,− + ftsw − 1d + rgcw−1,+. s4.1d

We begin with the particle in the stateu−1,0l, i.e., a par-
ticle localized at the vertex just left of the hypercube on the
tail, and pointing to the right(see Fig. 8).

We have simulated the probability that a particle incom-
ing from the left will be absorbed by the detector aftern
steps(see Fig. 9). This means that the system evolves forn
steps, and then a projection on the vectorud;d+1l is per-
formed. The result shows periodic beats of the probability of
the absorption of the photon by the detector.

V. NONSYMMETRIC INITIAL STATE

When we impose a symmetry condition on initial states,
the whole problem becomes linear in the dimension of the
hypercube(normally its complexity is exponential ind). But
we also may be interested in the behavior that appears as a
result of phase differences between the components of the
initial state. Given thed-dimensional hypercube with semi-
infinite tails attached to the vertices 0̄ 0 and 1̄ 1, we
consider the initial state

uc0l = o
j=1

d

g ju0¯ 0; jl. s5.1d

Now the amplitude ofUduc0l to project onto the state
u1¯ 1;1l is given by the sum of amplitudes to traverse from
·0 to 1¯ 1 in d steps, which istsd−1dt̃. In particular, for the
initial stateu0· ;jl we havesd−1d! such paths. The situation
is analogous for allj , with each initial directionj contribut-
ing the factorg j of the amplitude. The overall amplitude is

k1¯ 1; + uUduc0l = o
j=1

d

g jsd − 1d!tsd−1dt̃. s5.2d

The probability of detecting the particle at the state
u1¯ 1;1l depends only ono j=1

d g j. In this sense, the hyper-
cube with tails attached behaves like a Mach-Zehnder inter-
ferometer.

VI. IMPLEMENTING THE SQRW

Until now, we have not discussed the question whether it
is feasible to implement the SQRW. To build a whole net-
work of multiports, we need exponentially growing re-
sources(the number of vertices grows exponentially). How-
ever, to encode the states under consideration, we need only
ddlog de qubits. So we can ask a question: Is it possible to
build a network of quantum gates operating on the qubit
register of this size? This is most easily done only on the
hypercube without the semi-infinite tails attached; however,
it is also possible to implement this scheme by adding some
overhead of gates to the network. We needd qubits for the
position registeruxl and at leastdlog de qubits for the direc-
tion registeruwl. The first part of one application of the uni-
tary operatorU is controlled negation of each bit ofx de-
pending onuwl. The second part is the transformation of the
state uwl, so that the action of the multiports is accounted.
More precisely, the first part is

uxluwl → o
a

ux + alkauwlual, s6.1d

and the second part reads

uxlual → uxlFr ual + o
bÞa

tublG , s6.2d

for eacha=1, . . . ,d. The first part described by Eq.(6.1) can
be implemented using a variant of the controlled-NOT (CNOT)
gate. TheCNOT gate operates on two qubits such that it ne-
gates the first(target) qubit, iff the second(control) qubit is
nonzero. The action of theCNOT gate is described by the
two-qubit operatorCCNOT=sx ^ u1lk1u+1 ^ u0lk0u. We em-
ploy thefCNOT gate, which differs from theCNOT gate in that
it has ad-dimensional control state, unlike a single qubit. If
the control state isufl (the accepting control state), then the
target qubit is negated, otherwise it is kept in the original
state. The operational form of thefCNOT gate is

fCNOT = sx ^ uflkfu + 1 ^ s1 − uflkfud. s6.3d

Obviously, thefCNOT is unitary.

FIG. 8. The scattering potential(three-dimensional hypercube).
The vertices outside the hypercube are denoted −` , . . . ,−2 andd
+1, . . . for the hypercube of dimensiond.

FIG. 9. The scattering probability of a 10-dimensional hyper-
cube, for a photon incoming from the source(S) (n is the number of
steps). The multiports are symmetric.
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The operation(6.1) can be implemented by usingd fCNOT

gates(see Fig. 10). Each gate operates on a different qubit
from the position register. If the gate operates on theath
qubit, the accepting control state is chosen to beual (see Fig.
10).

