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We analyze how to improve performance of probabilistic programmable quantum processors. We show how
the probability of success of the probabilistic processor can be enhanced by using the processor in loops. In
addition, we show that an arbitrary SU(2) transformations of qubits can be encoded in program state of a
universal programmable probabilistic quantum processor. The probability of success of this processor can
be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results
can be generalized also for qudits.
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1 Introduction

The development of programmable quantum circuits is an area that has attracted attention only recently.
The basic model for these circuits consists of two parts, a data register and a program register. There are
two inputs, a data state, which is sent into the data register, and on which an operation is to be performed,
and a program state, which is sent into the program register, that specifies the operation. The first result
was due to Nielsen and Chuang, who showed that a deterministic universal quantum processor does not
exist [1]. The problem is that a new dimension must be added to the program space for each unitary operator
that one wants to be able to perform on the data. A similar situation holds if one studies quantum circuits
that implement completely-positive, trace-preserving maps rather than just unitary operators [2,3]. Some
families of maps can be implemented with a finite program space, for example, the phase damping channel,
but others, such as the amplitude damping channel, require and infinite program space. If one drops the
requirement that the processor be deterministic, then universal processors become possible [1,4–6]. These
processors are probabilistic: they sometimes fail, but we know when this happens.

A number of examples of programmable quantum circuits have been proposed. One is a quantum “mul-
timeter” that performs unambiguous state discrimination on a set of two states, the set being specified by
the program [7]. There are also devices that evaluate the expectation value of an arbitrary operator, the data
representing the state in which the expectation value is to be evaluated and the program state specifying the
operator [8,9].

In a probabilistic processor, one measures the output program state. If the proper result is obtained, the
desired operation has been performed on the data state, and if not, then the output of the data register is
discarded. In this kind of a scenario, one wants the probability of successfully performing the operation
to be as close to one as possible. In fact, what one would like, is, given a set of operations that one
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wishes to perform, a procedure for systematically increasing the probability of successfully performing
these operations.

In the case of one-parameter unitary groups acting qubits this was done Preskill [4] and Vidal, Masanes
and Cirac (VMC) [5]. Vidal, Masanes and Cirac considered the one-parameter group of operations given
by U(α) = exp(iασz), for 0 ≤ α < 2π, and discussed two equivalent methods of making the probability
of performing U(α) arbitrarily close to one. A circuit consisting of a single Controlled-NOT (CNOT) gate,
with the control qubit as the data and the target qubit as the program, can successfully perform U(α) with
a probability of 1/2. If the procedure fails, however, the data qubit, which was initially in the state |ψ〉,
is left in the state U(−α)|ψ〉. What we can now do, is to send this qubit back into the same circuit, but
with the program state that encodes the operation U(2α). This also has a probability of 1/2 of succeeding,
and increases the total success probability for the two-step procedure to 3/4. Note that our program state
has increased to two qubits, one for the first step and one for the second. We can continue in this way
simultaneously increasing the success probability and the size of the program state. It is also possible to
design more complicated circuits that perform the entire procedure at once, i.e. they have a one-qubit data
state, an N -qubit program state, and a success probability of 1 − (1/2)N [5].

In this paper we show how to increase the success probability of programmable processors that are
designed to realize various rotations on qubits and qudits.

2 Operations on qubits

We shall begin by describing the methods developed in [4] and [5] in terms of the formalism presented
in [6]. There, the input data state is in the Hilbert space Hd, the program state in the space Hp, and G is the
unitary operator, acting on the space Hd ⊗ Hp, that describes the action of the circuit. This operator can be
expressed as

G =
N∑

j,k=0

Ajk ⊗ |j〉p p〈k| , (1)

whereN is the dimension of Hp,Ajk is an operator on Hd, and {|j〉|j = 1, . . . N} is an orthonormal basis
for the program space. The operators Ajk satisfy [6]

N∑
j=1

A†
jk1
Ajk2 =

N∑
j=1

Ak1jA
†
k2j = Idδk1k2 , (2)

where Id is the identity operator on Hd. If the circuit acts on the input state |ψ〉d ⊗ |Ξ〉p, we find that

G(|ψ〉d ⊗ |Ξ〉p) =
N∑

j=1

Aj(Ξ)|ψ〉d ⊗ |j〉p , (3)

where

Aj(Ξ) =
N∑

k=1
p〈k|Ξ〉pAjk . (4)

Let us begin by using this formalism, let us look at a CNOT gate and the simplest of the circuits discussed
in [5]. Both the data and program space are two-dimensional, and the data space is the control qubit and the
program space is the target qubit. Expressing the operator for the CNOT gate in the form given in eq. (1),
and choosing the basis {|0〉, |1〉} for the program space, we find that

A00 = |0〉〈0|; A01 = |1〉〈1| ;
A10 = |1〉〈1|; A11 = |0〉〈0|.