The operations(6.1) and(6.2) are implemented by using a
single unitary operationM operating on the direction regis-
ter. It corresponds to the transformation of the state due to
the multiports. It reads

M = o
a
Fr ualkau + to

bÞa

ublkbuG . s6.4d

The d3d matrix form of M is

M =1
r t ¯ t

t r ¯

A �

t ¯ t r
2 . s6.5d

Consequently, the unitary evolution operatorU of the SQRW
on the hypercube may be decomposed asU=G2G1=s1
^ MdC1¯Cd, where Ca=sx ^ ualkau+1^ s1−ualkaud is the
fCNOT operator with the target qubit being theath qubit from
the position register, and accepting the stateufl= ual, with
a=1, . . . ,d. The operatorsCa are mutually commuting, and
have common eigenvectors. To find them, we decompose the
eigenvectors into the product ofs23dd-dimensional vectors
ucl ^ uxl. Applying Ca on ucluxl, we obtain(providing that
sxucl=lucl)

Caucluxl = sxuclualkauxl + ucl ^ suxl − ualkauxld

= ucl ^ fsl − 1dkauxlual + uxlg

= Hucluxl, l = 1,

ucl ^ fuxl − 2kauxlualg, l = − 1.
J s6.6d

The case withl=−1 has to be dealt with separately. Ifuxl
= ual, then we getCauclual=−uclual, and if uxl= ubl ,bÞa,
then Cauclubl= uclubl. We arrive at the conclusion that the
eigensystem ofCa is the set of vectorsucluxl, whereucl is
the eigenvector ofsx andx= ual, a=1, . . . ,d. What about the
eigensystem ofG2? The matrixM can be diagonalized, since

it is translationally invariant. We search for the eigenvectors
in the formck=oa=1,de

2pika/dea, which yields

s6.7d

wherelk=r − t if kÞ0, andlk=r − t+ td.

VII. SQRW IS SUPERSET OF COINED QUANTUM
RANDOM WALK

In this section, we will discuss the connection between the
scattering and the coined quantum random walks. The
SQRW reduces to the coined quantum random walk on a
regular graph(having all vertices with the same degree), and
conversely, the SQRW is the generalization of the coined
quantum random walk on general graphs.

There is an isomorphism between the coined quantum
random walk(CQRW) and the SQRW on the same Cayley
graph over the Abelian group,G. We recall that the CQRW is
defined by a unitary operatorE on the Hilbert spaceHE
=HX ^ HA, whereHX is spanned by vectorsuxl ,xPGV, and
HA is spanned by the generators ofG, the basis vectorsual.
One step of the CQRW is given byE=SC, whereS=oaTa
^ pa andC=1^ M. HereTauxl= ux+al is the translation,pa
is the projection toual, and M is any unitary operator. The
isometry is given by one-to-one mapping of basis vectors of
both H and HE like uxsx+adlH;uxlualHE

. The correspon-
dence between operatorsU andE is Uxuyxl, wherey+a=x is
the same as applying the translationS on ux−alual and then
applying the coinM on ual such that matrix representations

of Ux in the natural basis ofHx,H̃x and M in the natural
basis ofHA are the same.

For regular graphs, we can decomposeHE into the direct
product ofHEx such thatHEx=spanhux−alual :a is gen.Gj.

The scheme for generalizing the coined quantum random
walk on general graphs was proposed in Ref.[14], but this
has required an oracle which operates on the set of all edges
of the graph. Our scheme is based on local operations done
by multiports, so it is more reasonable and easier to imple-
ment physically. This was actually proposed in Ref.[17].
Algorithms based on coined quantum random walks were
proposed in Ref.[13].

VIII. SEARCHING WITH SQRW

In this section, we will address a question whether it is
possible to use the SQRW for a database search or a similar
task. To answer this question, we need to formulate what a
quantum database is and how we can move around its entries
using the SQRW.

The database we are searching in is the so-called quantum
dictionary. The classical dictionary is a set of pairs(key,
value). The set of all keys is given by the topology of a
graph, yielding the adjacency relations among all the keys.

FIG. 10. The gate which implements the SQRW on the
d-dimensional hypercube. The input state is the position register(d
qubits labeled as 1, . . . ,d) and the direction registeruwl. There ared
fCNOT gates stacked together, with accepting statesu1l , . . . ,udl,
which change the position register, and the gateM which changes
the direction register.
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Random walk(classical) in the dictionary is bound to the
edges of this graph.