(5)
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We want to use this circuit to perform the operation U(α) and this can be done with the program state

|Ξ(α)〉 =
1√
2

(eiα|0〉 + e−iα|1〉) . (6)

This gives us the output state

G(|ψ〉d ⊗ |Ξ(α)〉p) =
1∑

j=0

Aj(α)|ψ〉d ⊗ |j〉p (7)

where the program operators are

A0(α) =
eiα

√
2

|0〉〈0| +
e−iα

√
2

|1〉〈1| =
1√
2
U(α) ,

A1(α) =
eiα

√
2

|1〉〈1| +
e−iα

√
2

|0〉〈0| =
1√
2
U(−α) .

(8)

Therefore, if we measure the output of the program register in the computational basis and obtain |0〉, then
U(α) has been carried out on the data state. This occurs with a probability of 1/2.

If we obtain |1〉 instead of |0〉 when we measure the program register output, then the operation U(−α)
has been performed on the data state. We can try to correct this by sending the state U(−α)|ψ〉d back into
the same circuit, but with the program state |Ξ(2α)〉p. If we measure the program output and obtain |0〉,
then the output of the data register is

U(2α)U(−α)|ψ〉d = U(α)|ψ〉d , (9)

and this happens with a probability of 1/2. This will correct the previous error.

3 Realization of SU(2) rotations

In the Vidal-Masanes-Cirac model the angle of the U(1) rotation that is supposed to be performed on a qubit
is encoded in a quantum state of the program. The rotation itself is then applied on the data qubit via the
CNOT gate that plays the role of a programmable processor. As we have discussed above the probability of
success of the rotation can be enhanced, providing the data qubit is processed conditionally in loops. The
dynamics of each “run” of the processor is conditioned by the result of the measurement performed on the
program register.

In what follows we will show that an analogous strategy can be applied in the case of the SU(2) rotations
of a qubit, when the parameters (angles) of the SU(2) rotations are encoded in the state of the program. In
our earlier work [6] we have shown an arbitrary single-qubit unitary transformation can be implemented
with the probability p = 1/4 by using a quantum information distributor machine (QID) as the processor.
The QID is a quantum processor with a single data qubit and two program qubits. The quantum information
distribution is realized via a sequence of four CNOT gates, such that firstly the data qubit controls the NOT
operation on the first and the second program qubits and then the first and the second program qubits act as
the control with the data qubit as the target. At the end of this process a projective measurement on the two
program qubits is performed. The measurement is performed in the basis: {|0〉|+〉; |0〉|−〉; |1〉|+〉; |1〉|−〉}
(where |±〉 = (|0〉±|1〉)/

√
2). The realization of the desired transformation is associated with the projection

onto the vector |0〉|+〉. In what follows we will explicitly show how to correct the cases of wrong results,
i.e. of projections onto one of the vectors |0〉|−〉, |1〉|+〉, |1〉|−〉.

The action of the QID processor is given by relation [6,10]

G =
3∑

j=0

σj ⊗ |Ξj〉〈Ξj | , (10)
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where σj are standard σ-matrices with σ0 = I. The basis program vectors |Ξj〉 form the standard Bell
basis, i.e.

|Ξ0〉 =
1√
2

(|00〉 + |11〉) ; |Ξx〉 =
1√
2

(|01〉 + |10〉) ;

|Ξz〉 =
1√
2

(|00〉 − |11〉) ; |Ξy〉 =
1√
2

(|01〉 − |10〉) .

The general program state |Ξ(�µ)〉p encoding the unitary transformation U�µ = exp(i�µ.�σ) = cosµI +
i sinµ �µ

µ .�σ (µ = |�µ|) is given by the expression

|Ξ(�µ)〉p = cosµ|Ξ0〉 + i
sinµ
µ

(µx|Ξx〉 + µy|Ξy〉 + µz|Ξz〉) . (11)

Performing the previously mentioned measurement in the program basis |0〉|+〉, |0〉|−〉, |1〉|+〉, |1〉|−〉 we
obtain the following unitary transformations

|0〉|+〉 : |ψ〉d → U�µ|ψ〉d ;

|0〉|−〉 : |ψ〉d → σzU�µσz|ψ〉d ;

|1〉|+〉 : |ψ〉d → σxU�µσx|ψ〉d ;

|1〉|−〉 : |ψ〉d → σyU�µσy|ψ〉d ,

where

U�µ = cosµI +
i sinµ
µ

(µxσx + µyσy + µzσz) . (12)

To obtain this simple expression we have used the identity σjσkσj = −σk if k �= j. All observed outcomes
occur with the same probability, p = 1/4. Using the above notation the action of the QID can be expressed
in the form

|ψ〉d ⊗ |Ξ(�µ)〉p → 1
2


 3∑

j=0

σjU�µσj |ψ〉d ⊗ |j̃〉p


 (13)

where vectors {|j̃〉p} form the basis of Hp associated with the realized measurement. The explicit form
of the vectors is presented in following Section where we discuss a general solution of SU(N) rotations
of qudits.

We see that each outcome of the measurement indicates a different unitary transformation has been
applied to the data. Once we have obtained a specific result we can use the same processor again to correct
an incorrectly transformed data register and consequently improve the success probability. In particular, in
the case of the result j, the new program register needs to encode the correcting transformation U (1)

j =
U�µσjU

†
�µσj . The probability of implementing the unitary transformation using one conditioned loop is given

as p(1) = 1
4 + 3 1

16 = 7
16 . Using more and more conditioned loops the success probability is given by

p(n) =
∑n

j=1
1
4j 3j−1 = 1

4

∑
j(

3
4 )j = 1

4
1−(3/4)n

1/4 = 1 − (3/4)n converges to unity, i.e. p(n) → 1 as the
number of conditioned loops n goes to infinity. For instance, thirty conditioned loops result in the negligible
probability of failure, p � 10−4.

The example of Vidal, Masanes and Cirac shows us that we are able to replace the feedback scenario with
a probabilistic scenario by using different processors. An open problem is whether the same replacement
can be done in general, or at least for the case of the QID.
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1060 V. Bužek et al.: Probabilistic programmable quantum processors

4 SU (N) rotations of qudits

In what follow we will show that one can utilize the QID for a probabilistic implementation of SU(N)
rotations of qudits. We start our discussion with a brief description of the QID in the case of qudits. First, we
introduce a generalization of the two-qubit CNOT gate [10] for qudits. This is a conditional shift operator
defined with a control qudit “a” and the target qudit “b”

Dab =
N−1∑

k,m=0

|k〉a〈k| ⊗ |(m+ k) mod N〉b〈m| , (14)

which implies that

D†
ab =

N−1∑
k,m=0

|k〉a〈k| ⊗ |(m− k) mod N〉b〈m| . (15)

From this definition it follows that the operator Dab acts on the basis vectors of a qudit as

Dab|k〉|m〉 = |k〉|(k +m) mod N〉 , (16)

which means that this operator has the same action as the conditional adder and can be performed with the
help of the simple quantum network discussed in [11]. Note that for N > 2 the two operators D and D†

differ; they describe conditional shifts in opposite directions. Therefore the generalizations of the CNOT
operator to higher dimensions are just conditional shifts.

Following our earlier work [6,10] we can assume the network for the probabilistic universal quantum
processor to be

P123 = D31D
†
21D13D12 . (17)

The data register consists of system 1 and the program register of systems 2 and 3. The state |ΞV 〉23 acts as
the “software” that caries the information about the operation V to be implemented on the qudit data state
|Ψ〉1. The output state of the three qudit system, after the four controlled shifts are applied, reads

|Ω〉123 = D31D
†
21D13D12|Ψ〉1|ΞV 〉23 . (18)

The sequence of four operators acting on the basis vectors gives |n〉1|m〉2|k〉3 as

D31D
†
21D13D12|n〉1|m〉2|k〉3 = |(n−m+ k) mod N〉1 |(m+ n) mod N〉2 |(k + n) mod N〉3 . (19)

We now turn to the fundamental program states. A basis consisting of maximally entangled two-particle
states (the analogue of the Bell basis for spin- 1

2 particles) is given by

|Ξmn〉 =
1√
N

N−1∑
k=0

exp
(
i
2π
N
mk

)
|k〉|(k − n) mod N〉 , (20)

where m,n = 0, . . . , N − 1. If |Ξmn〉p is the initial state of the program register, and |Ψ〉 =
∑

j αj |j〉d

(here, as usual,
∑

j |αj |2 = 1) is the initial state of the data register, then follows that

P123|Ψ〉1|Ξmn〉23 =
∑
jk

αj√
N

exp
[

2πikm
N

]
P123|j〉|k〉|k − n〉

=
∑
jk

αj√
N

exp
2πikm
N

|j − n〉|k + j〉|k + j − n〉
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=
∑
jk

αj exp
−2πijm

N
|j − n〉|Ξmn〉

= (U (m,n)|Ψ〉)|Ξmn〉 , (21)

where we have introduced the notation

U (m,n) =
N−1∑
s=0

exp
−2iπsm

N
|s− n〉〈s| . (22)

This result is similar to the one we found in the case of a single qubit (see previous section). The operators
U (m,n) satisfy the orthogonality relation

Tr
[
(U (m′,n′))†U (m,n)

]
= Nδm,m′δn,n′ . (23)