The searching problem in the dictionary is given as fol-
lows: given a value, find a key, such that(key,value) is in the
dictionary. ForN keys, this is anOsNd problem. To obtain a
quantum version of this scheme, we have to “quantize”(non-
canonically) the problem. Due to the fact that the graph is
not regular, we cannot factorize the complete Hilbert space,
but we need to label the states in the most general fashion:
uxyl, wheresxyd is an edge. The searching procedure consists
of applying one step of the SQRW, and then by querying the
database. The query corresponds to an application of a uni-
tary operator(the oracle) [18], which flips some auxiliary
qubit, depending on whether the value assigned to the key is
the one we are searching for. That is, the oracle is the trans-
formationOuxyluql° uxyluq% fsx,ydl, wherefsx,yd gives the
value 1 if any of the verticesx,y satisfy the query, and 0
otherwise. It is clear that the oracleO is unitary. Now the
searching algorithm is based on the sequence of operations
sOUdn, whereU makes one step of the SQRW andO is the
oracle query(equivalent to the action of the multiports). One
such algorithm has been presented in Ref.[2]. In our terms it
is the SQRW on the hypercube, where the multiport assigned
to one marked key has trivial coefficientsr ,t (they only
change the phase), while the other multiports have coeffi-
cients corresponding to the action of the Grover operator to
the direction states. In Ref.[2], it has been shown that the
marked key can be found inOsÎNd steps with probability
Os1d, whereN is the number of vertices of the hypercube.

IX. SYMMETRIES OF THE EVOLUTION
OPERATOR U

The basic relationUc=lc, where c=oxagxauxal yields
the following recurrence relation:

rgx,−a + to
bÞa

gxb = lgx+a,a. s9.1d

Finding the symmetries of this operator helps us to find its
eigensystem. We can Fourier transform the states ofH to
another basis, in which solutions can be found more easily.
The operatorU has many symmetries, one of which is the
translationTb:x°x+b. The eigenvectors ofTb are (for de-
tails, see Ref.[16])

ukãl = o
x

s− 1dkxux;al, s9.2d

with eigenvaluess−1dkb, kPZ2
d. The action ofU on ukãl is

Uukãl = s− 1dkaSr ukãl + o
bÞa

ukb̃lD , s9.3d

and in the basisukãl, U has the formŨ=diagshṼkjd, where

Ṽk =1
rs− 1dk1 ts− 1dk2

¯ ts− 1dkd

ts− 1dk1 rs− 1dk2 ts− 1dk3
¯

A � ¯

ts− 1dk1
¯ rs− 1dkd

2 . s9.4d

Now we only need to find the eigensystem of this compara-

tively small matrix. It is obvious thatṼk is translationally
symmetric. The eigensystem of Eq.(9.4) can be found in
Ref. [16].

In what follows, we will find another symmetry. Unlike
the previous case, now we will be changing both the ele-
ments of the position and the direction Hilbert spaces. This
transformationR will change the vectorux,al such that the
binary stringx is cyclically shifted right by one place anda
is set toa% 1 modulod. Sincea is unambiguously defined
by the position in the binary string at whichx differs from
x+a, this transformation is a symmetry. This can be viewed
as a rotation along the line segment connecting two opposite
vertices 0̄ 0 and 1̄ 1. We can choose any other two
verticesx,y such thatux−yu=d, and get a symmetry operator
Rxy=Bx

†RBx, whereBx changes the role of 0 tox and 1 to 1
+x. More precisely,Bxuz,al= uz+x,al (henceB†=B). Two
transformationsRx,Ry generally do not commute, but they
both commute withU.

X. CONCLUSION

We have proved that the SQRW is in fact a version of the
coined quantum random walk. We can use this observation to
extend the coined quantum random walk to the cases of non-
regular graphs. While it is in principle easy to construct the
SQRW on any graph, it is still a question whether we also
can simulate it efficiently(e.g., like in Sec. VI). This point is
crucial for further development of quantum algorithms based
on the SQRW in higher dimensions(where the speedup may
become noticeable). The class of algorithms based on the
SQRW is the database searching, using the oracle queries
along with the “random” steps. We already know at least one
such algorithm(see Ref.[2]) and we know that it is optimal.
We cannot expect that the complexity drops belowOsÎNd for
N database keys, but the new algorithms may be more gen-
eral in their inputs, and may be easier to implement.

We have found the connection between mixing properties
of the multiport(or the coin) and the distance of the respec-
tive operator from unity. It might be interesting to find an
exact function of this distance, which yields the measure of
mixing for the SQRW.
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