The space of linear operators T (H) defined on some Hilbert space H with the scalar product given by (23)
we know as Hilbert-Schmidt space. Thus the unitary operators U (m,n) form an orthogonal basis in it and
any operator V ∈ T (H) can be expressed in terms of them

V =
N−1∑

m,n=0

dmnU
(m,n) . (24)

The orthogonality relation allows us to find the expansion coefficients in terms of the operators

dmn =
1
N

Tr
[(
U (m,n)

)†
V

]
. (25)

Therefore, the program vector that implements the operator V is given by

|ΞV 〉23 =
N−1∑

m,n=0

dmn|Ξmn〉23 . (26)

Application of the processor to the input state |Ψ〉1|ΞV 〉23 yields the output state

|Ω〉123 =
∑
mn

dmnU
(m,n)|Ψ〉1 ⊗ |Ξmn〉23 . (27)

Now let us perform a measurement of the program output in the basis

|Φrs〉 =
1
N

N−1∑
m,n=0

exp
[
2πi

(mr − ns)
N

]
|Ξmn〉 . (28)

The orthogonality of this measurement basis directly follows from the orthogonality of the entangled basis
|Ξmn〉. We should also note, that the vectors |Φrs〉 itself can be rewritten in a factorized form, i.e.

|Φrs〉 = | − r〉 ⊗ 1√
N

N∑
n=0

exp
[
2πi

ns

N

]
|n− r〉 , (29)

which means that the measurement can be performed independently on two program qudits.
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In order to clarify the role of the measurement we will rewrite the output state of the QID using the basis
|Φrs〉 for program qudits:

P123|Ψ〉1|ΞV 〉23 =
N−1∑

m,n=0

dm,nU
(m,n)|Ψ〉1|Ξmn〉23

=
N−1∑

m,n=0

dm,nU
(m,n)|Ψ〉1


 1
N

N−1∑
r,s=0

exp
[
−2πi

(mr − ns)
N

]
|Φrs〉23




=
1
N

N−1∑
r,s=0

N−1∑
m,n=0

{
exp

[
−2πi

(mr − ns)
N

]
dm,nU

(m,n)
}

|Ψ〉1|Φrs〉23 . (30)

Taking into account that

[
U (p,q)

]†
U (m,n)U (p,q) = exp

[
2πi

(mq − np)
N

]
U (m,n) (31)

and choosing p = s and q = r we find

1
N

Tr
[(
U (s,r)

)† (
U (m,n)

)†
U (s,r)V

]
= exp

[
−2πi

(mr − ns)
N

]
dm,n . (32)

Finally, the output of the QID can be rewritten in the form

P123|Ψ〉1|ΞV 〉23 =
1
N

N−1∑
r,s=0

[
U (s,r)V

(
U (s,r)

)†]
|Ψ〉1|Φrs〉23 , (33)

from which it is clear that if the result of the measurement of the two program qudits is |Φrs〉23, then the

system (data) is left in the state

[
U (s,r)V

(
U (s,r)

)†]
|Ψ〉1. Obviously, if s = r = 0, then the operator V is

applied on the data qudit. The probability of this outcome is 1/N2. For all other results of the measurement
the data qudit is left in the state given above. One can use these output states with a modified program state
to improve the performance of the programmable processor. Specifically, we have to use the new program
state |Ξ(r,s)

V 〉 that is chosen after taking into account the result of the previous measurement. This program
state has first to “correct” the wrong realization of the operation V during the previous “run” of the processor
and then apply (probabilistically), the original operation V . For this reason, the new program state has to
perform the operation

V (r,s) = V

[
U (s,r)V

(
U (s,r)

)†]−1

. (34)

This process of error correction (conditional loops) can be used K times and the technique of conditioned
loops can be exploited in order to amplify the probability of success. Applying the processor K times the
probability of a successful application of the desired SU(N) operation V reads p(K) = 1 − (1 − 1/N2)K .

5 Conclusions

In this paper we have analyzed a probabilistic programmable quantum processor. We have shown how to
encode information about the quantum dynamics V to be performed on a quantum system (data register)
in the state of another quantum system (program register). This information is stored in such a way that
the program can be used to probabilistically perform the stored transformation on the data. In our paper
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we have analyzed systematically how to perform U(1) rotations of qubits and qudits. We have generalized
the whole problem and we have shown that one can use a very simple quantum processor, the so called
quantum information distributor, to perform arbitrary SU(2) rotations of qubits as well as SU(N) rotations of
qudits using the probabilistic programmable processor with the quantum program register initially prepared
in states that carry the information about the operation to be performed on the data. It is also possible
to use enlarged programs to increase the probability of success without the use of loops. In this case the
measurement performed on the program register has to be modified accordingly. We have shown that if the
processor is used in loops with properly chosen program states one can improve the performance of the
quantum programmable processor so that the probability of failure decreases exponentially with the number
of program qudits that store the information about transformation on the data qudit.
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